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Overview and Summary

Overview and Summary

This monograph uses the Maxwell and associated potential equations to determine the behavior of
infinitely-long straight transmission lines. The presentation is loosely based on R.W.P. King's book
Transmission-Line Theory. No attempt is made to address non-straight geometries, bends, stubs and many
other practical applications described by King. There is no discussion of discontinuities, reflections,
standing wave ratios, Smith charts, or any of the traditional topics associated with transmission lines (see,
for example, Pozar 2012). The emphasis is more on how one derives the transmission line parameters
R,L,G,C directly from electromagnetic theory, and what approximations are made in doing so. A key
requirement is that the wavelength of a transmission line wave be significantly larger than the line's
transverse dimensions, something we refer to as the "transmission line limit". Although the discussion
generally concerns transmission lines with two conductors, comments here and there show how the
conclusions can be extended to transmission lines with more than two conductors.

Unlike waveguides, low-loss TEM transmission lines are most easily analyzed using potentials rather
than fields due to the nature of the boundary conditions. This then brings up the can of worms known as
"the gauge condition". We show how a variant of the Lorenz gauge which we call "the King gauge" (since
King uses it) serves to clarify the meaning of the Helmholtz integrals for the scalar and vector potentials
over the surface and interior of the transmission line conductors. This subject is somewhat glossed over in
King's highly compressed theoretical summary, and we could not find clarification in his many other
books on the subject. By the way, most books on "transmission lines" are concerned with the practical
aspects of electrical power distribution and King's book is somewhat of a rarity, though there are other
good books on the subject. It is true that a waveguide is in fact a transmission line, but we use the term
"transmission line" to imply the TEM mode of transmission.

An ancillary topic receiving much attention in this document is the description of the fields, potentials and
currents inside a transmission line conductor operating at angular frequency ®. Mainly the discussion
concerns round wires. A uniform round wire seems a simple physical object, yet the analysis is quite
complicated and involves the so-called Kelvin functions. The skin effect and surface impedance of such a
wire are considered in detail, and then later the proximity effect enters the picture.

There are very few "it can be shown" phrases in this document. Almost everything is derived in detail and
the results verified against external sources. Simple examples are always presented and calculations for
these examples are fully displayed, perhaps to a level of detail the reader will find annoying. Our view is
that a piece of theory is useless if one cannot apply it to a simple case and get a reasonable result.

The reader is assumed to have some knowledge of ordinary and partial differential equations and
associated calculus. Green's Functions (which we call propagators) appear frequently, since these are
useful in solving differential equations, and details are provided for readers not familiar with this subject.
In particular, our first major waypoint is the derivation of the transmission line potentials in the form of
King's Helmholtz integrals as shown in box (1.5.23). The propagators in these integrals are the 3D
Helmbholtz free-space fundamental solutions ¢ IPR/R. This subject is fully laid out for the interested reader
in Appendices H and I for the 3D and 2D Helmholtz partial differential equations which are the frequency
domain Fourier transforms of the more familiar 3D and 2D wave equations.
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The document consists of seven Chapters which are followed at the end by Appendices A through S. The
latter deal with issues thought too detailed or perhaps too peripheral to the main topic to appear in the
main text, but which we nevertheless felt were worth including. Many of the appendices are stand-alone
monographs in their own right, addressing some related topic (eddy currents, gauge invariance, field line
plotting methods, Hall effects, network model, fields inside a round wire, etc. ) The final section contains
a list of References.

Maple is used as needed to compute analytic integrals, solve equations, do unpleasant algebra, and make
graphs. The reader need not be a Maple expert to read and understand the presented Maple code.

of
To reduce clutter, derivatives that would normally be written 2% OF of/0x are written as Oxf. Symbols div

F, curl F and grad y are generally used instead of VeF , VxF and Vy. The scalar Laplacian is always V2.
Symbol o is used for conductivity, so surface charge is relegated to symbol n, which is also used to
indicate a derivative normal to a surface Onf .

Rather than use exotic script fonts or decorations to distinguish various forms of the electric field E, we
use an "overloaded" notation where the argument list or context determines which E function is implied.

When an equation is repeated after its first occurrence, the equation number is put in italics.

A fairly complete list of the symbols used in this document is presented after the summaries below.
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Chapter Summaries

Chapter 1 states Maxwell's Equations and associated equations which extend Maxwell's theory from the
vacuum to conducting dielectric and magnetic media. After some comments, many of these equations are
restated in integral form using the divergence theorem and Stokes's theorem, and then the behavior of
field components at boundaries is obtained. Wave equations for both the fields and potentials are
described, and the subject of gauges is dealt with. Starting with Section 1.5 the wave equations are
transformed to the frequency domain and Helmholtz equations with parameter B? appear. King's
Helmholtz integral solutions of these equations are then derived using what we call the King gauge.
Finally, Section 1.6 clarifies the reasons for using complex fields when physical E and B fields are real.

Chapter 2 derives expressions for the E and B fields (and current J = 6E) inside a round wire which is
assumed to have an axially symmetric current flow. The resulting fields are rather complicated and reveal
the skin effect. The surface impedance is defined and various quantities are plotted. Assumptions are
made about the vector directional nature of the E and B fields in this analysis. The same problem is
treated without these assumptions and for an arbitrary transverse current distribution in Appendix D. The
main results of that lengthy appendix appear in box (D.9.39).

Chapter 3 first discusses odd topics such as the dielectric loss tangent, the thickness of surface charge,
and why there is no free charge inside a conductor or a dielectric. The chapter then presents a qualitative
description of the E and B fields of a TEM mode transmission line, with some sketches of the fields.
Finally, various Facts about such a transmission line are stated.

Chapter 4 uses the Helmholtz integral form of the potentials to derive the well-known transmission line
equations which are these,

0.V(@) =-2i(z) 4i(z) = - yV(2) (4.12.15)
z=R+joL y =G +oC . (4.12.16)

In this process, the "transmission line limit" is assumed. It says that the wavelength on the line is much
longer than the transverse dimensions of the line. The analysis then yields precise meanings for the
parameters R, L, G and C. L is in fact the sum of external and internal inductance contributions Le + L;
and it turns out that Le, C and G are all related to each other in terms of a certain dimensionless real
parameter K as shown in (4.12.24). Parameters R and L; are the real and imaginary parts of the sum of
the conductor surface impedances Zs1 + Zs2. For closely spaced conductors, it is shown how quantities
like Zs1 are interpreted as perimeter averages. This chapter's analysis is first carried out assuming that the
conductors and dielectric all have the same magnetic permeability ., but then Section 4.13 shows how to
generalize the results for arbitrary magnetic conductors and dielectric.

At this point, the transmission line parameters are clarified and are related to each other, but they are
not "known" due to the fact that their solutions involve integral equations over the transmission line
geometry. This is the typical chicken-and-egg problem one encounters in all real-world electromagnetic
problems. Apart from simple cases (such as very thin transmission line conductors), further
approximation must be made.
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Chapter 5 describes the required approximation. It is basically a continuation of the "transmission line
limit" mentioned earlier, along with a notion of "low loss", which then allows the transmission line
problem to be reformulated as a 2D potential theory problem which we call "the transverse problem". It is
then basically a "capacitor problem" and then any transmission line geometry can be solved at least
numerically. Basically the assumption that the conductors are very good conductors transforms the
transverse Helmholtz equation into the 2D Laplace equation which is the basis of 2D potential theory.

Chapter 6 then gives a complete discussion of the exact solution, within the assumptions just mentioned,
for transmission lines consisting of two parallel solid cylindrical conductors of arbitrary diameter and
arbitrary relative (but not intersecting) position. This includes twin-lead lines with equal and unequal
conductor diameters as well as on- and off-centered coaxial lines. Since an infinite radius cylinder is a
plane, this discussion also obtains the exact solution for a transmission line consisting of a round wire
over a ground plane. Then the proximity and skin effects are analytically calculated for this transmission
line and the current density J, is plotted over the wire cross section for various wire sizes, locations, and
frequencies. It is shown that J, tracks the charge density n(0) around the wire perimeter of each wire. At
low ® the entire model is uncertain, and it is shown why the limit ®—0 cannot be interpreted in the way
one might think. The active perimeter p and average surface impedance Zg and are then computed. The
final section comments on the proximity effect for conductors in which currents flow in the same
direction.

Chapter 7 demonstrates that the theory of Chapters 4-6 (and Appendix D for the round wire) has definite
problems at low frequencies, and explains why these problems are to be expected. It also presents a
derivation of the fact that current density J, is uniform in a round wire at DC.

Appendix Summaries

Appendix A discusses gauge invariance and proves the existence of gauges in which div A can be set to
any arbitrary (but reasonable) scalar function, A being the vector potential appearing in B = curl A. The
notion of a Green's function or "propagator" is introduced, along with the tool of parts integration in
multiple dimensions. A few passing comments are added regarding the connection to special relativity,
covariance and quantum field theory.

Appendix B analyzes the situation in which the transmission line dielectric and conductors have different
magnetic permeability p, a situation not treated in King's TLT book. This causes a bound magnetization
current density Jp to appear both at boundaries (as a surface current) and in the bulk conductors (as a
volume current). It is shown ("the J, theorem") that the theory of Chapter 4 with its Helmholtz integrals
for the potentials can be "rescued" by adding just the surface component of the magnetization current Jy,
to the true conduction current in the vector potential integrand. A general method is given for computing
this surface current Jp from the conduction current distribution J in the conductor, using the H field as an
intermediary. As usual, the round wire serves as a calculational example.

Appendix C concerns the seemingly mundane subject: DC properties of wires. The main issue here is
the DC inductance of wires which are treated from a stored energy viewpoint. Internal inductances are
computed for a round wire and a hollow round pipe. It is shown that even for a simple rectangular cross
section (including square), the internal inductance cannot be expressed analytically (at least using our
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method) and a numerical calculation is required. That calculation has been done recently (2009) by
Holloway and Kuester.

Appendix D computes the E and B fields inside a round wire which is assumed to be one conductor of
a transmission line down which a traveling wave propagates at frequency . The solution is obtained
using azimuthal partial wave analysis. The E field Helmholtz equations are directly solved in cylindrical
coordinates, and the B field is then computed from Maxwell's curl E equation. Boundary conditions at the
wire surface are discussed. The results (D.4.13) are expressed in terms of the surface charge moment 1y
in each partial wave. The results for the m=0 partial wave are compared with the results of Chapter 2
which assumed a symmetric current distribution. A passing glance is taken at the corresponding fields
outside the wire, then the two boundary conditions are examined more closely, including consideration of
Debye surface currents. The source of the surface charge n(0) is pondered. The dielectric is initially
assumed to be non-conducting, but then this restriction is removed. Finally the high ® and low ® limits of
the E and B fields are calculated. It is noted that the entire model is not meaningful very close to ® = 0.

Appendix E ponders the thickness of the surface charge on a conductor. It is shown that the charge
layer thickness is about 1/3 the radius of a copper atom for a copper conductor, and that this is 4000 times
smaller than the skin depth at 100 GHz.

Appendix F is an elementary discussion of the waveguide modes of a parallel plate transmission line. It
shows why there is a cutoff frequency below which no waveguide modes can operate, whereas the
"transmission line (TEM) mode" on the same structure operates all the way down to very low o.

Appendix G computes the DC vector potential A, inside and outside a round wire carrying uniform
current. The computation is done three ways, the most difficult using the Helmholtz (Laplace) integral.
When the dielectric surrounding the wire has a p different from that of the wire, a homogeneous solution
must be added to the Helmholtz particular integral solution. It is this homogeneous solution that is
synthesized by adding the surface magnetization current discussed in Appendix B.

Appendices H and I derive the Laplace and Helmholtz Green's Functions for the 3D and 2D Laplace
and Helmholtz differential equations. These play a major role in the entire document.

Appendix J shows how the transmission line transverse analysis replaces 3D propagators with 2D
propagators of the Helmholtz and Laplace equations. Results obtained blindly in the main document are
interpreted in terms of these Green's function propagators.

Appendix K presents the standard network model of a transmission line as the limit of a set of lumped
circuit components. By computing the characteristic impedance Zo both from this network model and
from Maxwell's equations, it is shown that the R,L,G,C parameters of both models have the same
meaning, and this makes the connection between these network-model parameters and those obtained in
Chapter 4 from the Maxwell equations.

Appendix L considers a point charge located at the center of the cavity of a thick spherical dielectric
shell. The electrostatic problem is solved and limiting cases are obtained. The solution provides an
interpretation of how bound charge is accounted for by the dielectric constant € in E, = (1/4ng) (q/r). This
3D analysis is then repeated in 2D for a line charge in the cavity of an infinite cylindrical shell.

12



Overview and Summary

Appendix M shows qualitatively that, in the King gauge, the vector potential transverse components A¢
are much smaller than the longitudinal component A for all frequencies of transmission line interest.

Appendix N describes some subtle aspects of current flow in the presence of magnetic fields. The regular
Hall effect is treated, the notion of magnetic Ohm's law is derived, and the Hall effect is reconsidered in
light of this law. After dealing with multiple carrier types and magnetoresistance, we show that in a static
round wire carrying a current I, the longitudinal current density J, is uniform, and there exists a radial
Hall effect inside the wire. There is a small radial electric field E, and a small free charge density p
inside the wire which is balanced by a small surface charge on the wire surface. The cyclotron frequency
®¢ plays a major role in this discussion.

Appendix O reviews three methods for generating 2D field line plots. The first method is brute force
tracking iteration, while the second method makes use of Maple's ability to numerically solve a pair of
coupled differential equations. The third analytic method works in some cases. An example of each
method is presented.

Appendix P discusses the eddy current interpretation of the skin and proximity effects. A perturbation
expansion is developed and for small ® and the first term of this expansion is used to compute the eddy
currents in some simple cases. A thin round plate is treated analytically for a uniform then for a non-
uniform external B field. Then a series of qualitative examples leads to an explanation of the skin and
proximity effects in a transmission line as well as in generic parallel wires with same or oppositely
directed currents. It is shown why there is current crowding, and why such wires attract or repel.

Appendix Q computes the real and imaginary parts of k(®) = -j \/ (R+joL)(G+jwC) and then evaluates

the limits for large and small . This task is then repeated for Zo(w) = G+joC - The general

appearance of k(w) and Zo(®) over a very wide range of ® is shown for Belden 8281 cable as a prototype.
Appendix R applies the theory developed in this document to a case study: Belden 8281 coaxial cable.

Appendix S shows that the conclusions of Chapter 4 are maintained for closely spaced conductors when
the various parameters of the theory are averaged over the perimeters of the conductors.
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Symbols used in this document

Symbols are listed "alphabetically" in four groups. Some symbols have multiple meanings separated by
semicolons. The list shows the first use location of unusual symbols. The reader seeking entertainment
might compare these choices to his or her favorites. The sheer number of symbols is an indication of the
complexity hidden within a simple infinite straight transmission line.

Operators and Special Symbols

= is defined as ( ~ approx. equal, ~ ballpark equal)
AeB 3D dot product

a"b,  implied summation, see for example (1.3.11)
a*b regular multiplication

a* complex conjugation

aka also known as

F .
a/b space (and effort) saving version of % . Examples: OF/ot= % , sin(x)/(3abo) = %%2

(except where expressions are very confusing with the slash notation).
Ot partial time derivative 0/0t , so then OF/0t = O+F
Ox partial spatial derivative 0/0x (similarly Oy, Oz, Os, Or, €tc. )
o partial spatial derivative 0/0x;
'y partial spatial derivative 0/0x';
mT transpose of matrix M
QED thus it is proved
RHS  right hand side, LHS is left hand side
I budget summation notation (fits on a single line)

v same as dv/dt

O d'Alembertian = the 4D version of -V2. [0 = (1/c)?8? - V2, see (1.3.11)

X Moon and Spencer notation for the vector Laplacian (also written Vz) (D.1.10)
E~ Fourier Transform of E; this ” notation is used only in Section 1.6
A
X
$

unit vector indicator

closed line integral, usually fﬁds

Capital Latin

A vector potential (1.3.1); A¢ is transverse vector potential, see (5.2.1)

A a surface area, dA = a differential piece of this area (often dS); A = Angstrom = 107%m

B magnetic field, see (1.1.5) (sometimes called magnetic induction)

B a bipolar coordinate used in Ch 6 (often called £ elsewhere)

B B = (Eq/eq) CVR4c, a combination of App D symbols, introduced in (D.9.36)

C generic constant name (also A,B,C,D...) ; conductor name such as C; and Cy

C capacitance (often per unit length of a transmission line)

c complex capacitance, see (4.11.9) C'/C = qc/qs = (&/¢)

D diffusion constant, see App E and (3.1.1); generic transverse dimension of a transmission line
D electric displacement, see comment (5) below (1.1.18)

14
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electric field, but see Section 1.6 (f) about our heavily overloaded notations

conductance per unit length between conductors of a transmission line

magnetic field, see (1.1.5); H (1) (z) = Hankel function

1=1(0), first used in (D.2.31) (total current in a wire at z = 0)

current density and component thereof

conduction current (as opposed to displacement current or polarization current)
magnetization current, see (1.1.20)

polarization current, see (1.1.10)

Bessel function

contravariant 4-vector ( related objects F*¥, &%, 0, A¥, see App A.6 and Sec 1.3 (b))
surface current; constant appearing in transmission line parameter calculations, see (4.4.8)
surface current component in the z direction

see (4.10.9)

coefficient appearing in Appendix D

inductance; sometimes a differential operator (such as Ly = 8x2 orLy)

external inductance of a transmission line (does not include energy storage inside conductors)
internal inductance of a conductor (does not include energy storage outside the conductor)
magnetization, see (1.1.21)

J1u(€33%42) = My(z) €% 3 for real z

moment of charge density n(0) on a round wire, see (D.1.5)

electric polarization, see (1.1.12)

power, P =1V, see (C.3.3); total conductor perimeter

total charge on something

resistance, often per unit length; distance between two 3D points (R = |x-x'|)

DC resistance of a conductor (per length). For a round wire of radius a, Rgec = 1/(cma2).
Hall coefficient, see (N.2.4)

a surface area, dS = a differential piece of this area, dS =dS fi ; sign of -Im(Zo) in (Q.6.1)
stream function (also T); T is the current vector potential, see (P.3.7) and text above
thickness; temperature; Tg = Fermi temperature

energy stored in an inductor, U = (1/2)L 12, see (C.3.4)

voltage; sometimes volume, differential dV. When mixed, volume is ¥ or dV

Hall voltage, see (N.2.6)

A between transmission line conductors at some z, see (4.4.1)

AA, between conductors at some z, see (4.10.1)

width of something

reactance X¢ = 1/(0C), X1, = ole, see (4.12.24)

surface impedance, see Section 2.4

characteristic impedance of a transmission line, see (4.4.12) and (K.4)

intrinsic impedance of a medium =+/p/e , see (4.4.14)
impedance of free space (377Q), see (1.1.29)

complex intrinsic impedance of a medium =+/W¢ , see end of Section 4.4 (not used)
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Lower Case Latin:

a
am
b

b(x,y)
berp(z)

ch
cof

curl

ds

ds
dSg
dv
det
div

e

Cm
exp(2)
f

fm

Em
grad
g(x[x')
hp

h

i(z)

]

k
k(x,x")
m

n
n(0)
n
Nfree
Ng

Ne

p

q
q(2)
r

s(x)
sh

radius of a round wire (a; and ay if there are two round wires)

coefficient appearing in Appendix D

distance between centers of a transmission line made of two round wires

transverse current density in a conductor, normalized to 1

Kelvin function [also bein(z)] , Jv(e33™/42) = bery(z) + j beiy(z) for real z, see (2.3.1)
speed of light in vacuum

cosh

cofactor matrix ( as in ¢”* = cof(cT)/det(c) for matrix ¢ )

curl (sometimes written as V x )

diameter of a round wire (d; and dy if there are two round wires); bipolar focal distance
differential vector Surface area (scalar is dS, but sometimes written as dA) (A = vector potential)
differential distance along a curve (written elsewhere as df ) ; scalar distance is ds

local Stakgold surface area element in n dimensions with & the normal direction

differential volume ; differential voltage

determinant of a matrix

divergence (sometimes written as V o)

electron charge, e =- |e| ; e =2.71

a combination of Bessel functions, see (D.4.9)

ez

frequency; generic function name
a combination of Bessel functions, see (D.2.33)
a combination of Bessel functions, see (D.2.33)

gradient (sometimes written as V)

Green's function (aka a Green function or propagator); sometimes written g(x,x') or g(x,t; x',t')
a combination of Bessel functions, see (D.2.33)

height of something, like wire center line above a plane; Planck's constant

total current in a conductor at location z, first used in (4.7.3) and (4.7.5); i(0) =11in App D.

\/—_1 , see comment above (D.1.3)

sometimes used for a wavenumber (kg, ka, k in App D, etc. ); Boltzmann's constant
kernel in an integral equation or integral expression

meter; partial wave label in Appendix D; mass of particle (an electron)

surface charge density; normal vector (n); normal component (Ey); electron density (ne)
surface charge density on a round conductor which is part of a transmission line

surface charge per unit perimeter distance of a conductor (Cou/m); sometimes per angle
free surface charge (does not include any polarization charge)

same as Nfree

transport surface charge density, see (1.5.17): nc = (&/e)ng

active perimeter length; momentum

generic point charge

total charge per unit length on a conductor at location z, first used in (4.1.2) and (4.1.4)
radial variable for cylindrical coordinates (p is charge density) ; sometimes spherical r
generic source function, see for example (H.1.8)

sinh
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a 2D distance between points i and j

time; thickness of something

as subscript means either tangential (E¢) or transverse (Et)

loss tangent see (3.3.2) ( appears as tand in other sources, aka dissipation factor)
tanh

energy density in a magnetic field, u = (1/2) BeH, see (C.3.1) ; generic function name
speed of light in a dielectric (sometimes just v )

drift velocity of electrons in a conductor, see App N; sometimes v = generic velocity
width of something (sometimes means @ in Maple programs)

x = fB'r, Xa=p'a, see (D.2.33)

generic points in 3D space (sometimes written r,r')

unit vector in the x direction (similarly §, 6, fl etc.)

admittance per unit length of a transmission line see (4.12.15)

impedance per unit length of a transmission line see (4.12.15)

longitudinal dimension of a transmission line or round wire; generic Bessel Function argument

// pseudo-alphabetical
transverse charge density in a conductor, normalized to 1 (is delta function on surface)
wavenumber inside a transmission line conductor, see (1.5.1c¢)
wavenumber for dielectric surrounding transmission line conductors, see (1.5.1a)
wavenumber for non-conducting dielectric, see (1.5.1b)
B2 =p2 - k% see (D.2.2)
partial derivative (see operator list above)
Dirac delta function; d(r) = 3D delta function
skin depth, see (2.2.20)
Kronecker delta
absolute electric permeability (¢ = gg in vacuum), € = €' - j&"; a small real quantity >0
gleg
permutation tensor
complex electric permeability (1.5.1) (§ =€ - 6/jw); & = a bipolar coordinate called B in Ch. 6
Stakgold n-1 dimensional coordinate of a point on a surface ¢
scalar potential, see (1.3.1); @y is the transverse scalar potential, see (5.1.1)
= 1/y, inverse mobility, see (N.8.1)
wavelength
Debye length, see Appendix E
generic gauge function (Appendix A.2); arbitrary large cutoff value, see (J.10)
normalized moment of charge density on a round wire, see (D.2.30)
3.14 (=Piin Maple V)
charge density (Cou/m3); resistivity p = 1/c (ohm-m);
free charge density
polarization charge density, see (1.1.11)
conductivity (surface charge therefore is n, not o) ; standard deviation; Stakgold surface label
effective conductivity see (3.3.4)
azimuthal angle for cylindrical coordinates (¢ is scalar potential)
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0u(z)  Ju(e33%2) = My(z) 3% @ forreal z

0(a>b) Heaviside step function, normally written 6(a-b) or H(a-b) : 6(a>b>c) = 6(a>b) 6(b>c)
T collision time, see Appendix N

u absolute magnetic permeability (u=po in vac) ; carrier mobility in App N; mean value; microns
® angular frequency
®c cyclotron frequency, see (N.3.1)

Ye-Xm clectric and magnetic susceptibility
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Chapter 1: Basic Equations

Chapter 1: Basic Equations

In this chapter we state the basic equations to be used later in the calculation of transmission line
parameters and in the exploration of transmission line behavior.

1.1 Maxwell's Equations in a Conducting Dielectric Medium

Our working set of equations is the following:

curl H= 06D +J Maxwell curl H equation (J = J¢) (1.1.1)
curl E =- 0B Maxwell curl E equation (1.1.2)
divD=p Maxwell div D equation (p = pgree) (1.1.3)
divB=0 Maxwell div B equation (1.1.4)
B=pH magnetic permeability p (1.1.5)
D=¢E electric permeability € (dielectric constant) (1.1.6)
J=cE Ohm's Law (o = conductivity) (1.1.7)
divd = -0¢p Equation of Continuity (see item 7 below) (1.1.8)

(a) Notes on Maxwell's Equations

Although Maxwell's equations ("the Maxwell equations") provide a concise overview of classical
electrodynamics, there is lot going on "under the hood" and clarification of the meaning of certain
symbols seems useful, hence the following set of notes.

0. It is understood that, in a medium other than the vacuum (that is, a "ponderable" medium), all the
mathematical fields shown above like E, D, B, H, J, p (and later A and ¢) are average fields in the sense
discussed in Jackson Sections 4.3 and 6.6. The partial differential equations are meaningful for
differential volumes, areas and distances which are very small but still contain enough atoms or molecules
(perhaps at least 1000) so that averaging makes sense. We shall refer to the various electric and magnetic
fields as "fields" to distinguish them from "potentials" like A and ¢, though all these quantities are
mathematical fields.

1. The equations above are all expressed in SI units. The connection with cgs/Gaussian units is explained

in an Appendix present in all three of the Jackson Classical Electrodynamics editions. The above
equations appear in Jackson's third edition at these locations,
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(1.1.1) through (1.14): p2(Il.1a) Maxwell's Equations

(1.1.5) and (1.16): p 296 top line permeability constitutive relations
(1.1.7) p 219 (5.159) Ohm's Law constitutive relation J = cE
(1.1.8) p3(L2) equation of continuity

2. All media (conductors, dielectrics between conductors) are assumed to be homogeneous and isotropic
so that the quantities o, € and p are constant scalars in space (not tensors) for a given medium. In the
vacuum these constants take the values 6 = 0, € = g9 and p = po. An implication of o, p and € being
constants in space is that they pass through the div, curl, grad and V2 operators just as would any constant
like . One must be a little careful at a boundary between homogenous media since these constants can be
different in the two media. In principle, all three quantities can vary in time, and when transformed to the
frequency domain, o(®), &(®) and w(w) can (and do) vary with . However, we shall assume that for our
frequencies of interest, these quantities are constant in @ and are therefore also constant in time so they
pass through Ok¢.

3. The difference between € and gq is caused by polarization of bound charge in a medium. Equations
dealing with polarization are these [ see Jackson pp 153-4 or Panofsky & Phillips pp 28-30 and p 129-130
on the polarization current ] :

PdV = electric dipole moment contained in volume dV of a dielectric (1.1.9)
Jpo1 = O0¢P = polarization current density (1.1.10)
Ppo1 = - div P = polarization charge density (1.1.11)
P =¢o)eE // polarization assumed proportional to the polarizing E field (1.1.12)
D=¢E +P =¢o(l +ye)E=¢ E = "the electric displacement " (1.1.13)
e=¢go(1 +y%e) // € = dielectric constant, ye = electric susceptibility (1.1.14)
div E = (1/g9)(div D - div P) = (1/e0)(Pgree T Po1) - "E sees all charges" (1.1.15)

The E field causes polarization P either by causing existing tiny dipole objects (e.g., molecules) in a
medium to "line up", or by causing tiny non-dipole objects (e.g., atoms) to have dipole moments and then
those get lined up. See for example Bleaney & Bleaney Chapter 10 " Dielectrics".

Comment: Since D = ggE + P, the D and E fields are scaled differently. It might have been better had the
D field been replaced by D = g¢D' in which case D' = E + P/gg; then one can make clearer statements

about D' versus E. For example, in a dielectric capacitor with fixed conductor charges (Q,-Q) there exist
both D' and E fields, and D' = (¢/gp) E > E. The D' field can be interpreted as the E field that would be

present were the dielectric replaced by empty space. The dielectric in effect shields the charge, reducing E
and hence V, does not change Q, and, since Q = CV, it increases capacitance C by (&/g) for fixed Q.
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4. As noted in (1.1.3), the p in div D = p is the free charge density psree and does not include possible
polarization charge density. In contrast, the E field "sees" both free charge psree and polarization charge
Ppol , as derived above in (1.1.15) from (1.1.13),

divE = (1/80) ( Pfree + ppol) = (1/8) Pfree - (1116)

In the rightmost expression, the polarization charge is incorporated into the 1/¢ factor. Appendix L shows
how this works physically in the case of point and line charges embedded in a dielectric.

5. The J in curl H= 0¢D + J is the conduction current J. . If polarization current Jpo1 is present, it is
included in the "displacement current" term 0D along with the Maxwell "vacuum polarization current"
Jvac = €90¢E . That is,

Ja = 0¢D =0¢[eoE + P] = O¢P + go0tE :Jpol+Jvac ppolz-diVP . (1117)

The Jyac term go0LE was "added" by Maxwell to the curl H equation (Ampere's Law) to make it self-
consistent. Since div curl H = 0, and since curl H=Jgq + J., one must have div [Jg + Jc]=0:

div [Ja +Jc] =div [0cP + €00tE] + div[Jc] = O¢[div P + &g div E] - Otpsree

= at('l)pol) + at(Pfree + ppol) - atpfree =0 (1.1.18)

where we have used continuity div Jc = -Otperee, s€€ item 7 below.

Comment on "Displacement": In the case of polar molecule polarization, the polarization charge and
current can be viewed as being caused by a "displacement of bound charge" as suggested by this very
symbolic picture of a parallel plate capacitor

npt\)l E

GPDCDCEDEDCEDED
GPDCDCEDEDEDED
GPDCDCEDEDCEDED
CDCDCDEDCEDED
GPDCDCEDEDEDED

P

Nfree

DNOO

z 4—

((+(+

>

<« Fig 1.1

The applied E field of the plates lines up the polar molecules and thus causes a polarization charge
density npo1 to appear on the side faces of the dielectric, as if it were an "electret" object. One can
imagine that, with an AC plate voltage, as the applied E field changes to the other polarity, the polar
molecules rotate in place 180 degrees putting the positive bound charge on the opposite plate, and as this
happens, there is a polarization current Jpo1 = O¢P inside the dielectric. In reality, the molecules are close
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to randomly oriented and the above effect is obtained for the "average" molecule. In any event, the E field
causes surface polarization charge densities npo1 at the faces of the dielectric, and one then thinks of the
normally neutral-everywhere bound charge distribution as being "displaced" such that one face has
positive charge and the other negative. It is in this sense that Maxwell started using the word
"displacement". Before the Jyac term was added, Maxwell had Jq = 0¢D = Jpo1 and this associated 0D
entirely with Jpo1 and thus with the displacement of the dielectric bound charge, and so Maxwell referred
to D as the "electric displacement" and 0D as the "displacement current”.
Fig 1.1 shows how the polarization charge acts to shield the free charge, so ntot = Nfree - Npol.

6. If there is any magnetization current J,, = curl M, it is absorbed into the distinction between B and H
and therefore does not appear on the right side of curl H = 0¢D + J. . The current Jy, is discussed for
example in Panofsky & Phillips, Sections 7-12, 7-13 and 8-1. The basic equations are as follows,

MdV = magnetic dipole moment contained in volume dV of a medium (1.1.19)
Jm = curl M = magnetization current density (=> div J = 0) (1.1.20)
M=ynH =magnetization /I =[Wpo- 11 H from (1.1.23) (1.1.21)

B = po(H+M) = po(1+ym)H = pH = "magnetic induction" (informally, magnetic field)  (1.1.22)
1= po(1+ym) // u = magnetic permeability, ¥, = magnetic susceptibility (1.1.23)
curl B = po(curlH + curlM) = po(0eD + Jc) + Hodm
=up(0eD +Jc+Jm) . " B sees all currents" (1.1.24)
7. The "equation of continuity" (1.1.8) expresses the fact that charge cannot be created or destroyed.
Barring ionization of a dielectric, free charge and bound charge (polarization charge) cannot be converted

into each other and are therefore separately conserved. Thus we have several different equations of
continuity: [ see for example Haus and Melcher, Section 6.2, equations (10) and (13) ]

div Jo =-Otperee // conservation of free charge (aka true or unpaired charge) (1.1.25)
div Jp =-Otppo1  // conservation of polarization charge (aka bound or paired charge) (1.1.26)
div [Jct+ Jp] = - Ot[peree + Ppor]l = - OtPtot // sum of above two equations (1.1.27)
div [Jct Jg] =0 # -Otptot // reminder of item 5 above (1.1.18)

8. Ohm's Law J = oE is assumed to be a valid constitutive relation for our media of interest. One should
keep in mind that this is an approximation, whereas the Maxwell equations and the continuity equations
are not. Just under the surface charge on a conductor, Ohm's Law is violated as discussed in Appendix E
due to a diffusion current generated by charges piled up at the surface. Ohm's Law is also violated in the
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presence of very strong magnetic fields as shown in (N.4.10). In this case one can say that Ohm's Law is
still valid, but o is a tensor instead of a scalar.

9. As will be shown in Section 3.1, inside a medium such as a dielectric or a conductor, and at frequencies
of interest to us, there can exist no net charge densities, so prree = 0. In a dielectric there are no available
free charges, while in a conductor, any departure from neutrality would be instantly restored. All free
charge densities for our application reside on the surfaces of conductors only. If we were interested in the
behavior of a transmission line embedded in a charged plasma, things would be different.

10. As noted in item 1, all our equations are expressed in Systéme Internationale (SI) units. In this system,
formerly known as "rationalized m.k.s.", the speed of light is concealed in the symbols po and €9, Here

are the usual historical names given to the symbols appearing in our equations, along with one or more
expressions of the SI units for each symbol:

E = electric field (volts/m)

H = magnetic field (amp/m)

D = electric displacement (coulomb/m?, same units as surface charge)

B = magnetic field (tesla = amp-henry/m2 = volt-sec/m? = Weber/mz) 1 tesla = 10,000 gauss
J = current density (amps/m?)

p = charge density (coulombs/m3)

o = conductivity of the medium (mho/m = ohm™'/m)

W = relative magnetic permeability of the medium (dimensionless)

€/gg = relative electric permittivity = relative dielectric constant (dimensionless)

1o = permeability of free space = 41 x 1077 henry/m

€0 = permittivity of free space = 8.8541877 x 10712 farad/m (1.1.28)

Here are some unit relations obtainable from Q =CV, V=IR, LC= l/o?,1=RC=L/R, 1= dQ/dt :

coulomb = farad-volt volt = ampere-ohm henry-farad = sec?
farad = sec/ohm henry = ohm-sec henry / farad = ohm?
ampere = coulomb/sec mho = ohm™ mho/F = sec™*
newton = coulomb-volt/m = kg-m/sec? // F=qE=ma amp-henry = volt-sec

c=1A/lo g0 =2.9979246 x 108 m/sec = speed of light

Zgs =1\/Mo/eo =376.73032 ohms = "impedance of free space"
6=75.81x 10" mho/m for copper (1.1.29)

Notice how the names of eight people have become forever embedded into the SI unit system.

Comment: Inevitably, any given author will at some point refer to both B and H as "the magnetic field".
We shall do that throughout, using the historical symbols B or H to indicate which "kind" of magnetic
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field we are talking about. Some authors refer to B as the magnetic flux density or the magnetic induction
to distinguish B from H.

(b) Integral Forms of Maxwell's Equations and Continuity

The equations above involving the divergence and curl operators have integral forms thanks to these two
fundamental mathematical theorems which have nothing to do with electromagnetism in particular,

fv divF dV = fs FedS // "the divergence theorem" Spiegel 22.59 (1.1.30)
fs curl FedS = §c Feds // "Stokes's theorem" Spiegel 22.60 (1.1.31)
closed surface S closed curve C
1 A open surface S
0.8
0.6
0.4:
02}
z D0
0.2
044
0B}
08
-1
0. D
¥ ’ 15 ¥ 2
The Divergence Theorem Stokes's Theorem
Jvdi\'Fd\'= JSFO(IS fs curl Fe dS = fc Feds

Fig 1.2

The first theorem involves a closed boundary surface S which encloses a volume V and says that the
volume integral of div F over V equals the surface integral of F over S. The second involves a closed
bounding curve C (possibly non-planar) which bounds an arbitrary open surface S (also possibly non-
planar) and says that the line integral of F around C equals the surface integral of curl F over S. In the
divergence theorem, dS points "out" from the volume, and in Stokes's Theorem, the direction of dS and ds
are related by the right-hand rule where fingers fit the boundary curve and the thumb gives the direction
of dS. In both theorems the differential vector area patch is dS = dS fi where fi is normal to the surface.

Both theorems have meanings in n-dimensional space, but our interest is mainly n = 3. Both theorems
are not hard to derive and this is done in textbooks usually by breaking up the surface into tiny squares
and the volume into tiny cubes. Once one sees these derivations, the theorems become less mysterious.

In general terms, the divergence theorem says that div F is somehow a source of the field F and the
amount of F flowing out through a closed bounding surface equals the amount of F that is generated
inside the volume. When F is the electric field E, the divergence theorem is called Gauss's Law and says
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that the total electric flux "flowing out" [ that is to say, fs EedS ] equals the total of the source inside the
volume [ ( l/a)fv p dV ], usually called "the total charge enclosed". Thus,
divD=p o  Jypdv=JsDeds (1.1.32)
divE = ple o  Jupdv=fscEeds . (1.1.33)

Since the magnetic field has no corresponding charge, one always has .[s B ¢ dS =0, a theorem which

seems to have no name,

divB=0 = fs BedS =0 . S is any closed surface (1.1.34)

The surface integral of an E or B field is often referred to as the total electric or magnetic "flux" passing
through the surface, even though nothing is really flowing in a mechanical sense.

The divergence operator also occurs in the equation of continuity (1.1.8) so we have

divJ = - dep o -ofvpdvi= [sJ eds. (1.1.35)

This is the prototype application of the divergence theorem in that it is easily understandable: the total
electric current flowing out through some closed surface S must equal the rate at which the total charge
inside the surface is decreasing. One can write a similar statement for mass flowing out from a volume in
which p would be the mass density and J = pv the mass current, v being the velocity field.

The Stokes theorem is a bit more mysterious. Since this theorem is associated with George Stokes, it is
called Stokes's theorem, but is sometimes called Stokes' theorem (one would not say Gauss' theorem).
The curl of a vector field is associated with the amount of "rotation" the field has at some point in space,
and in fact curl is sometimes written Rot. If one considers a tiny patch and finds that the line integral of
the field around the boundary of that patch is non-zero, then the vector field has a non-zero curl at that
point in the direction normal to the patch. At any point where a fluid has a vortex, the curl is non-zero, for
example. When Stokes's theorem is applied to the electric field, one has

curl E = - 0,B o $cEeds =-0.[ sBedS] . (1.1.36)

This says that the voltage induced around a closed loop (the "electromotive force") is proportional to the
rate of change of the magnetic flux through that loop, a principle known as Faraday's Law of Induction.
If water power rotates a wire loop in the presence of some magnets, one has an electric generator.
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On the other hand, when Stokes's theorem is applied to the magnetic field, one gets

curl H=0,D +J o  $cHeds = [ [0:D+I] e dS (1.1.37)

curl B = g O:E + uJ o $cBeds = pJs[coE+ J]edS (1.1.38)

1 constant in space, € constant in time

When the situation is static, one has Eﬁ Heds= Is dS e J which says the line integral of the magnetic

field H around some loop equals the total current passing through any open surface whose boundary is
that loop (the "current enclosed"), a principle known as Ampere's Law.

Later we shall encounter a certain "vector potential A" which is related to the B field by B = curl A.
Since we are writing out "integral forms" of differential relationships, we can then add this to the list,

curl A =B o  $PcAeds = [sBeds. (1.1.39)

If the bounding curve C were a wire carrying a current | which creates both A and B, then both sides of
the above integral form will be proportional to I, and the constant of proportionality is by definition the
self-inductance L of the loop,

fﬁc Aeds = fs B ¢ dS = [magnetic flux through surface S] =L 1 . (1.1.40)

There are of course many surfaces S which span a given curve C, and (1.1.39) says that all such surfaces

give exactly the same .[s B e dS and thus the same L, so L is really a geometric property of the curve C.

We shall be using all these integral forms in the document below.
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(c) Rules for behavior of fields and potentials at a boundary

Consider the boundary between two different media called 1 and 2. Consider a tiny red "math loop" of
width L and height 2s which straddles the media boundary which here is seen edge on,

Yy
L
1 t S
X

2 »- S z

Fig 1.3
For the electric field we have from above (for our loop, dS = dS 2)

curl E = - 0:B o $Eeds =-[s(0B)eds]. (1.1.36)

Since the loop is tiny and since the fields are assumed to be non-singular, we can regard E and B as a
constant everywhere on each half of the loop (for our purposes here). The line integral around the loop is
then (start at lower left corner)

$ Eeds =LE,® +sE,@ +sE,® _LE® _sE,® _sE,?
=L [Ex®-E."7 .
The area integral on the right side of (1.1.36) is
[ (@B)odS = -0:B; ™M SL - 0¢B,@ sL =-sL [0eB; ™M + 0B, @]
so the integral form in (1.1.36) says
[Ex®-ExML=-sL[0B, P +0: B, ?].
As long as 0¢By is finite at the surface, as s—0 the right side vanishes and we conclude that
[Ey®-E, V] =0 |
We then summarize for both the x and z directions by saying (t means tangential to boundary)
Et1 =E¢2 or (1/€1)D¢1 = (1/€2)D+2 (1.1.41)

so the tangential (parallel) components of the electric field is continuous through a boundary.
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A similar analysis using the curl H equation,

curl H=0D +J o  $Heds = [ [0cD+I] e dS (1.1.37)

leads to

He? - H, P L= sL[0e D™ + 1, +0, D, +1,27] .
As long as 0tDx and Jy are finite (non-singular) at the surface, we conclude from s—0 that

Hei = Heo or (1/u1)Be1 = (1/u2)Be2 . (1.1.42)
However, it is possible to have J be singular at the surface in the form of a surface current K where

J =K(y) J= amp/m2 K =amp/m (1.1.43)
and in this case we find that

He@-H, DL = [ [J]edS = [s Ko(y)edS % = [sKyd(y)dxdy = [ s Ky dx ~ KL .

Were we to rotate the Fig 1.3 red loop -90° about the y axis, we would instead get

HeP-H, D L= [s (308 = [ Ko(y) +dS [-8] =- [ s K 3(y) dx dy =- J's Kuedx =Kol

where a minus sign appears on the right. Letting X or z be the transverse direction t, we can combine the
above equations into the single statement

a>
1l
->
]
=>

th(Z)_ Htl(l) _ Kfree o [’t\ X ﬁ] _ Kfree ° % = three

. A A A . . A A - .
where unit vector T = t x n is "the other" transverse unit vector relative to t . As usual, 1 is a normal unit

vector pointing from medium 2 into medium 1 ( § in Fig 1.3). To summarize, we have shown that
Hez - Hep =K, 7¢° or (1/p2)Bez - (1/p1)Ber = K. 7°¢ (1.1.44)

Notice that this K, is a "free" surface current, and not a bound magnetization surface current since such a
magnetization current is not "seen" by H.

Because div B = 0, B can be written as B = curl A where A is the so-called vector potential discussed
below in (1.3.1). In the special case that A = A,(X,y) Z, one finds that

B=curl A= (OyAz - 0zAy) + ¥ (02Ax - OxAz) + Z (OxAy - OyAx) = X (OyAz) - ¥(0xAz)

=> Bx = (OyAz) By = - §(0xAz) B,=0 . (1.1.45)
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According to (1.1.44) one has,

Kzfree

£
- Ky ree .

(1/u2)Bx2 - (UHI)Bxl
(1/]42)]322 - (1/“1)]321

For our special case A = A,Z the second equation says Kxfree = 0 since By1 = B2 = 0. The first equation
may be written

(1/112) (BnAz2z) - (/1) (BnA1z) = K 775 (1.1.46)

where fi (here §) is the usual normal vector (pointing into medium 1) and z is the direction in which A
points. If p1= po= o, we have (OnAz)2 - (OnAz)1 = MoKz and K is then proportional to the normal slope
jump in A, at the boundary surface. As earlier, K, is a "free" surface current.

Next, we put a tiny "Gaussian pillbox" straddling the two media. Area A and height 2s are both very
small.

Gaussian Pillbox a pill box circa 1830
Fig 1.4
For the electric displacement D we consider

divD=peree &  Jv pereedV = Js Dods (1.1.13)

where volume V is of the box shown. The surface integral is

fs DedS= Dy(l)A - Dy 2) A + contributions from the sides of the box .

Since we assume D is non-singular, the side contributions vanish as s— 0 since the side area vanishes.
Assuming a charge density ngree €xists on the boundary between the two media, the volume integral is
nereeA and then the conclusion, generalized to the perpendicular field component, is

Dni1- Dn2 = nNfree or [€1E1n - €2E2n] = Nfree (1147)

where fi points into medium 1. If the two media are conducting dielectrics with Ohm's law J. = oE, we
can apply continuity (1.1.25) to the Gaussian box to find that
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divJe= - Oeperee o -0ef)v perecdV] = [ Jo 0 ds (1.1.35)

so that
-OtNfree = [Jn1- Jn2] = 61En1 - 62En2
or for monochrome time dependence (coming soon, along with notation explanation),
-J® Neree = 61En1 - 62En2 . // frequency domain
Recall now from (1.1.47) that
Nfree = €1En1- €2En2 | (1.1.47)
Adding the last equation to 1/jo times the previous equation gives
0=[e1 T 61/jo] En1 - [€2 + 02/j0]En2
In terms of the complex dielectric constants &; = ¢&; + oi/joo this says that 0 = §1Ep1 - £2En2 so that
E1En1 = &En2 . // frequency domain (1.1.48)

In the limit that, say, medium 2 becomes a perfect conductor, & ~ c2/jo — o and Epo — 0, but the
product is maintained equal to §1Epq .

Returning again to the special case in which vector potential A = A,2 , since E = -V¢ - dtA ( as shown
in (1.3.1) ), we have Ey = - 03¢ since Ay = 0. In terms of Fig 1.3 where y is the direction normal to the
surface, one has Ep = - On¢ and then (1.1.47) may be written

€2(0n0)2 - €1(OnP)1 = Nfree (1.1.49)

which can be compared to (1.1.46). If &1 = €2 = g9, we have (On®)2 - (On®)1 = Ngree/€o and then ngyee is
proportional to the normal slope jump in ¢ at the boundary surface.

Finally, the other divergence equation

divB=0 & Is BedS =0 S is any closed surface (1.1.34)

leads to the conclusion that

Bn1 = Bn2 or t1Hn1 = p2Hn2 . (1.1.50)
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We now summarize these rules in a box, always assuming that there is no singularity in some quantity to
invalidate the claims:

Rules for continuity of normal and tangential fields at a boundary: (1.1.51)

The fields here are either F(x,t) or F(x,m), except(1.1.48) which is only for E(x,®) :

t = tangential = parallel = || T=txn
Et1 =Eto or (1/€1)Dy1 = (1/2)D¢2 (1.1.41)
Hez - Hep =K 55°° or (1/u2)Be2 - (1/p1)Ber = K 77°° (1.1.44)
Special case A = Az(X,y) 2 : (1/12) (BaAz)2 - (1/11) (PnAz)1 = K T7e° (1.1.46)

n = normal = perpendicular = L : ( symbol n is also used for surface charge density)

Bn1 =Bn2 or H1Hn1 = p2 Hn2 (1.1.50)
Dn1-Dn2 =nfree or [e1En1 - €2Bn2] = Nfree (1.1.47)
and for monochrome time dependence: E1En1 = &En2 where E=¢+ o/jo (1.1.48)
Special case A = A, 2 €2(0n0)2 - €1(OnP)1 = Nfree (1.1.49)

Tangential and normal boundary conditions can always be written in the following manner,

Ft1=Ft2 = an1=an2
Fn1=Fn2 = n0F1=n0F2 (1.1.52)

as can be seen by expanding F = Fpfi + Fet and noting that fi x t=0and fiefi=1. The E and B
boundary conditions in the above table appear as follows in King (1945), page 204 (obtained from the
University of Utah's robotic automated retrieval center ARC),

[AiEi] + [AzE:z] = L 31b) £1 = Ee2
vilAiBil + valfzBs] = 0 (81¢) (Vu2)Bez=(1/u1)Bu
(ﬁt,BJ) + (ﬁ‘:rB:.‘) = 0 (3].«)’) Bnh1 =Bno

where fi; =- fi, M,F)=neF,[n,F]=nxF, andv=1/p.
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In the following, quantities p and ¢ are treated as constants, independent of space and time.

The E wave equation may be derived using these steps :

curl E=-0¢B

curl curl E = -Occurl B = -pd¢[curl H] = -poe[ 0eD + J |

grad divE - V2E = -ud¢[ d¢[eE] + J |
(V2 - ned®)E = pogd + (1/e) grad p .
The B wave equation uses these steps :
curl H=0D +J
curl curl H = curl [0cD] + curl J
grad div H - VZH = ¢ d¢(curl E) + curl J
(1/w)grad div B - V2H = gp d¢(-0¢H) + curl J
(V2 - ne 6t2)H = -curlJ
The two results are then
(VZ - ue 0:9E = uded + (1/e) grad p

(V2 -pue 0B = -pcurlJ

// Maxwell (1.1.2)
// curl both sides and Maxwell (1.1.1)
// vector identity on left and D = ¢E

// div E = p/e

// Maxwell (1.1.1)

// curl both sides

// vector identity on left and D = ¢E
// Maxwell (1.1.2) and B = pH twice

/I since div B=0 (1.1.4)

(1.2.1)

(1.2.2)

which agree with Jackson p 246 (6.49) and (6.50). Recall that pe = 1/v? where v is the speed of light in
the medium of interest. These two equations are undamped driven wave equations.
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1.3 The Potential Wave Equations
(a) The Potential Wave Equations in the Lorenz gauge

It is possible to work with the scalar and vector potentials ¢ and A instead of the fields E and B. If ¢ and
A can be determined, then E and B are fully determined by (1.3.1) below. However, in the other direction,
if E and B are known, then ¢ and A are determined only up to a certain "gauge transformation" degree of
freedom, a subject discussed in Appendix A. The fields E and B are physically observable quantities
while the potentials ¢ and A in general are not and should be regarded as intermediate "helper" functions.
In SI units, the E and B fields are obtained from ¢ and A in this manner : [ Jackson p 239 (6.7) and (6.9)]

B=curl A E=-grad ¢ - OtA . (1.3.1)
A = vector potential (tesla-m = amp-henry/m = volt-sec/m) E = volt/m
¢ = scalar potential (volts) B =tesla .

Appendix A (Fact 4) shows that there is a continuum of possible choices (¢,A) all of which give the same
physical fields (E,B) according to (1.3.1). It turns out that, along this continuum, div A takes different
functional forms. Fact 4 shows that there always exists a choice (¢,A) for which div A = any function one
wants! Selecting f(x) for div A = f(x) is called "making a gauge choice". Different gauge choices just
result in different (¢p,A) potentials, but always the same (E,B). In the following derivations of the wave
equations for A and ¢, we shall be making a certain gauge choice as indicated.

The following steps are used to develop the ¢ wave equation. In the vacuum one has p = o and € = gg
and pe = 1/c? and these are the parameters one sees in the Jackson equation references below.

E =-grad ¢ - OctA /1 (1.3.1) [=Jackson (6.9)]

div E = - div grad ¢ - O (div A) // take div of both sides

V2(p + O¢[div A] =-p/e /I div E=p/e [=Jackson (6.10)] (1.3.2)
(V2 -pe oo =-(1/e)p . // apply gauge choice divA = - e O

And the following steps are used to develop the A wave equation:
curl H=0¢D +J // Maxwell (1.1.1)
(1/p) curl curl A=pe otE +J //H=B/u, B=curl A from (1.3.1), and D = ¢eE
grad divA - V2A = pe O¢l- grad @ - OcA] + pJ /I vector identity and (1.3.1) E = - grad ¢ - 0+A
(V2 - ue 6t2) A =grad [pe Orp + divA ] - uJ /I [ = Jackson (6.11) ] (1.3.3)

(V2 - ue atZ)A =-ud . // apply same gauge choice divA = - pe Or®
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The results are then

(V2 - pe 0o =- (1/e)p [ = Jackson (6.15) ] (1.3.4)
(V2 - pe 0H)A =-pd [ = Jackson (6.16) ] (1.3.5)
divA = - pg 00 . [ = Jackson (6.14) ] /I Lorenz Gauge (1.3.6)

As discussed in the comment below, this gauge choice is now called the Lorenz Gauge. One should notice
how the gauge choice decouples the two wave equations (1.3.2) and (1.3.3) so one resulting equation only
involves ¢ and p, while the other involves only A and J. We end up then with undamped driven wave
equations with simple driving terms. Note that p = pgree (does not include polarization charge ppo1) and
that J = J. (does not include magnetization current Jp). In effect, ppo1 and Jn are incorporated into the
constants € and .

Comment 1: For perhaps 100 years pretty much all (non-Danish) papers and textbooks (including
Jackson's first two editions in 1962 and 1975 and the initial six printings of his 1998 third edition)
referred to the Lorenz gauge as the Lorentz gauge, and it was then convenient to say that the Lorentz
gauge condition is Lorentz invariant since it transforms as a scalar equation under Lorentz
transformations. Now we have to say that the Lorenz gauge is Lorentz invariant because Lorentz was
mistakenly credited for first using this gauge condition, see Jackson's note p 294 added in his 7th printing.
Although the Dane Ludvig Lorenz (1829-1891) was 24 years older than the Dutchman Hendrick Lorentz
(1853 —1928), they were contemporary though independent workers at the time (1867) that Lorenz first
published the use of his now-eponymous gauge condition. Lorentz will just have to be content with his
transformations, his invariance, his contraction and his force law which says F = q(E + v x B). For more
on Lorenz and Lorentz, see Nevels and Shin.

Comment 2: We speak of (1.3.6) as "the Lorenz gauge" and divA = 0 as "the Coulomb gauge". These

gauges are really conditions on A and do not fully specify A since many vector fields A can have the
same divergence. So a gauge specifies a class of possible A fields, not a particular one.
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(b) Special Relativity Note

At first encounter, one is amazed at how similar the two equations (1.3.4) and (1.3.5) appear. Here we
shall show why that is so. We now assume the medium is the vacuum so pe = [ogp = 1/c2. Then the two
equations may be written,

1
(V2- 2 8c))p =- (l/go)p (1.3.7)
(V2- Elz DA =-pod . (1.3.8)

1 .
As shown in Appendix A.6, one can construct Lorentz 4-vectors A¥ = (E ¢, A) and J¥ = (cp, J) with the

identification of A° = o/c and 1= cp. The above equations can then be written, using proper tensor
notation where common vectors are contravariant with an upper index,

(V2- Elz 82 [cA®] =- (1/e0)[I%c] = - (1/e0)[1%c] (c®pogo) = - po cJ° (1.3.9)
(V2 - Elz oA =-polt . (1.3.10)

Cancelling the c's in the first equation allows both equations to be written as a single 4-vector equation

1
(VZ - EZ atz)l &p - lo Jp
or

1
OAP = po J¥ where O = a,0° = gzat"‘-vz . (1.3.11)

This equation is covariant because both sides transform as a Lorentz 4-vector (the operator [] transforms
as a Lorentz scalar). Special relativity requires that all equations of physics be covariant under Lorentz
transformations. This is similar to Newton's Law F = ma being covariant under rotations, where both
sides transform as 3-vectors. If we start with the correct law of physics (1.3.11) and work backwards
through the equation pairs above, where we add a medium with p and €, we end up with our starting point
(1.3.4) and (1.3.5) and the similarity of these two equations is then explained as being a requirement of
special relativity.
Recall the Lorenz gauge choice (1.3.6) which was required to decouple things above,

1
divA =- pogo O = -2 Ot . (1.3.6)
As shown in Appendix A.6, this Lorenz gauge condition can be expressed in covariant form as

1
OpAF =0 & divA =-Zz00 (1.3.12)
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while the equation of continuity states

0¥ =0 = div] = -O¢p . (1.3.13)
Both sides of these last two tensor-notation equations transform as a rank-0 tensor (scalar) so the
equations are covariant (0 is a scalar). As one changes frames of reference doing Lorentz transformations
(rotations and "boosts"), the potential wave equation, the gauge condition, and the continuity relation
always maintain the same tensor form.

In closing this relativity note, we must mention that the four Maxwell equations (with € = g9 and p =

Mo and pogo = l/cz) can also be stated in covariant notation. One first defines the following antisymmetric
rank-2 tensor (see Appendix A.5 concerning up and down indices etc.)

1 -
PR =PAY - "AF  AP=(J0,A)  TP=(cp,d) 7 =(2 0% = (0o, -03) (1.3.14)

where obviously F* = -F** and F** = 0 for diagonal elements. Then the two Maxwell homogeneous (no
sources) equations appear as

O°F¥Y + O"F" + OPF'® =0 // both sides transform as a rank-3 tensor so covariant

N curl E+0:B =0 and divB=0 (1.1.2) and (L.1.4) (1.3.15)
while the two Maxwell inhomogeneous equations are (implied sum on )

OpF"Y = po I // both sides transform as a rank-1 tensor (4-vector) so covariant

N curl B - pogodtE = nod and divE=plee  (1.1.24) and (1.1.15) (1.3.16)

The fields are given by ( € is the permutation tensor),

B, =-F23 E; = cF° or Bi =-(1/2)es5kF* and E; = cF*°
B, =-F3 Ej = cF?°
B3 =-F!2 Es=cF3°. (1.3.17)

The E and B fields are part of the tensor F*¥ and so do not transform as four vectors like A”. That is to
say, there are no 4-vectors of the form E* or B”, so there is no up and down index on a field, so the index
is just written down. Jackson states the above facts (but in Gaussian units) in his Section 11.9 along with a
description of the notion of covariance.

Example: pol? = 8,FP2 = 9gF % + 01F'? + 0,F%2 + 03F>2 = (1/¢)0¢(-1/cE2) + d1(-B3) + 0 + 03(+B1)

=- (l/cz)ath + [curl B]l, => pod =curlB - pogodeE in the 2 component
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(c) The Potential Wave Equations in the King and Lorenz Gauges with Conductors
We refer to a certain gauge condition below as "the King gauge" because King (see Refs.) made extensive
use of this condition in his books and papers at least as early as 1945. Perhaps this gauge has some

official name, but we are not aware of it.

We start with this King gauge and treat A and then ¢. Then we do the Lorenz gauge case for A and ¢, and
finally we look at the wave equations for E and B. The motivation for using the King gauge is explained.

Unlike most sources on this subject, we allow for the possibility that the conductors' p; might differ from
that of the dielectric.

KING GAUGE

Wave equation for A

Consider the following general cross section of a transmission line which happens to be of coaxial cable
type,

conductor

dielectric

conduction current
in region 3

region R
Fig 1.5

The gray regions 2 and 3 are conductors, while the white region 1 is the (possibly conducting) dielectric.
Currents J1, J2 and J3 are conduction currents.

We start by selecting the King gauge for region 1 and we apply it to all three regions,
div A =- p181 0¢@ - L1610 // = King gauge, applied to all of R . (1.3.18)

We first obtain the wave equation for A in region 1. Start with (1.3.3) which gives the wave equation for
A before any gauge choice is made,

(V? - p1e1 0¢%) A = grad [pie1 e + divA ]- puad . // region 1 (1.3.3)

Now insert the King gauge (1.3.18) to get
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(V2 - p1&1 0¢%) A = grad [p1&1 Oep + (- p1&1 O - 1619) 1 - pad
=- o1 grad ¢ - paJ
=-u161 (-E -0¢A) - pi(c1E) . // from (1.3.1) and J = 61E
=- 101 (-0¢A) .
Thus the wave equation for A in region 1 is
(V? - p161 0¢% - n1010¢) A =0 // region 1 (1.3.19)
This is a damped wave equation with no driving source; the equation is homogeneous.
Now we start over with (1.3.3) for region 2:
(V2 - H2€2 8t2) A = grad [pz€z O + divA ] - pad2 // region 2 (1.3.3)

As before, we insert the region-1 King gauge expression (1.3.18) for div A, even though we are now
working in region 2, and we make an assumption that conductor 2 is a "very good conductor".

(V2 - t2e2 0¢%) A = grad [1ag2 00 + (- 181 00 - 11610) ] - n2d2
= [M2€2 Or + (- pag1 Ot - p1o1) | grade - pad2
= [ (u2€2 - p1€1) Ot - M101) ] grade - pad
=[ (n2&2 - p1&1) Ot - 1161) ] (- E - OA) - pada // using (1.3.1)

=[ (H2€2 - M1€1) O¢ - M101) | (- J2/02 - OA) - pad2 /1 J2 = o2E

u

[ (n2g2 - p1€1) Ot - u161) ] (- OA) - padz // since G2 is very large in conductor 2

= - [ (uz€2 - p1€1) Or” - 11610¢ 1 A - pada .

The "large 65" assumption made two lines above is discussed at the end of this section. It puts a lower
limit on the value o for which the A wave equation is valid, but this limit is quite low relative to the
normal use of a transmission line so it does not affect our analysis.

Notice that we have chosen not to set Jo = 62E in region 2 for the last term, we just leave it as J».
Moving the first term on the right to the left one gets
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( VZ- g2 0% + [ (uz€2 - p1€1) O¢2 - 11610e ] ) A = - pady
or
( V2. H1€1 atz - 11010t ) A =-pads . // region 2 (1.3.20)

On the left side we see the same region-1 damped wave operator although we are in region 2, and J> is
the conduction current density in region 2. A similar result applies for region 3. Thus we have shown that

(V2 - L1€1 8t2 - 11010 )A =0 region 1
(VZ - 1e1 06 - 11610e ) A = - pada region 2
(V? - t1e1 0¢% - 11010e ) A =- pals . region 3 (1.3.21)

We combine these into a single equation which is then valid over all of region R,

(VZ - Hi€1 atz - u101) A= - H2J2 - ]J3J3 all of region R (1.3.22)
with the understanding that the conduction current in region 1 has already been accounted for and J;
represents conduction currents in conductor i .We could generalize this result for a region R containing
any number N of conductors labeled i = 2,3..N+1

(V2 - H1€1 8t2 - H101) A= - Zi=2N+1uiJi . all of region R (1.3.23)

Wave equation for ¢

We first obtain the wave equation for ¢ in region 1. Start with (1.3.2) which gives the wave equation for ¢
before any gauge choice is made,

V2p + Og[div A] =-pler . (1.3.2)
Now use the same global region-R King gauge (1.3.18) for div A,

V2@ + O¢[- p1&1 00 - 11019] =- pa/es
(V? - p1e1 8¢ - p1o10e)e = - (1/e1)p1 . // region 1 (1.3.24)

Again the same damped region-1 wave operator appears on the left side. Since the King gauge is the same
in all three regions, we can write

(V2 - g1 0% - 1a010e)0 = - (1/e1)p Y // region 1
(V? - p1e1 8¢ - p1o10e)g = - (1/e2)p & // region 2
(V? - p1e1 8¢ - pao10e)p = - (1/e3)p & // region 3 (1.3.25)

where p always means free charge. The three equations are basically the same because the pre-gauge
equation (1.3.2) has no region-specific parameters apart from €3, in contrast with (1.3.3) quoted above.
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Now the only actual free charge present is the surface charge on the outside surfaces of the conductors
and we shall regard all these charge densities as residing in region 1, the dielectric (just inside the
boundaries of region 1). Thus, write

p™ =py +ps I/ =23=2"""ps
p(z) =0
pB3 =0 (1.3.26)

where p; is the surface charge density on conductor i. Then combine the above three equations into a
single equation for all of region R

(V2 - pag1 0¢2 - n16100)9 = - (1/61) Tiza" s . all of region R (1.3.27)

Conclusion for wave equations in the King gauge

Here then are the wave equations for ¢ and A in region R using the region-1 King gauge:

Potential Wave Equations in the King Gauge (1.3.28)
(V2 - 1g1 02 - 16100)9 = - (1/e1) iz ps all of region R (1.3.27)

(V2 - H1€1 8t2 - W1010t)A = - Ei=2N+1 pnidi all of region R (1.3.23)

div A = - H181 0@ - 11619 King gauge (1.3.18)

1 = dielectric 2,3.,4.... N+1= conductors (there are N conductors)

pi = free surface charge density on conductor i
J; = free current density in conductor i (J1 in the dielectric exists but does not appear in Xip;J;)

To be consistent with later sections, we put subscript d on dielectric properties, and we renumber the
conductors 1 to N instead of 2 to N+1. The above box then becomes

Potential Wave Equations in the King Gauge (1.3.29)
(V2 - Wa€d 6t2 - Mg0ale)p =- (l/eq) Zipi all of region R

(V2 - Ua€a 8t2 - Ug0a0t)A =-Zipidi all of region R

div A = - ng€q Ot® - LaOaP King gauge

Ug,€4,04 = dielectric 1,3,4.... N = conductors PIED S us = for conductor i

pi = free surface charge density on conductor i
J; = free current density in conductor i (J in the dielectric exists but does not appear in X33 J;)
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The word "free" is used above to emphasize the fact that possible polarization charge densities and
magnetization current densities are not included in these p; and Jj.

King never writes these wave equations in his transmission-line theory book, so it is difficult to find
verification of our logic pathway in his book. However, Panofsky and Phillips do show the equations and
we quote the relevant section from p 241 of their book:

14-1] THE WAVE EQUATION FOR THE POTENTIALS 241

We obtain the symmetrical set of equations:

A oA

2 P T
VA — peg — po o = —uf, (14-4)
3% daeé
2 — m—— — —— —_— p—
Ve — ue E¥E) ey p/e. (14-5)

Here j’ represents a current given by j’ = ¢E’, that part of the current
density that is produced by the external electromctive forces. It does not
contain any part of the current induced by the electric fields in conduct-
ing media and represented by the last term on the left side of Eq. (14-4).

Their last sentence says that J = oE in the conducting dielectric has been incorporated into the -pucoA
term in their first equation, just as we have done above. These authors have assumed that the p's of the
dielectric and the conductors are all the same (normally p = o). In order to obtain the above equations,
Panofsky and Phillips use the King gauge (1.3.18) but they refer to this gauge simply as "the Lorentz
condition" (illustrating Comments 1 and 2 above). From their page 240,

within an additive arbitrary function of position. Let us define the diver-
gence of A by what is called the Lorentz condition,

VoAt eSS 4 pop =0, (14-2)
which in free space becomes
19¢ _ -
v A—t~¢2 68_0' (14-3)

LORENZ GAUGE

If we carry out the exact same program with respect to Fig 1.5 using a region-1 (dielectric) global Lorenz
gauge for all of R,

divA = - |.L181at(p 5 (1.3.30)

we obtain these results for A, where in region 1 the conduction current is not absorbed into a damping
term on the left side,
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(V? - p1e1 0:DA =- paJy region 1
(V2 - L1€1 Gtz)A =- uad2 region 2
(V2 - M1€1 6t2)A =-usds . region 3

As before, all three equations have the same wave operator on the left side. Again assuming N
conductors, we combine these into a single equation as follows

(V2 - W11 Gtz)A =-3;,"1 pids all of region R (1.3.31)

Meanwhile, the results for ¢ are

(V2 - H1€1 6t2)(p =- p(l)/sl region 1
(VZ - p1e1 09 =-p@ e, region 2
(V? - p1e1 0D =-p/es region 3

so that with the same comments made earlier in (1.3.26) this becomes
(V2 - L1€1 atz)(p =-(1/g1) T3t Pi - all of region R (1.3.32)
We then make the same notational change made above to get these Lorenz-gauge results:

(V2 - ngga 0:D)p =-(1/8) iz ps all of region R (1.3.33)
(V2 - ggq 0:D)A =-Zia™ psds - pd all of region R (1.3.34)

Notice that no conductivities appear in these equations.
COMPARISON

We can now do a side-by-side comparison, where X; is a sum over the conductors i = 1,2..N

King Gauge:
(V2 - Ua€a 8t2 - Ug0a0t)e =- (1/eq) Xipi all of region R (1.3.29)
(V2 - Ua€a 8t2 - Madle)A = -Ziusd; all of region R (1.3.29)
div A = - ngeq Ot® - Ug04P King gauge (1.3.29)

Lorenz Gauge:

(V? - ngea 029 = -(1/eq) Tips all of region R (1.3.33)
(V? - ngea 0eDA =-35 wids - pad all of region R (1.3.34)
divA = - pgeq 0@ Lorenz gauge (1.3.30)

In the Lorenz gauge, we get undamped wave operators, but the sum on the right of the A equation
includes the current J in the dielectric, whereas this is not the case in the King gauge. In a situation where
we have prescribed currents J; in the conductors, it is inconvenient to have to worry about the dielectric
conduction current J which complicates the solution of the problem. In the King gauge, we get damped
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wave operators but we have to include only the current in the conductors since the current in the dielectric
has been incorporated into the damping term. When we transform to the frequency domain and write the
Helmholtz equation for A and its Helmholtz Integral solution, we need only integrate over the conductors
which makes life easier. This then is the motivation for the King gauge. For a non-conducting dielectric
both gauge conditions are the same since ¢ = 0.

E AND B WAVE EQUATIONS

Meanwhile, the E and B field wave equations of course don't know anything about gauges and from
(1.2.1) and (1.2.2) we have, with respect to Fig 1.5, ( ps = p2tp3s = Zi=2N+1pi, 1 = dielectric)

(V? - p1e1 0DE = p10ed1 + (1/e1) grad p = pa6eds + (1/e1) grad ps~ // region 1

(V2 - U2€2 Gtz)E = u20ed2 + (1/g2) grad p(z) = U20ed2 // region 2
(V2 - uzes 0:DE = psdeds + (1/e3) grad p®) = psoeds // region 3
(1.3.35)
(V2 - W11 atz)B = - curl J1 // region 1
(V2 - U2€2 Gtz)B = - uz curl J; // region 2
(V? - nzes 0¢9)B = - pscurl J3 // region 3

where J; = o;E . We cannot unify each group of three equations into a single region R equation as we
could in the potential case since the wave operators are different in each region. Using J; = 61E and curl
E =- 0¢B and (1.3.26) the above equations can be rewritten as,

(V2 - L1€1 8t2 -wo10)E = (1/e1) Zi=2N+1 grad p; // region 1
(V2 - g€ 0¢2 - 12020 )E = 0 // region 2
(V2 - U3&3 6t2 - u3030¢)E = 0 // region 3
(1.3.36)
(V? - n1e1 0¢% - 11010¢)B =0 // region 1
(V2 - U2€2 8t2 - 12020¢)B =0 // region 2
(V2 - uzes 0¢2 - n3o3de)B =0 . // region 3

Again the three damped wave operators are different. The solution of these equations requires solving the
first equation for the "particular" solution in region 1, finding all possible homogenous solutions to all 6
equations in their regions using appropriate harmonic forms with "constants to be determined", then
matching these conditions at the two boundaries to evaluate the constants. In contrast, in the potential
problem of (1.3.28),

(V? - p1e1 0¢2 - 1010e)p = - (1/e1) iz ps all of region R (1.3.26)
(V? - p1e1 0¢% - t1010)A = - B30~ wids all of region R (1.3.23)
div A = - p181 Ot - L1619 King gauge (1.3.18) (1.3.28)

one worries about a single unified region R and there is only one damped wave operator. The method of
solution is to find the particular solutions of the ¢ and A equations, add in homogenous solutions and
match boundary conditions.
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The "large 2" assumption. This assumption was used above in the development of the region 2 damped
wave equation (1.3.20) for A. Looking back at the development one sees that the approximation made
was in fact |E| << |0+A| inside the conductor. An estimation of the validity of this inequality requires
material that appears in later chapters, so we assume that material in what follows. It will turn out that we
only care about the z component of the A wave equation which involves A, because the transverse
components of A are so small that they can be neglected (Appendix M and self-consistency). Thus, we
want to show that |[E,| << |wA,| where E, and A, are now in the frequency domain. From the study of

"the transverse problem" in Chapter 5, we can make a ballpark estimate that Az¢(X,y) ~ K, where A,¢ is a
certain transverse version of A,, and where K is a certain dimensionless constant arising in the theory.
This estimate for A,¢ arises from the boundary conditions on A+ shown in (5.3.11). The connection
between A, and A, is given in (5.2.1)

As(xy2) =52 i(2) Ael(xy) (52.1)

so we then have A, ~ (na/4n) i(z) K = (ug/d4m) I K where i(z) = I is the current in a conductor. For a
round wire of radius a we can estimate J, = I/(naz). Then from J, = cE, we have E, ~ I/(nazc). The
inequality in question is then

Ez | <<|0A]|

I/(nazcs) << o (ng/dm) [ K

1/(a%0) << o (ngK/4)

c0>>—12 — // assume pg = [ = o

or

(1.3.37)

= .0087/ (a°K) . (1.3.38)

1

In order to justify our "large c2" assumption, we require that the operating frequency be significantly
larger than .0087/ (azK). We will show in the following two examples that this is quite a low frequency

and one always operates above this lower limit in a practical application.

Example 1: Belden 8281 coaxial cable is treated as a case study in Appendix R. For the central
conductor, a =394 pn and the the cable has K = 3.7. Our condition is then f >> 15 KHz,
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a = 3%4e-6:
K :=3.7:
f := .0087/¢a"2%K) ;

F=15146.94627

Since 15 KHz is an audio frequency, while Belden 8281 coaxial cable is used for RF signals, this lower
limit is not an issue. That is to say, the A, wave equation (1.3.20) is valid for ® of practical use.

Example 2: At the end of Section 4.6 below we consider a power distribution transmission line which
has two conductors with a = 1/2" and K = 17.5. For such a transmission line, our condition is f >> 3 Hz,

a = (2.5hde-21/2:
E = 17.5h:
f := .0087/(a"2%K);

F=3082291879

Since power systems operate at 50 or 60 Hz, this lower bound of 3 Hz is well surpassed.
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1.4 Retarded Solutions in the Lorenz gauge: Propagators
In a medium where p and € are time-independent, the Lorenz gauge equations (1.3.4) and (1.3.5) apply,

(V2 - pedd)e =- (1/e)p (1.3.4)
(V2- e oA =-puJ . (1.3.5)

One approach to solving these equations for A and ¢ is the method of retarded solutions. We seek to solve
an equation of this form

(VZ- pedddu =-1, (1.4.1)

where for example in (1.3.4) u = ¢ and f = p/e. Since pe = 1/v? where v is the wave velocity in the
medium, write (1.4.1) as

(02 - vV u = v3f

or

Ou=f where 0 = ;1261;2 -VZ . (1.4.2)

This last equation is similar to (A.7.2) of Appendix A and can be solved in the same manner. Define a
Green's function g as the solution of

v O g(x.t; x\,t) = 8(x-x)3(t-t")  with g =0 when |x-x'| >0 . (1.4.3)
This is just (A.7.3) with ¢ = v. As (A.7.4) shows, the solution is given by

vZg(x,t; X\t) = (1/4nR)S(t-t-R/v)  with R=|x-x/| . (1.4.4)
The delta function only gets a hit if t = t'+R/v, so there is never a hit if t <t'. In other words, g = 0 for t<t',
and g is often referred to as a "causal" Green's function. Jackson (6.41) and (6.44) uses G = 4nV2g

with v = ¢ and refers to the solution as a "retarded Green function". See also Stakgold references in
Appendix A. The solution to (1.4.1) is then

ux,t) = Jd3x [ dt v? e(x.t xt) fxt) (1.4.5)

as can be verified by applying [ to both sides and making use of (1.4.3). The Green's Function g(x,t; x',t")
is the free-space fundamental solution (propagator) of the wave equation. Insert (1.4.4) into (1.4.5) to get,

uxt) = Jd3x [dt (1/anR)s(t-t-Riv) fix't) = [ d3x (1/47R) f(x, t-R/)

1 f P f(x',t-R/v

=~ in R (1.4.6)
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Thus, the solutions to (1.3.2) and (1.3.3) are (Lorenz gauge) :

o(x,t) = f d3x Xt (1.4.7)
Ay = 3o [ ﬁx’;ﬂl . R = [x-x (1.4.8)

The potentials at time t are generated by the values the sources had at time t - R/v since the influence of
the sources travels at finite velocity v through the medium. These last equations agree with Jackson p 246
(6.48). Note that 1/4nR is the free-space propagator of the Laplace equation. It describes how a source at
location x' and earlier time t-R/v propagates its influence into the potential at observation point x and
current time t. Compare (1.4.6) to (A.0.2) which is the solution to the electrostatic Poisson equation,
where the source has no time dependence (it is static).

Jumping the gun slightly, it is interesting now to Fourier Transform the above equations. First, write
o0
p(x',t-R/v) = f dt' 3(t'-[t-R/v]) p(x',t") . (1.4.9)
-00

Then using the Fourier Integral Transform (1.6.8),

o(x,0) = f ” dt o(x,t)e 0t // (1.6.8a)
-0
= f ” dt [_41lts Idsx' POCLRY) ’ER/V ]e 3¢t // insert @ from (1.4.7)
-0

f dt fd3 ' f dt' §(t-[t-R/v]) p(x',t") e3°F // insert p(x',t-R/v) from (1.4.9)

47t8
= 4L7t8 f &>’ % f _Z dt' p(x't) e IO LE R/ /I do the dt integration
47r8 [a* = p(x,t) e // let B = oV

4n8 J a3 S p(X,0) . // (1.6.8)

Thus, in the frequency domain the retarded potential solutions appear as
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1 3 e'jﬁR

ox0) = 7= | & 5 p(x.w) (1.4.10)
oTIBR

Ax,m) = z& fd3x’ R J(x', o) . R = [x-x]| B=owv (1.4.11)

These are the single-region expressions of the Helmholtz integrals we shall obtain in the next section by a
somewhat different path using a different gauge. These integrals then are the w-domain versions of the
retarded potential solutions in the time domain. The factor ¢”3P®/R is the w-space 3D Helmholtz
propagator discussed below and in Appendix H. It describes how the w-domain source (p or J) at location
X' propagates to its potential at location x.

These last two equations have the general form

fx) = J k(x)fa(x)d3x (1.4.12)

and the propagator k(x,x') is sometimes called "the kernel" and defines an integral operator K. Then the
above equation is written f; = Kf, which is a mapping from one function to another in a Hilbert Space of

functions. Similarly, equation (1.4.5) has the form
et = J [k x.t) fa(x.t) d3x dt (1.4.13)

where now the kernel k(x,t; x',t'") is a spacetime propagator describing how f5 at x' and t' contributes to f3
at x and t. The total function f; is the sum of all these propagated contributions. For the particular
propagator shown in (1.4.5), f1(x,t) would only get contributions from f>(x',t') at past times t', so that k is
a causal propagator. The same notion of f; = Kf, applies.

Comment: The word "propagator" is commonly used in quantum mechanics where the entity being
propagated is a probability amplitude, and the total amplitude for some "event" is the sum of all the
propagated contributions. This viewpoint was promoted by Richard Feynman, and the graphical
representation of equations like (1.4.12) is called a Feynman Diagram :

! \‘\ ® (Xrt)

b
Wt
{ ]

(x.t)

t Fig 1.6
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1.5 The Wave Equations in the Frequency Domain

(a) The Transformed Wave Equations

A standard method of solving wave equations involves transforming the equations from the time domain
to the frequency ®» domain using the Fourier Integral Transform, assuming that the p, € and o are
constants (possibly complex). As an example, we start with the ¢ equation in box (1.3.29) and expand
¢o(x,t) and ps(x,t) onto their Fourier components using (1.6.8). The overloaded notation is explained in

Section 1.6 (f).

(V? - tg€a O¢2 - taoade) 9(x,t) = - (1/eq) Tipi(x,t) (1.3.29)

(V2 - pata 0e? - taoade) [(1/2m) [~ do €39 o(x,0)] = - (I/ea) [(120) |~ do €% ;5 (x,0) |
=00 =00
o 2 2 +jot ® +jot
f do (V* - pgeq 0t” - ngogde) €77°° p(x,0) = - (1/eq) f do e"7°" Z;pi(x,0)
o 2 2 . +jot o +jot
f do (V° + ugeq0” - jo pgog) €2°° o(x,0) = - (1/e9) f do e"7°" Z;p;i(x,0)

|7 do €398 [(V2 + pagao® - jo pace) 9x,0)] = [ do 3% [- (1/eq) Ssps(x.0)] .

At this point we invoke the completeness of the set of functions {€3°*} on the interval (-0,00) to claim
that the integrands must be equal, giving (1.3.29) transformed to the frequency domain,

(V2 + Uaga® - jO taoa) O(X,0) = - (1/eq) Zipi(X,0) .
or
(V2 + Ba®) 9(x.0) = - (1/£a) Taps(x.0)
where B4? is the following complex "Helmholtz parameter" [of Helmholtz operator (V2 + Ba?) 1,
Ba® = Haga®” - jopaOa = ®°pg ( €4 - j0a/®) = 07 palq Ea =€a-jod/O . (1.5.1a)
Bao® = ®’taea when g =0 (non-conducting dielectric) (1.5.1b)
Here £4() is the "complex dielectric constant", nothing more or less than the expression shown.
We shall have occasion (mainly in Appendix D) to use the damped wave equation for the E field inside a
transmission line conductor. We referred to such conductors as region 2 or region 3 in the discussion

above, but here we shall use no subscript to denote parameters inside a conductor. Looking at (1.3.36),
such a wave equation when converted to the frequency domain becomes,

(V2 +B?) E(x,0) =0 (1.5.27)
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where
2 _ 2 . _ 2 . _ 2 —
B = pen” - jopus =0 p(e-jo/o) =0 ng E=¢e-jo/o . (1.5.1¢)

and all parameters here refer to the conductor. This has the same form as (1.5.1a) but with no dielectric

subscripts. For copper, we show later in (2.2.3) that for f << 108 Hz, one can neglect the € term in the

above expression for p? which then gives
B2 =- jopo (1.5.1d)

Note: Hermann von Helmbholtz (1821-1894) was an early electromagnetic researcher and equations of the
form (V2+k2)f = g bear his name. As we have just seen, his equation arises from a temporal Fourier or
Laplace transform of a wave equation. Since k will have another meaning in Chapter 5, and to be
consistent with King p 10 (15a,b,c), we define the quantities in (1.5.1) as p? instead of k?. King bolds
parameters when they are complex, but we do not, so we have p? instead of p2.

Examination of the above transformation shows that any equation can be transformed from the time
domain to the frequency domain using these simple rules,

0 —>Ho %' —-0®  F(xt)— F(xo). (1.5.2)
where it is understood (Section 1.6) that F(x,t) and F(x,») are different functions.

Thus, the frequency-domain representations of the King-gauge potential wave equations shown in
(1.3.29) are:

Potential Wave Equations in the King Gauge (o domain)
(V2 + Ba)p = - (1/£4) Zips all of region R (1.5.3)
(V2 +BadA= -5 pids all of region R (1.5.4)

div A = - HgEg® - HaCa® = -joa(eat0a/j0)p = -jopata® = -§(Ba®/®)e King gauge (1.5.5)

de = udsd(nz - jO)ude = (,Ozl.l,d ( €4 - de/O)) = (,02},ld {;d &d =E€&4- de/O) (1.5.18.)
Ud,€4,04 = dielectric 1,3,4.... N = conductors PIED I n; = for conductor i

pi = free surface charge density on conductor i
J; = free current density in conductor i (J in the dielectric exists but does not appear in X; 3 J;)

In these equations, all mathematical fields ¢, A, pi, J; are functions of x and ®. Note from (1.5.5) that in
the ® domain, the King gauge is the Lorenz gauge with ¢4 — &g.
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(b) The Helmholtz Integrals in the King Gauge

The next step is to solve the above equations for ¢ and A. The method was demonstrated in Appendix A.0
and is applied again here. We first define the free-space Green's Function g by this boundary value
problem,

- (V24 Bad)g(x,x) = 8(x-x)  where lim x| g(x,x) = 0 . (1.5.6)

As shown in (H.1.5), the solution to problem (1.5.6) is

e JBaR
g(x,x') = n R R=x-x'| . (1.5.7)

As (1.5.1a) shows, in a conducting dielectric fg® has a small negative phase, so Pq has half this negative
phase and B4 then has a small negative imaginary part. Then e 3Pa® — 0 for large R, as required by the

condition of problem (1.5.6). This is why ¢*7P4® /R is a rejected solution.

The Helmholtz equations (1.5.3) and (1.5.4) have the following particular solutions (dV' = d3x'),

1 e JBaR
o(x,0) = e ¥ f pi(x,®) R dv' R=|x-x| (1.5.8)
| e JBaR
A(x,®) = i %5 ) wdi(x',o) R av' R=|x-x' . (1.5.9)

In these equations, Bg is a function of ®, namely Pg = m?pgéq as in (1.5.1a), and £; = £34™ is over the
conductors. Since (V2 + de) is the Helmholtz operator, solutions of the form (1.5.8) and (1.5.9) are
sometimes called "Helmholtz integrals".

To verify that the ¢ of (1.5.8) solves (1.5.3) we use (1.5.7) to write,

o(x) = | [Tips(x.o)e] gxx)dV'

so that,

S(V2 4 BD) o) = J [ Zipi(xi)/e] { - (V2 + Bad)g(x.x) } dV'

= [ Zips(x0)/e] (3(x-x)} d3x' = Tipi(x.0)e .

In the limit ®— 0 we find from (1.5.1a) that Ba(®) — 0 and then (1.5.9) is the same as (A.0.2) obtained
from electrostatics and Poisson's Equation.
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In (1.5.8) the volume density function ps(x',0) = Z;p;(x',0) represents a surface charge density, so it is
convenient to represent ¢ as a surface integral over the corresponding surface charge density ng(x',®),

| e JBaR
o(x,m) = e ns(x',®) R ds' . R=|x-x| (1.5.10)

Comments on n, ¢ and Dirichlet : Usually one uses ¢ for a surface charge, but ¢ is already used for
conductivity so we use n. To further complicate things, in his potential theory discussion of Chapter 6,
Stakgold uses o to represent our surface S enclosing a volume V (his region R) as in our Fig 1.2.
Stakgold uses n to indicate a normal derivative, as in this Dirichlet problem solution of the Poisson
equation -Vch(x) =q(x),

0(x) = [r dx' gxIx) qx) — J o dSg (&) Feng(x[E) // Stakgold (6.81) . (1.5.11)

Here Ogn = 0/0ng where ng is a local coordinate on the surface o at point £ which is normal to the surface.
In this equation, q(x) is the Poisson source (think p(x)/go), g(x|€) is the full Green's function, meaning g =
0 on boundary o, and (&) is the Dirichlet prescribed potential on the enclosing boundary c. Stakgold also
uses n for number of dimensions and his work is always done in n spatial dimensions.

In (1.5.11), the first term is the particular solution, like our Helmholtz integral, while the second term
is a homogenous solution to —Vz(p(x) = 0 which, when added in, makes things work at boundaries. Our
Helmholtz integral, however, uses the free-space Green's Function, so we cannot just add on Stakgold's
Dirichlet term to get a solution.

The above Poisson Dirichlet solution (1.5.11) seems mysterious at first viewing, but is easily derived
using —Vzg(x|x') =0d(x-x") , -Vch(x) =q(x) [ = p(x)/e ], and the famous Green's 2nd "symmetric" identity,

where 0¢/0n = fi @ Vo = the same normal derivative Ogn discussed above,

le dV y V3¢ = fs dS y( 0p/On) — fv dV (Vy e Vo) Green #1

fv dv [y Vo —¢ Viy 1= fs dS [ y(0¢p/on) — (Oy/on) | . Green #2 (1.5.12)

Here #2 = #1(y,9) - #1(o,y) and #1 is derived from the divergence theorem (1.1.30) with F = yV¢ and
vector identity Ve (yVo) = Vy Vo + y V2¢ and dS = dS fi . Green was a busy man. Equation (1.5.11)
is then obtained by setting v = g in (1.5.12), recalling that g =0 on o.

Since Green #2 is also valid if we replace vio (V2+k2), (1.5.11) is also formally valid for a
Helmholtz Dirichlet problem where then g is the full Helmholtz Green's function.

(¢) King's leading factor (1/4n) and the final Helmholtz Integrals

This is a somewhat subtle point and something that King never discusses much in his transmission-line
theory book. The issue is that there are two different entities ng and ne which have units charge/area, and
they are related by ng = (e4/€q) ne where &g = €4 + o4/jo is the complex dielectric constant (in the
dielectric) which incorporates the effect of possible dielectric conductivity. In a transmission line
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problem, it is nc that is specified by the boundary conditions and not ng (which is the actual surface
charge density). For that reason, one replaces (1.5.10) with,

-JBaR
1 e
o(x,m) = Kéd fnc(x',(n) R ds' R=|x-x'| (1.5.13)

1
which explains the leading factor 4—7@ which appears every time King writes down the Helmholtz integral

for ¢ in his books. In the discussion below we describe nc and its relation to ng, and then we show how
this relation works in the simple example of a parallel plate capacitor.

Consider the situation at a general boundary between dielectric (region 1) and conductor (region 2) where
there exists a surface charge density ng :

conductor | dielectric
2 1

—>» 1

Je,2n = Oelie

blue = Gaussian pillbox
red = square loop of unitlarea seen edge on

Fig 1.7

In (1.1.18) it was shown that div [Jq + Jc] = 0 where J. = oE is the conduction current and J4 the
displacement current 0D = €0¢E. The divergence theorem (1.1.30) then says

0=Jv divida+Ja]dV= [ s [Ja+Jc] odS .

Applied to the blue pillbox which straddles the boundary in the figure, we find
Jain tJein = Jazn tJe2n

where n means normal component. Writing this out,
€10tE1n + 61E1n = €20¢E2n + 62E2n = 62BE2n =Jc2n

since G2 is huge inside the conductor. Therefore,
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Jean = 61E1n +€10tE1n . (1.5.14)

Meanwhile, Gauss's Law (1.1.32) with (1.1.6) states that
div (¢E) = p o  Jypdv = [scEeds. (1.1.33)

Applied to the same blue pillbox we find
ns = €1En1 -&En2 = €1En;
since En2 ~ 0 inside the conductor. Thus,
Eni =ng/e1 and then Jen1 = 061En1 = ns(o1/€1) . (1.5.15)
Then (1.5.14) can be written as
Je2n =061E1n + €10tE1n = (01 + €10t) E1n = (1/e1)(01 + €10¢) ns
or, writing out the arguments,
Jean(x,t) = (1/61)(01 + £10¢) ns(X,1) . (6]
In the frequency domain with rules (1.5.2) this becomes
Jean(x,0) = (1/e1)(01 + €1j®) ng(X,m)
= (1/e1) (jo)(e1 + 61/jw) ns(X,0)
= (&1/81) (jo) ns(x,0) . &1 =¢1 + o1/jo = complex dielectric constant (1.5.16)

If we observe the conduction current Joon in the conductor just below the surface and flowing through a
unit-area loop (red in Fig 1.7), we can write Jocon = Oxne Where ng(t) is the total amount of conduction
charge flowing through that unit-area loop from some initial time to to the current time t (one could take
to to be 1 time unit before t, for example),

Je2n(X,t) = Oene(X,t) ne(x,t) = J‘tto dt' Jean(x,t) . (2

or
Jezn(X,0) = jone(x,0) . )

Thus we have,

Oeng(x,t) = (1/e1)(01 + €10¢) ng(X,t) // from (1) and (2)
or
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jo ne(x,m) = (E1/€1) (o) ns(x,0) // from (3) and (1.5.16)
or
ne(x,0) = (&1/€1) ng(X,0) . // divide by jo (1.5.17)

where is our result claimed at the start that ng = (€4/£q) ne. Note that:

e The quantity ng is the amount of free charge per unit area on the conductor surface.

o The quantity n does not represent any kind of surface charge anywhere (free or otherwise).

nc is related to the transport of conduction charge carriers through the charge-neutral interior of the
conductor just below the surface. There is no unit-area surface which holds ne amount of charge, but both
ng and nc have the dimensions of charge/area so both could be called "surface charge".

These two areal charge densities are different simply because the dielectric leaks charge off the surface.
We are now going to rederive (1.5.17) a different way. We can write, using the blue pillbox of Fig 1.7 and
continuity relation (1.1.25),

divJe= - Oeperee o 0effv perecdV] = [ 3o o dsS. (1.1.25)

= -0y nedS] = [sJceds

=> - Oehs = Jen1 - Jen2 =o01(ng/e1) - Oene // see above: Jen1 = 61(Ns/€1), Jen2 = Otne
SO

Oehg = Othe - 61(ng/€1) // change in ng = flow in - flow out
or

jong = jone - 61Ng/g1 => (jo+ o1/e1)ng =jone => (joeit o1)ng =joeine

=> (e1tor/jo)ns =gne = Eing=e1ne => ne = (&1/e1)ns

which is the same as (1.5.17). Note that if surface charge ng is real, nc is complex.
It is useful at this point to examine the simple case of a parallel plate capacitor to see the meaning of ng

and nc. The plate separation s is meant to be very small compared to the transverse dimensions of the
plates, so the picture is distorted. We drop the subscript 1 on dielectric properties.
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conductor dielectric with € and o conductor
[ Jl:: = atnc E = 115.'"’8
— —» (|05 —»
J=cE

«— plate has area A

< s >
v Fig 1.8
First off, a DC analysis of the above device shows that the capacitor has resistance R,
\Y \Y Es
R:T = JA ~ o4EA = (s/og4A) . (1.5.18)

Now we assume an AC voltage V. The total current entering the conducting capacitor is [ = JcA. If we
think of I = 0¢Q then Q is the amount of charge passing through the external wire per unit time. Q is not
the total charge on the left plate surface which in fact is Qs = ngA. Since | = JocA we have 0:Q = (Oenc) A
and therefore Q = ncA.

Meanwhile, the voltage V between the plates is V = Es, and we know that E = ng/eq from Gauss's law
(ignoring E inside the conductor). Thus V = (s/eg)ns.

If we define the (complex) capacitance by Q = C'V, then

_Q _ DA Mo _ _ _
C= vV (s/ad)ns _ns (ASd/S) = (&d/sd) (ASd/S) = (&d/sd) C —(A&d/s) . (1.5.19)

The capacitance C' is complex because it accounts for both the capacitance and conductance of the
dielectric,

€4 T 0d/j® . .
C= T e (Aeg/s) = (Aeg/s) + (04A/s)/(jo) = C+ 1/(joR) (1.5.20)
or
joC'=joC+ 1/R =joC+ G G = conductance = 1/R = (c4A/s) = (Aeqg/s)(c4/eq) = C (04/€q)
or
1 1 1 | 1
7 ~Xo +tR Z=Xc _j_mC’ Xc_jooC (1.5.21)

which is the rule for computing an impedance Z for a capacitor and resistor in parallel
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C =(Ae/s)
I || I
—> [ —> -
AV
R = (s/6A)
vV vV

Fig 1.9

Looking back at this example, it is clear that if one wants to compute the complete impedance of the
conducting capacitor, one uses C' = Q/V where Q = Anc. The ratio Qg/V gives only the capacitance C.

Qs __nsA _
V" egns ~ (Aeas) = C. (1.5.22)

In this conducting capacitor problem, the boundary conditions are the voltage V or the total current I.
Specification of the current I = 0¢(ncA) is really a specification of ne since in the frequency domain we

then have | = joAnc. In analyzing the problem in full, we are thus interested in working with n and not
ns.

So recalling now the King gauge Helmholtz integral for ¢,
e JBaR

1
o(x,0) = Tne ns(x',®) R ds' R=[x-x'], (1.5.10)

since it will be more convenient to have nc in the integrand, we use (1.5.17) that ng = (e4/§) nc to rewrite
the above expression as
1 e JBaR
o(x,0) = ng fnc(x',co) R ds' R=[x-x'| (1.5.13)

which is just (1.5.13) stated earlier.

So here are our final forms of the Helmholtz integrals of interest, where now write ne = Zinc;,

1 e JBaR
o(x,0) = Fﬁd 23 f Nei(X',0) R ds' R=x-x| (1.5.13)
1 e JBaR
A(x,0) = an i f pidi(x', o) R av' R=[x-x| (1.5.9)
&© = HaEa®’ - jOHaOa = 0°Hq ( €4 - j04/0) = 0 g Ea Ea = €4 - jOd/® (1.5.1)

where the sum X; is over all conductors. If all conductor have the same p; = e, (1.5.9) simplifies to
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e o~ JBaR
A(x,m) = an % ) Ji(x',m) R dav' R=|x-x' . (1.5.9)

We now quote directly from King's Transmission-Line Theory book to show how he presents the
Helmholtz integrals for ¢ and A. What we call the King gauge appears as (2b). His symbols o, €, u, & and
B apply to the dielectric.

dA

—gmdd:=E+E (1)
curlA =B (2a)
. d¢
divA = —oud — e E (25}
// page 8
g = vk (10) // page 9
1 , e—iGR o
¢ = p [f V% ds (23)
_ ([
A= ff/x v (24)
where n’ is the charge density on the surface element dS’ of the conduc- // page 11

Comments:
(1) King's (23) and (24) are for one conductor, while our (1.5.13) and (1.5.9) are for several conductors.
(2) Due to time lag effects, € and 6 may be complex, so € = €'-j¢" and ¢ = ¢'-jc". In this case

Eq =&q-jod® = (€'a-je"q) - j(0'a-j0"a)/® = [€'g- 0"d/®] - j [0'qa + ®€"q[/® = €eff - jOers/®
so one would replace eg — €efr and 64 — Gegs in all equations (see King p 9 footnote).
(3) In the same way, time lag effects can cause u=p' - ju" (hysteresis) [ generic p |
(4) King uses bold font for vectors and for quantities which are complex. For example his & of { = ¢ - jo/®
is bolded. Similarly, our (1.5.1) that Bz = (nzpé becomes his equation (10) above, Bz = cozutj, . He does
not use d subscripts on dielectric parameters as we do.
(5) King assumes that all conductors and the dielectric have the same 1, something we did not assume. In
order to make (23) and (24) look as similar as possible, he defines v = 1/u. Since these parameters can
both be complex, he writes them as p and v. This then explains the factor 1/(4nv) appearing in his (24)

which then agrees with our (1.5.9)".

(6) He shows his equation (23) charge density n' in bold, indicating it is complex. His n' is our ng, also
complex. He refers to n' as "charge density on the surface" but he really means it to be ne as we have
discussed at length above, and this is how he uses it in his calculations.
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King uses these Helmholtz integrals (23) and (24) for ¢ and A extensively in his book to compute the
parameters of various complicated transmission line geometries and interfaces. We shall pursue this
subject more in Chapter 4 for some simple cases.

We should point out that King makes no attempt to derive his equations (23) and (24) and more or less
just pulls them out of a hat. We spent some time perusing several of King's other 11 books looking for
some kind of derivation but were unsuccessful. The equations do appear in more or less the same form in
his earliest book Electromagnetic Engineering (1945). So in some sense, we have spent the first 40 pages
of this Chapter deriving his equations (23) and (24). For that reason, it is worth gathering up the results in
a summary box:

Potential Solutions for ¢ and A in the King Gauge (o space) (1.5.23)
o~ JBaR
o(x,0) = 4n§ )N} Inu(x ,0) ds' R=[x-x| (1.5.13)
o~ JBaR

o(x,m) = 4n§ i Ipu(x ,0)

dV'  // using volume charge representation pcdV' = ncdS'

e JBaR
A(x,m) = 4 J‘lel(x ,0) A% (1.5.9)
e JBaR

A(x,m) = ‘“— _[Jl(x ,0)] dv'  J/ifallps=p (1.5.9)
Ug,€4,04 = dielectric; K = inside conductori ;

Ba® = laga®? - jOpg0a = 02 lg ( €4 - j04/0) = 04 Eq Eq =€4-jod/® (1.5.1a)
div A = - Ugeqj 00 - Ha0aP = -jOUd(Eat0aj®)P = -jOHaCa // King gauge (1.5.5)
B=curl A E =-grad ¢ - 0:A (1.3.1)

The Helmholtz integrals are just "particular solutions" to the potential wave equations. In order to solve a
problem, one must add to these particular solutions whatever homogeneous solutions are necessary in
order to match all boundary conditions.

59




Chapter 1: Basic Equations

(d) Frequency domain wave equations for fields and potentials in the Lorenz Gauge

We now use the earlier notation with reference to Fig 1.5 where dielectric = 1 and conductors = 2,3..N+1
for N conductors. The Lorenz gauge condition is given by (1.3.30) transformed to the @ domain,

divA = - n1€1j00 . (1.5.24)
Undamped Lorenz-gauge potential wave equations (1.3.32) and (1.3.31) : k12 = 2 H1€1

(V2+k12)(p =-(1/e1) P Pi all of region R

(V24k1HA =- 230 uds all of region R (1.5.25)

In the Lorenz gauge, the potential wave equations don't have damped operator versions. However, for the
field wave equations (which know nothing of gauge) we can write both undamped and damped versions:

Undamped field wave equations (1.3.35) : ki2 = mzuiai

(V24k12)E = pijods + (1/e1) =" grad ps (V2+ki®)B=-py curl J;  // region 1

(V2+k2E = pajod, (V24k2)B=-pp curl J,  // region 2

(V2+k3?)E = pzjods (V2+ks®)B=-pscurl J3  //region 3 (1.5.26)
Damped field wave equations (1.3.36) : Biz = mzuiéi

(V2+[312)E =(1/e1) Zi=2N+1grad Pi (V2+[312)B =0 // region 1

(V24B2)E = 0 (V2+2%)B =0 // region 2

(V2+B3%)E = 0 (V2+B3%)B =0 //region3  (1.5.27)

These last equations follow from the previous set using J; = 6;E and curl J; = 63 curl E = -joo;B.

The solution method was outlined earlier: for each inhomogeneous equation compute the particular
solution as a Helmholtz integral, then for all equations identify generic homogeneous solutions with
unknown constants, and finally determine those constants using boundary conditions from box (1.1.51).
The potential approach has the advantage of a single wave operator and only two equations, while the
damped field approach has the advantage of not involving any currents, but the disadvantage of having
three times more equations and requiring computation of grad p;. There is a lot more to keep track of.
These are all of course vector Helmholtz equations.

In a problem having only a single region (having [1,€,0) containing current density J and charge density p
(perhaps inside the region, perhaps just on the surface), the Lorenz-gauge potential wave equations above

in (1.5.25) may be written

(V2+k2)(p =-(l/e)p k%= mzua all of region R
(V2~I—k2)A =-uJ . k%= mzua all of region R (1.5.28)
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These equations may be derived directly from the single-region field wave equations (1.2.1) and (1.2.2)
converted to the frequency domain,

(V2+K?E = joud + (1/¢) grad p k? = mzua
(V2+Kk*B = -pcurld . (1.5.29)

Each of these last four equations has its own Helmholtz integral,

—ij
o(x,m) = e fp(x ,0) R dv' R=|x-x| k% = 0?ue

—ij
A(xo) = 3 fJ(x ) dv' (1.5.30)

-jkR
E(x,0) = J. [joud(x',0) + (1/¢) grad p(x',®) ] av'
-jkR

B(x, 0))— £ f[curl J(x',0)] av' . (1.5.31)

The A(x,w) Helmholtz integral (1.5.30) appears on Jackson p 408, Eq. (9.3), with j — -1 and p— po.

For this same single-region problem, the damped wave equation (1.5.27) becomes

(VZ+B?)E = (1/¢) grad p B? = w?pg
(V2+p%)B =0 (1.5.32)

where again p might be in the volume and/or on the surface of the volume. This follows directly from
(1.5.29) using the methods above.

(e) Self Consistency of Helmholtz Integral Solutions

The various Helmholtz partial differential equations encountered in the previous sections have solutions
expressed as "Helmholtz integrals". In particular, our King gauge Helmholtz integrals for the potentials
have this form,

o~ JBaR

o(xX,0) = 4“@ )N} Inu(x ,0) ds' R=[x-x| (1.5.13)

e JBaR

A(X,(D) = 41_7I 23 J‘ HiJi(X',(D) dav' . (159)

These equations sometimes give the impression that one can willy-nilly specify an arbitrary charge
distribution nc; and an arbitrary current distribution J; for a set of transmission line conductors and then
these Helmbholtz integrals will generate the correct potentials A and ¢ from which the correct fields E and
B may be obtained using (1.3.1),
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B=curl A E=-grad ¢ - joA . (1.3.1)
This is a false impression for one to infer from the discussion of the previous sections.

For example, in a "fat twinlead" transmission line of the kind to be mentioned in Section 2.5 below,

Fat twinlead Fig 2.16

the charge and current densities are extremely non-uniform. One cannot arbitrarily specify for this
problem a uniform n and J, distribution in each conductor and expect the resultant E and B fields to be
correct.

The issue here is that solutions have to be self-consistent. Suppose one were to specify for the above
fat twin-lead problem a uniform n and J,. That is to say, one specifies that surface charge n is uniform
around each circular cross section perimeter, and J, is uniform across each disk area. The Helmholtz
integrals shown above would then yield some A and ¢ and that in turn would yield some E and B for the
fields in the dielectric between the conductors. One could then compute from the E field the value of
surface charge n on each conductor using (1.1.47) n = e4E,, where E,, is the normal E field just above the
conductor surface. Similarly, one could compute conduction currents in the conductors perhaps from J =
(1/w)curl B - joeE which is Maxwell (1.1.1). One would find, unfortunately, that the resulting n and J did
not agree with the initially assumed values of n and J. Such a "solution" is then meaningless because it is
not self-consistent.

All real-world Maxwell equation problems tend to have this circular aspect which makes solutions
more difficult than the solution of idealized problems. A problem mentioned elsewhere in this document
is that of a radiating dipole antenna. One can assume a certain sine shaped current pattern in the antenna,
compute from it the potentials and fields, and one will find when the antenna current is back-computed
from those fields that the pattern is not quite a sine pattern unless the wire is infinitely thin.

There are then two useful conclusions to be drawn here.

First, if transmission line conductors are very thin relative to their spacing, it is just fine to assume a
uniform charge and current distribution in those wires, since the actual non-uniformity will have only a
small effect on the solutions.

Second, a general method of solution is to start with some charge and current distributions that seem
reasonable based on one's general analysis of a problem. One can then find the back-computed charges
and currents, and adjust the input model accordingly. This would be the basis of either an analytic
iterative procedure, where the model has some adjustable parameters, or of a numerical procedure where
the model is the set of values that comprise the charge and current distribution and some kind of iterative
"relaxation" method then produces self-consistent solutions.

We note that the exact solution of the "fat twin lead" transmission line is derived in Chapter 6 by a
method which bypasses this iterative process, and which works only due to the simple nature of the
geometry.
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1.6 Reinterpretation of all equations in terms of complex functions

It seemed useful to defer the topics of this section to avoid cluttering up the preceding five sections. The
Fourier Transform has already been used in the previous two sections, and here we discuss it more
formally as a motivating factor in changing our point of view from real to complex functions. The general
nature of the Fourier Transform of complex monochrome (e3°%) fields sets the stage for the analysis of

the round wire in Chapter 2.
(a) Complex Functions
Up to this point, we have been regarding the following fields as representing real physical quantities,

H(x,t) D(x,t) J(x,t) A(x,t)
B(x,t) E(x,t) p(x,t) o(x,t) . (1.6.1)

The fields, potentials and sources exist in the real physical world and are related by equations involving
real operators like curl and 6/0t. We can represent such an equation as Ly, ¢f(x,t) = g(x,t) where Ly, ¢ is
some real differential operator and f and g are real fields.

One can extend f and g such that f and g are either both the real or both the imaginary parts of
complex functions F and G. Then the equation Ly, ¢F(x,t) = G(x,t) represents two distinct physical
equations which we can write as

Ly, eF(x,0) = G(x,t) => Ly, e[f(x,0) +jf'(x,)] = [g(x,t) + jg'(X,0)] =>
Ly, e f(x,t) = g(x,t) F(x,t) =f(xt) +jf'(x,t)
Ly, e f'(x,t) = g'(x,1) G(x,t) = g(x,t) +jg'(x,t) . (1.6.2)

It is convenient to regard all the mathematical fields listed above in (1.6.1) as complex fields like F and G.
For example, we might write the Maxwell curl E equation (1.1.2) in this manner

curl E(x,t) = - 0B(x,t)/0t E(x,t) =e(x,t) +j e'(x,t)
B(x,t) = b(x,t) +j b'(x,t) . (1.6.3)

where e = Re(E) and e' = Im(E) and similarly for the B field.
The single left equation of (1.6.3) then represents these two different physical equations with real fields

curl e(x,t) = - ob(x,t)/ot
curl e'(x,t) = - ob'(x,t)/0t . (1.6.4)

Thus, one can regard one's physical fields as either the real or imaginary parts of the complex fields.
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(b) Monochrome time

The classic application of this idea is the assumption that some complex field is "monochrome"
(monochromatic) in its time dependence, meaning for example,

Ei(x,t) = eI o1t+ei 0T Eox 1) = 3918 391 (X/01) Eo(x ) (1.6.5)

where E;(x,01) = | Ei(x,t) | is real. Index i denotes a field component in an arbitrary coordinate system,
not just Cartesian coordinates. All time dependence is in the e7®1* factor and all spatial dependence is in

the factor [e3%% */91) E;(x,01)] -- separation of variables. This monochrome field might be regarded as a

probe or driver of some system and the solution fields E;(x,t) and phases ¢i(x,m1) might depend
parametrically on the probe frequency w; as well as on position x.

For (1.6.5) the corresponding physical field assumption is either of these equations,

ei(x,t) = Re{ Ei(x,t)} =cos[oit + ¢i(X,01)] Ei(X,01)
e'i(x,t) = Im{ Ei(x,t)} = sin[ow1t + @i(X,01)] Ei(X,m1) . (1.6.6)

We stress again that the phase ¢i(X,01) might depend on both x and w1. A good prototype 1D example
for the w1 dependence of phase @1(x,1) is a damped harmonic oscillator with resonant frequency mg

which is driven at frequency 1, 'x'-l-(l/r)fd-mozx = k sin(w1t). The solution is,
x(t) = x(0) sin[o1t + @(m1)] tan @(01) = - (01/7)/(00>- ®1°) .

Of course the solution function x(t) is not a field over R3, so in this case the phase ¢ has no x dependence.
Comments:

1. The assumed form (1.6.5) is the most general form one can have for a monochrome field. One can
always assume a more restrictive form for a certain type of problem and see where it leads. Such a
restricted form is an "ansatz" form meaning that one assumes that restricted form and then one tries to
find the solution to a specific problem with the E field so restricted. If a solution is found which satisfies
Maxwell's equations, then the ansatz form is justified. For example, one might use the more restrictive

ansatz where @i (X,®) = @i(®), or even more restrictive with @;(X,0) = ¢4, a constant.

2. For a wave problem, one might try the following ansatz form which is a restriction of (1.6.5),

Es(x.y.zt) = I (O18752) I0a 0 v01) B (x v ) (1.6.7)

where E;(x,y,m1) is real. In this form the entire dependence on t and z is exposed in the first factor, so the
solution then represents a wave traveling in the z direction.
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3. Note in (1.6.5) that the phase function @;(X,m1) can be different for different components E;(x,t).
Appendix D studies the fields inside a round wire and the three field components E,, E, and Eg do indeed
have different phases for that problem.

(c) Why complex fields: The Fourier Transform

The reason for using a complex field like E(x,t) instead of the real field e(x,t) has to do with the Fourier
Transform (or the Laplace Transform). This transform is almost always needed to solve a non-trivial
problem involving Maxwell's equations, and we saw it in action in Section 1.5. With the convention that
the (1/2m) goes in the expansion formula along with ¢*3°%, we write the Fourier Integral Transform as :
[ for want of a better notation, () is the transform of f(t) ]

E~N(x,0) = _f ? dt E(x,t) e 39t projection = transform (1.6.8a)
-00

E(x,t) = (1/27) f ” do EA(x,m) etI°F expansion = inverse transform = recovery (1.6.8b)
-0

Here E(x,t) is the original complex field whose real and imaginary parts are physical fields as in (1.6.3) or
(1.6.6), while E~(x,0) is the Fourier Transform of E(x,t).

As (1.6.8) shows, the dimensional units of the temporal Fourier transform of some quantity have an
extra sec factor. For example, since dim[E(x,t)] = volt/m, it follows that dim[E*(x,®)] = volt-sec/m.

An obvious property of the Fourier Transform is this:

oeB(xt) = (12m) [ 7 do EA(x0) 0 7% = (12m) [ do [jo EA(x,0)] 739
=00 =00

which we can write as ( symbol «» means "corresponds to")
E(x,t) < E*(x,0) & OtE(x,t) & jo EA(x,0) (1.6.9)

which is just another way to state our rule (1.5.2).
In the case of assumed monochrome time dependence of the form (1.6.5) ( reflected in (1.6.6) ) one
finds that

Ei(x,f) = eI [01t+ei(x, 001 E.(y () (1.6.5)

00 3 S0 - 30 = o0 3 -
ENi(x,0) = J' dt [ejmlt e]‘Pl(x,ml) Ei(x,01)] ¢ jot _ Ei(x,01) eIPi (x,01) f dt e3 (01-0) t
=00 =00

= [Ei(x,01) 3% * 91 ] 2718(0-01) (1.6.10)
or
E~(x,0) = E(x,0) 210(w-m1) . (1.6.11)

It is this very simple single-d-function form that motivates the use of complex fields as carriers of the real
physical fields. One can of course Fourier-transform the monochrome physical field directly, but the
result is clumsy to deal with. For example,
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ei(X,t) = Re{ Ei(xat)} = COS[(Dlt + (Pi(xso)l)] Ei(X,(Dl)
e'i(x,t) = Im{ Ei(x,t)} = sin[m1t + ¢i(X,1)] Ei(X,01) . (1.6.6)

e (X,m) = f ” dt { cos[wit + @i(X,01)] Ei(X,01) 1emiot

0 . . = . =
— Ei(X,(D1) (1/2) f dt { ej [m1t+q>1 (x,&)l)] +e j[@lt"'q)l (x,@l)] } e jot
-0

= Ei(x,01) [ej(Pi (x'ml)ﬂ5(0)—031) + e-j(Pi (x’wl)TES(CO-i‘u)l) 1. (1.6.12)
or
eN(x,m) = [e(x,0) +je'(x,0)] T 6(w-m1) + [e(x,0) - je'(x,0)] T é(w+tw1) . (1.6.13)

This lacks the friendliness of (1.6.11) in that the real and imaginary parts of E(x,0) both appear on the
right, and two different w-space delta functions are required. One could by fiat set e' = 0, for example, but
the two delta functions still remain.

A directly related benefit of using the complex function approach is the fact that math with exponentials
is so much simpler than the corresponding math with trig functions, as for example

el (0T+9) mI(eTtreT) GI(aman)t oI (eme) // dependence on t isolated to one factor

Versus
cos(otte)cos(o'tte") = (1/2) { cos[(m-0")t + (p-9")] + cos[(w+o)t+ (p+¢")] } .

Comment: Using the real cosine form shown as the first line of (1.6.6) along with the Fourier Cosine
Transform is not viable because cos[w1t + @i(X,01)] Ei(X,®1) is not an even function of't.

(d) Monochrome E and B fields

One might seek to solve a system using monochrome fields of the form (1.6.5) for both the electric and
magnetic fields. Those forms would be (E and B are real)

Ei(x,t) = el [01t+0ei (x,01) ] Ei(x,01)

Bi(x,t) = eI [01t+epi (x,01)1 B, (y ) (1.6.14)

where we assume the same frequency mi for both fields, but allow the fields to have different phase
functions @e; and @p;. In this case (1.6.10) becomes

ENi(x,0) = Es(x,01) eI%e1 */9D) 215(0-07)

Bi(x,0) = Bj(x,01) e3%01 %/91) 215(5-1) . (1.6.15)
The ratio of E; over Bj is then given by

E/\i(X,(D) _ Ei(X,O)l) ej [Pei (x,01) - ¢bj (x,01) ] . (1.6.16)

B*j(x,0)  Bj(x,01)
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Since Ej and By are real, the phase of the ratio E”3/ B”y is determined by the last factor and will in
general be a function of both position x and frequency ;. We shall see this situation arise in Chapter 2
where we calculate the fields inside a conducting round wire.

(e) The Line Strength

In the discussion above we have already defined many kinds of electric fields:

Ei(x,t) general complex electric field (component 1) (1.6.17)
ei(x,t) Re[Ei(x,t) ] = candidate physical field

e'i(x,t) Im[Ei(x,t) ] = candidate physical field

E*i(x,0) Fourier Integral Transform of E;(x,t)

Ei(x,0) magnitude of a monochrome field with frequency @

0i(X,m) phase of a monochrome field with frequency ®

&i(x,m) line strength of a monochromatic field with frequency ®

The last item is new. It has been added to make the above list complete, and we define it right here. Recall
the form of the Fourier Transform of a monochrome field given in (1.6.1),

E™(x,0) = [Es(x,m1) €39 * 1)) 2718(0-m1) . (1.6.10)

The factor [...] which multiplies 2nd(w-m1) we shall refer to as the line strength of the monochromatic
electric field component, and we shall use this notation,

&i(x,01) = [Ei(x,01) 3% *x01)] [ Ei(x,01) =] &(x, 1) | (1.6.18)
and then
E*i(x,0) = &i(X,m1) 210(0-01) . &i(x,m1) = line strength (1.6.19)

Since we shall normally refer to a monochrome frequency as o (rather than w1) with dependence e3°%, we
can rewrite the last three equations as

ENi(x,0") = [Ei(x,0) 3% * )] 218(0'-0) (1.6.20)
&i(x,0) = [Ei(x,0) eI9i (*/9)] /[ Ei(x,0) =|&i(x, ®) | (1.6.21)
E*i(x,0") = &i(X,0) 21d(0'-0) &i(x,m1) = line strength (1.6.22)
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(f) Overloaded Notation and Maxwell's Equations in ® space

A rigorous textbook probably should be careful about which of the above many field versions are the
subject of any particular discussion. To the reader's possible dismay, we shall generally (but not always)
refer to all these electric fields as E; and shall depend on the reader to decipher which kind of field is
implied in a given situation. The reason for this decision is that having a large number of notations for
electric fields (and for magnetic fields, and various other derived quantities such as potential V and
current i and current density J;) adds a level of visual font complexity to equations which are already
complex enough to begin with. It is a tradeoff between precision and font/decoration clutter.

In particular, earlier in this section we have carefully denoted the Fourier Transform of f(t) as *(®) which
is a notation used by Stakgold and others (though Stakgold has our (1.6.8) phases negated as in his
equation (5.32) ). In the rest of this document, however, we represent the Fourier Transform of f{(t) as f(®)
to avoid a proliferation of hat ~ symbols. Since the functions f(t) and f(w) are completely different
functions, the symbol f is "overloaded" (in the sense of overloaded variable names in computer
languages) and we trust the reader to understand that f(w) always means (). It is the presence of the
argument o that cues the reader to this fact. This overloaded notation has already been used in Section 1.5
and we continue it below. Similarly, a generic field E;(®) may refer to the full Fourier transform E*;, or
it may refer to the line strength &; if monochromatic fields are being used. A field magnitude will always
be properly indicated as a magnitude. The physical fields make only rare appearances.

In the Maxwell and related equations which include the Oy operator, if the fields are expanded onto their
Fourier transformed components using (1.6.8b), then using the rule (1.6.9) one may instantly write the
frequency-domain version of these equations, just as in the example at the start of Section 1.5. For
example,

curl H(x,0) = joD(x,0) + J(x,0) (1.6.23)
curl E(x,0) = -joB(x,0) (1.6.24)
div J(x,0) = -jop(x,0) . (1.6.25)

Other equations in the Section 1.1 list have the same form but in terms of the frequency-domain
functions. For example,

J(x,) = 6(x) E(x,0) (1.6.26)
where we momentarily allow o(x) to have spatial dependence but not time dependence. All these ®

dependent fields can be regarded either as full Fourier transforms, or as the line strengths corresponding
to those transforms, where the 2nd functions cancel on the two sides of the equation.
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Chapter 2: The Round Wire and the Skin Effect

Chapter 1 dealt with the generalities of electromagnetic theory. Maxwell's equations were stated ex
machina, as it were, and wave equations for the fields and potentials were then derived. Formal integral
solutions of the potential wave equations were also derived using the Green's Function method. It was
noted that the potentials ¢ and A are parts of the same Lorentz 4-vector.

Whereas the approach of Chapter 1 was very general and abstract, the discussion of this chapter is
highly specific. The goal here is to learn about the properties of a very simple object -- an infinite straight
round wire. Although transmission lines are not always made out of round wires, there is a wealth of
useful practical information that arises from the study of this simple example which applies to more
general geometries.

The major issue here is called the "skin effect". At high frequencies, current is forced away from the
central regions of a conductor and concentrates at the surface in a thin layer that has a characteristic depth
called 9, the skin depth. In this chapter it will be shown exactly why this occurs. The significance of the
effect is that the resistance (impedance) of a wire increases drastically at high frequency since the current
is forced to flow only in this thin shell below the wire surface. This effect is manifested in a property of a
wire called its surface impedance which is studied below in Section 2.4 and qualitatively in Section 2.5.

Our development is an extension of the excellent discussion of Matick's Chapter 4. It is fastest to
solve the round wire problem starting with the w-domain damped wave equation (1.5.32) which, inside
the wire where there is no free charge, says (V2 + B?)E = 0 with p2 = o2& where p and & apply to the
conductor. Instead, we have chosen to start from the basic Maxwell curl equations and use simple "math
loops" to derive the basic (first order differential) equations relating E and B fields. The general technique
of putting loops in opportune places is extremely useful in analyzing the more complicated situation
which arises in a transmission line. This method is carried out in Section 2.2 and the wire's interior
solutions are then studied in Section 2.3.

In the work done below, we shall assume axial symmetry for the fields in the round wire. The
problem is treated more generally in Appendix D where the Helmholtz equation (V2 + BZ)E = 0 is directly

solved. The partial wave m = 0 solution of Appendix D corresponds to the analysis below.

2.1 The Implicit Wave Context, Helmholtz Equations and the Skin Effect

In the sections below we don't explicitly consider the notion that a wave is traveling down our round wire,
but that is in fact what is happening and this fact deserves a few comments before we delve into the
interior solution of the wire. Specifically, imagine that E has the following traveling-wave form,

E(x.y.zt) = 5% E(x,y,0) @.1.1)

where E(x,y,®) might have dependence on @ and might be complex. Inside the wire this field must satisfy
the damped wave equation (1.3.36),

(V? - e 8¢2 - node) E(x,y,z,t) =0 (2.1.2)

When the form (2.1.1) is inserted into (2.1.2), the result is, using V2 =V,p? + 06,2,
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(Vap? + 0,2 - pe 6¢2 - node) { e %2 E(x,y,0)} =0

or
(Vzp® - k* + pe 0 - juow) { e 7 E(xy,0)} =0
or
(Vap® - K +B%) {7 E(xy,0)} =0
or
(V2D2 + [32 - k2) E(xy,0)=0 // 'a 2D Helmholtz equation (2.1.3)
where
2 _ 2 . _ 2 . _ 2 —
BT = pen” - jops = o pn(e-jo/o) =0 pg . E=¢-jo/o (1.5.1¢c)

Comment: E(x,y,0) is proportional to the Fourier Transformed w-domain version of E(x,y,z,t) :
E~(xy,z,0") =FT{ E(x,y,zt), 0'} = e k= E(x,y,0) 2n(0-0') . //'see (1.6.11)

A similar equation applies just outside the round wire in the dielectric medium in which it is embedded,
and this medium has its own 3 which we call Bg. Thus we have

(V5 + B? - k?) E(x,y,0) =0 inside wire B =(j- 1)\Jopo/2 = complex (2.1.4a)
( V22D + de - k2) E(x,y,0)=0 outside wire Ba=®\/Ha€a =0/vg = real . (2.1.4b)

We have assumed that
o the dielectric is non-conducting or only slightly conducting so &g =~ €q4.

e the conductor is a good one, so [32 ~ (- j) ouoc and then B = '\/—_J \Jopo . As will be shown below, the
choice for\/?j is e337/4 = (j—l)/\/i which then gives f=(- 1) \/coucs/2 as in (2.1.4a).

In (2.1.4b) we then make the ansatz assumption,
k=Pa (2.1.5)

which basically says that the wave form e3 (ot-kz) E(x,y,m) really does describe a wave traveling down
the wire with k = Bgq. This k = Bq = @/vq is then related to the speed of light in the dielectric and is the
expected value of k for, say, a radio or light wave traveling through the dielectric with no wire present.
Once we have assumed e ““®7Pa%) for the dielectric solution, the boundary conditions (1.1.51) on field

components at the wire surface will force this same dependence on the solution inside the wire.

It will be shown later that (2.1.5) is valid for a transmission line operating at sufficiently high
frequency ( see (Q.3.5) ), or equivantly, if the conductor has sufficiently large conductivity . In this case,
the resistive loss inside the conductors can be neglected and conductors are "perfect conductors". Even if
they are not completely perfect, (2.1.5) is close to true for a conventional "low-loss" transmission line.

In (2.1.4a), since the conductor has such a large o, |B| is a large number and |B| >> Bg (unless ® is
extremely large or, as we shall later see, very small), so k? can be ignored in (2.1.4a). We then have
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(V50 + B%) E(x,y,0) = 0 inside wire B =(j- 1)\Jops/2 = complex (2.1.6a)
V% E(x,y,0)=0 . outside wire (2.1.6b)

The second equation says that the E field outside the wire must solve the 2D vector Laplace equation. See
Appendix D.7 for comments on the general exterior solution. Appendix D uses B'2 =p2 - de and does
not make the approximation that ' =~ 3, but we make that approximation here.

To put our "isolated" round wire into a physical context, it helps to think of it as the round central
conductor of a coaxial cable whose shield cylinder radius is very large compared to the central wire radius
(the Great Cylinder, analogous to the Great Sphere of electrostatics). Then this central round wire is really

part of a transmission line and we expect such a transmission line to carry a wave with ¢? (°*7Pd®) time

and z dependence. Moreover, we expect the field solution inside such a coaxial cable central wire to have
the axial symmetry that appears in our assumption list below.

It is equation (2.1.6a) for the wire interior that we shall encounter below, and hopefully we have now
put that equation into the context of a wave traveling down the wire.

If B4 has a small negative imaginary part due to conductivity of the dielectric (see (1.5.1a)), the factor

e"3Pd% gays that the wave slowly damps out as it travels down the wire due to dielectric ohmic loss, as it

well should. (In a laser inverted medium B4 has a positive imaginary part so the wave grows instead.)

On the other hand, B is huge and has equal real and imaginary part magnitudes. Due to our axial
symmetry, (2.1.6a) really says (V20 + Bz) E(r,0) = 0 which can be thought of as a "wave equation" in the
radial direction. Of course it is a damped wave equation of a very extreme sort. As one moves in from the
surface of the wire toward the center, we show later that over a distance in which the "wave" phase
changes by about 7/2, the amplitude is already down by a factor 1/e, so one can roughly say that the wave
basically damps out before it even goes 1/2 wavelength. This is the skin effect described below.

To understand this effect, it is useful to consider a 1D version of the situation. Imagine zooming the
camera in very close to the left surface of the round wire's cross section, so that we see a half space of
conductor on the right and a half space of dielectric on the left. Let the radial direction be called x which
increases into the conductor with x = 0 at the interface. Then the inside-wire wave equation above says

(02 + P?) E(x,0) =0 . (2.1.7)
The solution to this equation is (we select a particular sign for the phase, and see (2.1.6a) for p)

E(x,0) = E(0,0) ¢*1P* =E(0,0) exp{j[( - 1)V opo/2 ] x}

=E(0,0) exp{- \/couG/Z x} exp{ -j \/couG/Z X}

=E(0,0) exp{- x/0} exp{ -j x/d} 8 =+/2/(wpuo)
= E(0,0) e /% ¢73%/3 /I = E(0,0) e~ (311 %/3 (2.1.8)

As one moves from x=0 to the right into the conductor, in distance 6 the E field amplitude drops to 1/e
and the phase has changed by /2. Quantity 9 is called the skin depth, and this is probably the most basic
way to understand the notion of the skin effect. It is a result dictated by the Helmholtz equation having a
complex parameter 3 of the type shown. Based on this argument, the skin effect occurs at any conductor
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surface regardless of its cross-sectional shape. Below we see in the round wire example how the
Helmholtz equation (2.1.6a) is in turn a result of the two Maxwell curl equations each of which relates E
and B. Of course this is how the Helmholtz equation was derived in the first place starting with (1.2.1).

2.2 Derivation of E(r), B(r) and J(r) for a round wire

We convert (1.1.38) and (1.1.36) to the ® domain using rule (1.5.2),

cul B=p josE+J) &  $cBeds=pfs [jwsE+JI]edS 2.2.1)

curl E = — joB o  $PcEeds =-jofsBeds . 2.2.2)

The two terms on the right side of (2.2.1) have names (we sometimes omit the word "density")

joeE = displacement current (density) /l amps/m2
J=0cE = conduction current (density) /l amps/rn2 .

The sum of both currents may be written as
(joe + o) E(x,0)

For any metal conductor such as copper, the displacement term is completely negligible as long as we <<
o. The value of ¢ for a metal is not very obvious (see Jackson pp 309-313) so we will follow Matick p 118
and blindly set € = g¢ for a crude comparison. The condition for negligible displacement current we << ¢
then becomes f << o/[2mgg]. Using 6 = 5.81 x 10" mho/m and €0 =8.85x 10712 F/m, one gets

f<<(o/2ne ) =1.04 x 10'® Hz = one billion GHz .

Therefore, the displacement current is always ignored inside a conductor for any conventional
transmission line application. Whatever ¢ really is, we shall ignore joe compared to . All the current
inside a good conductor is conduction current. With respect to (1.5.1¢), this same approximation means
that inside a conductor,

£ ~-jolo B? = -jous . //f<< 10%H (2.2.3)
We now make a set of assumptions:

(a) the round wire conductor medium is uniform (homogeneous) and isotropic (2.2.4)
(b) the current pattern in the wire is axially symmetric (no dependence on azimuth 6;
it is invariant under any rotation of the wire about its center line)
(c) the current is axial (longitudinal), so J=J2 ,s0 I =1,
(d) the E field is also axial so E = E2 ( this follows from (c) and J =cE ), so E=E,
(e) The B field lines go around in circles centered at the wire axis. The relation between the direction
of B and the current flow J is given by the right hand rule. If J=1J, > 0, then B=Bg > 0.

72



Chapter 2: The Round Wire and the Skin Effect

Thus, we represent J,(X,y,0) = J(r), Ez(X,y,®) = E(r), and Be(X,y,0) = B(r) -- no dependence on 0 or z.
The fields like E,(x,y,) are of the type shown on the right of (2.1.3) where the z dependence has already
been extracted. Fields E(x,y,m), B(x,y,») and J(x,y,®) are complex, so E(r), B(r) and J(r) are all complex.

They all depend on ®, but we suppress the ® arguments. As noted above, E = E(r) 2 and B = B(r) 0.

Here is another way to state assumption (b). We search for an axially symmetric solution of
Maxwell's equations for the round wire, and if we find one, we accept it as a possible way fields and
currents could exist in the wire. If the wire were in idealized perfect isolation with an axially symmetric
source and load, the invariance of the physical situation with regard to rotation about the wire axis would
require (b) to be valid. This symmetry is also implied by our "fat" coaxial cable context noted earlier.

Consider now the thin (width is dr) red loop shown in Fig 2.1:

Fig 2.1
Cross section view of wire, current flowing in 2 direction toward viewer
According to (2.2.1) with J = oE and no displacement current,
$c Beds=(uo) [sEedsS . (2.2.5)

For the CCW loop shown, the "right hand rule" says area dS points out of the plane of paper. The two
sides of this equation can be easily evaluated (B = Bg and E = E)

[ B(r+dr) (r+dr) - B(r) r] 6 = (uo) E(r) [ 10 dr ] (2.2.6)
which simplifies to

0
—[%Q]‘ =(uo) [rE(®) ] . (2.2.7)

Comment: When one says in Fig 2.1 that "J points in the Z direction", one interpretation might be that
the vector J has the form J = J,2 and that J, > 0. That is not the correct interpretation for our pictures.
The quoted phrase just means that J = J,Z and nothing is implied about the "sign" of I,. In our case, J, =
J(r) is a complex number which has no "sign". If we said "J points in the -2 direction" we would just
mean that J = J,(-2) = -J,2. Our only interest in clarifying these "directions" is to get the signs right in
our application of Stokes's law. The same comment applies to the direction of B in the next figure. By

saying that "B points out of the plane of paper", we just mean that B = +B(r)6 which is consistent with the

73



Chapter 2: The Round Wire and the Skin Effect

fact that J = +J,2 according to the right hand rule: thumb in the "direction" of J at the wire axis, curled
fingers are in the "direction" of B.

Now consider the thin red loop shown in Fig. 2.2,

S r rHdr
s B
®
i cE z
Fig2.2
Top view of wire's central plane, current flowing in 2 direction (down)
According to (2.2.2),

$cEeds= -joJsBeds (2.2.2)

where, for the CCW loop shown, the right hand rule puts dS pointing to the viewer (aligned with B which
points to the viewer due to its right hand rule with J ). The two sides of this equation are easily evaluated

(the first term on the left is negative because 2 points down while the red arrow points up)
[ - E(r+dr) + E(r)] s =-joB(r) [ s dr ] (2.2.8)
which simplifies to

aﬂafl =joB(r) . (2.2.9)

This equation says that E(r) changes with radius as long as @ # 0 and B(r) # 0. Since everything is
complex, we cannot really tell from (2.2.9) that |E(r)| increases with radius, but we shall see below that it
does, and this fact gives rise to the "skin effect" where current is maximum at the wire surface.

Reader Exercise: Why can't one take the absolute value of both sides of (2.2.9) and reach the conclusion
that O,|E(r)| = ®|B(r)| > 0 and conclude that |[E(r)| increases with r? Hint: Oxlf] # |Oxf]

Now solve (2.2.9) for B(r) and put this into (2.2.7) to get

%% (rMEarQ) = (jopo) E(r) =- p* E() (2.2.10)
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where p? = - jopo from (2.2.3). The operator on the left is V2 in cylindrical coordinates for a function that
does not depend on 6 or z. For such functions, V2 = (822 + V22D) and VZZD are equivalent. Thus,
(2.2.10) is really a special case of the following

[VZ2p+ B2 1E(M) =0 . 2.2.11)
This in turn is a special case of the E field wave equation (2.1.6a),

(V250 + B2 E(x,y,0)=0. (2.1.6a)
The Helmholtz parameter Bz is given by (1.5.1¢),

B2 = pew? - jops = o?p (& -jo/o) = -jous . (1.5.1¢)

The ¢ term in B2 has been neglected since o is very large. Parameter p = 27t/A is a "wavenumber” and has
dimensions of m™*. If A were real (it is not), then p would be the number of wave radians per meter just as
o is the number of wave radians per second.

The complex number -j has two square roots which are e33%/4 and e737/4,

ej3n/4

-jn/4

Fig 2.3

and we specify the upper red arrow as the square root in the definition of B,

B =e34\[ouc . /I B=(-D\ops2 =(j-1)/ (2.2.12)

We could have started out with (2.2.11) and skipped all the above analysis of loops, but this method of
using loops emphasizes the direct action of Maxwell's equations and seems instructive.

Comment: One could of course take the other square root of -j and develop things that way. Historically
the root selected above has been used. Taking the other root means B — -f. A review of the solutions
obtained below shows that they are invariant under § — -p. Such a review can use the facts that Jo(-z) =
Jo(z), and J1(-z) = -J1(z). In general J,(z) is analytic at z = 0 for Rev > 0 and the rules just stated follow
from the series representations of Jo and J; as shown for example in Spiegel 24.5 and 25.6. In "exterior"
problems involving the Hankel functions, there is significance as to whether z = Br is in the upper or
lower z-plane in terms of convergence for large r. For example, if B is in the upper half plane, then
H ™) (Br) is the function that converges as r—o and H (2) (Br) blows up:
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The asymptotic forms for the Hankel functions are:

HélJ(z)m\/gexp(i(z—%—g)) for —m <argz < 2w
H?(2) ~ \/gexp (—i(z—r:;—ﬂ—g)) for — 27 <argz<m

http://en.wikipedia.org/wiki/Bessel function
The next step is to expand (2.2.10) as follows:

PE®) 1 0E() .,
or? +r or + B° E( =0

or
O®E(r)  OE
12 2 Trag t r2[32 E(r)=0 . (2.2.13)

Change variables to dimensionless x = Br. Then

r=x/p x=fr OX/0r = 0rx =
OE OE 0x OE

0-E = = ox o B ox (2.2.14)

PE e 2. 5 O°E

o2 = 0 E = 0x(0E) = 0x(POxE) = POx(0rE) = POx(BOxE) = P“0x"E = p* 7,7 . (2.2.15)
Inserting these quantities into (2.2.13) gives

202 O’E oE 202

B 2 +ng+rBE=0

or
%1 i
x? 7§z’9+x%§+x2f(x)=o (2.2.16)

where f(x) = E(x/B). Now (2.2.16) happens to be Bessel's Equation with v = 0 [NIST 10.2.1], and the
solution must therefore be a linear combination of this form, where C and D are constants,

f(x) =C Jo(x) + DYo(x) . (2.2.17)
So far, we still don't know which way 0E/or in (2.2.9) is changing, but we are about to find out. Since f(x)

represents the current and the electric field, we know f(0) cannot be infinite. But Yo(x) blows up at x=0
[NIST 10.8.2] , therefore constant D = 0. We now have an exact solution for the electric field in the wire:
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E(r) = f(x) = C Jo(Pr) (2.2.18)
where

B= gidn/4 Jous = - 1)\ ous/2 . (2.2.19)
The following definition is usually made (factor of 2 explained later)

5=~2/opc = skin depth /I opo = 2/8 (2.2.20)
so that

B=e334\[2/5)=(-1)/5 and  B2=-2j/8% . (2.2.21)

It is convenient to divide (2.2.18) by itself evaluated at r=a which we shall assume is the radius of our
round wire, so (plots coming soon),

E(r) = E(a) ;zgg;) (2.2.22)
According to (2.2.9) which says d:E(r) = joB(r) we can write

B(E) = (1jo)o<E() = (1) @) i = (o) B g = (Bo) E@ g0
Since Jo'(x) = -J1(x) [ NIST 10.6.2 ] this gives,

B(r) = -(B/jo) E(a) % (2.2.23)
which when evaluated at r = a gives

B(a) = -(B/jo) E(a) i;gg? = E(a)=- (jo/B) ;zggg B(a) (2.2.24)
which relates the two surface values B(a) and E(a). An alternative way to write B(r) is

B = B@) T = (Bio) E) o) | s = o) E@) T (2225)
Ampere's law with a circular loop just below the surface gives, where I is the total wire current,

maHo=1 => 2maBolu=1 => B(a) =2 (2.2.26)

2ma

from which we find from (2.2.24) that
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J
E(a) = - (jo/B) % JZEEZ; . (2.2.27)

Using (2.2.26) for B(a) in (2.2.25) gives

ul J1i(Br)
2na J1(Ba) (2.2.28)

B(r) =
and using (2.2.24) for E(a) in (2.2.22) gives

3 Jo(Br) . ul Jo(Ba) .~ Jo(Br) L Jo(Br)
E( = E() Jo(Ba) - (0B 2 J1(Ba) j Jo(Ba) 0B 3 mq Ji(Ba) - (2.2.29)

Let us gather up some of the main results obtained so far and put them in a box:

Interior Field Solution of a Round Wire (2.2.30)
lebil] r;‘;r = (o) [r E(r) ] (2.2.7) m%rr = joB(r) (2.2.9)
1] I

B() = 5 - %E?) (2.2.28) B(a) = 3-- (2.2.26)

] J
E(r) = 5‘% % (-j/B) (2.2.29) E(a) = 5‘% % (jo/B)  (2.2.27)

J J
I(r) = -2% % (-joo/B) = ﬁ %&3 B from J(r) = oE(r)
B=ed34 \[2/8)=eI*4[opc = (- D\Jops2 =(- 1)/ (2.2.19), (2.2.21)
5=+/2/opc = skin depth p? =-2j/6% =-jopc (2.2.20), (2.2.21)

The reader is reminded once again that E(r), B(r) and J(r) are complex functions of r and ® since they are
components of the Fourier Integral Transform of the time-domain fields and current density. Since f is
complex, the various J,(fr) are also complex. Thus, the nature of the solutions in the above box is not

very obvious at this point.

Comment: Appendix D does an exact calculation of the E and B fields inside a round wire using a partial
wave analysis with index m. The solution for the problem considered here in Chapter 2 corresponds to the
partial wave m = 0 and is stated in summary box (D.6.3) and then in (D.6.6). It is shown that the E, and
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Be fields there match those obtained here, but in addition there is an extra field component E, which is
very small in the ratio |Bqo/p|. The reason our calculation here failed to discover this smaller field

component was that we assumed E = E(r) 2 and B = B(r) 0. An implication of Ex # 0 is that Ex(r=a) # 0
which, as shown in (D.2.24), implies the existence of a surface charge on the round wire. This then fits
with our context model of the round wire as the central conductor of a fat coaxial transmission line as
discussed in Section 2.1.

2.3 A study of the solution of a round wire

(a) Kelvin Functions

The reader may be aware of the so-called first-kind modified Bessel function defined by
I(x) = e 3™/2 J (372

where the J, function argument has phase /2. Unfortunately, our J,(Br) functions have phase 3w/4 so the
I, functions are not particularly useful.

The real and imaginary parts of a Bessel function having an argument with phase (3/4)n have the
following historic names (bessel real and bessel imaginary) called Kelvin functions [ NIST 10.61.1 ],

Ju(€337/%7) = bery(z) + j beiy(z) . (2.3.1)

In our application eI37/4; = pr = 33/ 4(\/5 /6) r so that z = \/E (r/8). Thus, the solution E(r) in (2.2.22)
may be written as,

- bero[\[2(t/5)] + j beio[\2(1/5)]
(0= B W2(@)] +  beio\2(a/d)]

z=2 (1/5) (2.3.2)

The Kelvin functions are real when the arguments are real and positive. This is the case for almost all
special functions (they are "real analytic"), though derived functions like Hn*'(z) are an exception.
Similar functions ker, and kei, are associated with Kv(ej3"/ 4 ) where K, is the second-kind modified
Bessel function. Since J(r) = ¢ E(r), we could replace E with J on both sides of (2.3.2). This equation for J
appears in Matick as p 101 (4-18).

Note: Lord Kelvin (William Thomson) introduced the ber and bei notation for these functions while
considering the same problem we are dealing with here. The functions appear in the Appendix of his 34
page 1889 inaugural address used when he became president of the Institute of Electrical Engineers (see
Refs) :

ber and bei denote two functions defined as follows :—

1.7 T _ &
berg-l 2i4i+21416182 &c')

2
beig=J, — L + e

»
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We can verify using Maple (which Kelvin would have enjoyed) that these are the berg and beig functions:

series(KelvinBer(0,q) ,q=0,10) ;

1 4 1 g 10
1——g + +O
6% Tigrase® YOl
series(KelvinBei(0,q) ,gq=0,10) ;
1z 1 ¢ 10
—gt———q +0
29 Togq? TOW
(2*%4d*6%8) "2 ;
147456
(2%4)"2;
64
(2%4*%6) "2 ;
2304

Some authors, not liking Kelvin's notation, use Ber, Bei, Ker, Kei for ber, bei, ker, kei. Perhaps the idea is
that Be is more obviously Bessel and perhaps Ke is then for Kelvin.

Since these Bessel forms occur frequently, there are standard functions for their magnitude and phase
[ NIST 10.68.1 ]

Jo(€337/%2) = My(z) 3% 2 (2.3.3)
Of particular interest is the magnitude of E(r). Applying (2.3.3) to the E(r) in (2.2.22) gives

Mo[\2 (1/d
@) = G M;’%f; o 34

(b) Plots of |E(r)/E(a)| for various 6 values

Finally we are in a position to make some plots to see how the electric field magnitude varies with radius

in a round wire as a function of the skin depth parameter 6 = \/ 2/ouc . As o increases, 6 decreases. Our
aging Maple V knows about the Kelvin functions but not M, so here is the code

restart; with(plots):

z := sqrt(2)*r/d:

za := sqrt(2)*a/d:

M := {(nu,z) ->» abs(KelvinBer(nu,z) + I*KelvinBei(nu,=z)):

a = 20:

pl := plot([seq(M(0,z)/M(0,za), d = 1..10)], r = 1..a, color = red):
display(pl)

and here are plots of |[E(r)| / |E(a)| for a=20 and 6 = 1 to 10, The steepest curve is for 6 = 1:
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=

' Fig 2.4

The same plots apply to |[J(r)| / |J(a)]. One sees clearly how the current and electric field magnitude drop
off quickly moving in from the edge of the round wire (right edge of graph) toward the wire axis when &
is small relative to radius a.

Asymptotic expansions for Mp(z) and 0,(z) for large z are given by NIST 10.68.16 and 10.68.18,

~ exp(z/\/z ) 4v3-1 2
M,(z) = o 1 - 8\/52 + O(1/z°) ]
2
0v(z) = (z/\/a )+ (@2)[v-1/4] + :V\/_;z + O(1/2%) . (2.3.5)

For v=0 we find

pzA2) 1
Mo(z)zex\lzz_TEZ RN

0o(z) = (Z/\/E)—(n/S)—ﬁ . (2.3.6)

. | . . . .
For z > 3 the correction term g \/E in Mg(z) is less than .03 so we can ignore it for rough estimates. In
z

this case one gets

Mo[\/2 (1/8)]
"Mo[2 (a/ )]

M
= [E(a) ﬁ(j’) z=\28)  za=\2 (@)

[E(r)] = [E(a)

N exp(zA[2) \[2nza B
~ |E(a)| exp(za\/z) ’\/2_71:2 = |E(a)] exp([z—za]/\/z)\/za/z .

But [z-za]A[2 = (1/8)-(a/8) = (r-a)/5 andA[za/z =~[a/r . Thus we find that
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E
J‘EJ(E%% = \/% e(r-a) /s /8 > 3A2 =21 . (2.3.7)

This is the famous skin depth result as it appears for a round wire. This ratio is 1 at the surface and then
drops off exponentially with characteristic distance 6 moving inside the wire. One sees now why the \/E
was included in the definition of 6: there is then no \/5 in equation (2.3.7). Comparing (2.3.7) to the one-

dimensional skin depth formula (2.1.8) one sees an extra \/a/r factor arising from the cylindrical
geometry.

Equation (2.3.7) is valid down to within about 2 skin depths of the center axis of the wire. In general, one
can assume the field E(r) is zero for all practical purposes perhaps 5 skin depths in from the surface (if a >
50). Here are plots of |E(r)|/|E(a)| using the approximate formula (2.3.7) for the same ten o values as our
previous plots,

f := sqrt(a/r)*exp({r-a)/d):
p2 := plot([seq(f, d = 1..10)], r = 1..a, color = black):
display(p2)

0.5

0.6

0.4

0.2

2 4 B B8 10 12 14 16 18 20 .
r Fig 2.5

Previous plot using a certain approximation discussed above

and here are the two sets of plots superimposed with some notations added:
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display(pl,p2);

1.

Fig 2.6

The wire radius is a = 20, and the curves are for 6 = 1 to 10, with = 1 being the rightmost and steepest
curve. The red (exact) and black (approximate) curves for 6 = 1 agree down to r = 2 at least. The d =5
red/black pair of curves start to pull apart around r = 10 which is 2 skin depths from the center. The 6 = 8
red/black pair of curves start to pull apart around r = 16. We thus verify the claim made above that each
red/black pair of curves agree starting at r = a and moving in to about 2 skin depths from the center line
(the pull-apart points are marked by dots). One can also see that the electric field is roughly zero about 5
skin depths in from the surface (marked by x's).

Here are some skin depth values in copper based on (2.2.20) § =4/2/(opc) with 6 = 5.81 x 10mho/m,
and pu=po =4nx 10™7 H/m. Selecting a reference point of 1 GHz, we have,

8 =~[2/(2nfoo) =~[1/(nfos) =~[Uf \[1/(m 10%10 6) =2.09 x\[1/f(GHz) p . (2.3.8)

Here then is a table of copper skin depths (i = microns),

f 8 f 8

100 GHz 0.21p 100 KHz 2094

10 GHz 0.66p 10 KHz 6611

1 GHz 2.09u | KHz 0.21 cm

100MHz 6.61p 100 Hz 0.66 cm

10 MHz 20.9u 10 Hz 2.09 cm

1 MHz 66.14 1 Hz 6.61 cm (2.3.9)
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The radius of the center conductor of Belden 8281 coaxial cable is 15.5 mil = 394 u, so the skin effect
restriction occurs for f = 1 MHz and above. At 1 GHz & is about 1/200th the radius.

As we get into the lower frequencies, the exponential decay no longer applies for Belden 8281. For very
low frequencies, we can use the small z limit of Jo(z) to see how the distortion begins at low frequency,

Jo(z) = 1-7%/4 z<<1 // Spiegel 24.5 z=2 (t/5) .

Using the expression for E(r) and B2 in box (2.2.26) we find

E@) 1+]j@d)%2 @ [1+ /)4
E(a) 1+j(a/d)/2 E@)| ~ \/ 1+Had)%4 - (2.3.10)

This shows the very early phase of the skin effect happening at low frequencies. Eq. (2.3.10) would apply
for example in Belden 8281 at 1 KHz and below where &/a > 5. There is a very slight dip in the E(r) and

J(r) distribution at r=0 compared to r=a. For example, with a =20 and & = 100 one has z < \/E (a/d) = \/5
(1/5) = .28 for all values of r, so z is "small" in the whole range. Below is a plot of |E(r)/E(a)| in this case.
Notice the offset zero so the drop is only 2 parts in 10,000.

(1+(1/4) *(r/d)"4):

=
=
=
I

den := (1+(1/4)*(a/d)"4):
f := sgrt{num/den):
d := 100: a := 20:

plot(f, » = 0..a);

17
0.99535
0.955956
0.95554 7
0.995527

0.59539
0.95555
0.99556
0.95554
0.995527

0.9998 s
0 2 4 6 8§ 10 12 14 16 18 20

' Fig 2.7
Slight dip in E(r) or J(r) moving from surface to center for a round wire
in the low frequency limit. In this case radius a = 20 and skin depth & = 200.

(c) Review of the round wire solution

To conclude this section, we state in full notation the solution of the round wire as outlined above, using
o rather than & as the argument of interest, where recall 6 = \/ 2/ouc so z = \/E (t/6) =r \/ ouc . The
following two expressions are (2.2.22) and (2.2.25) with (B/jo) = ej“/‘l\/muc /o as in (2.2.12):
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. G bero|r \/couc ]+ j beio[r\opo ]
(r,0) = E(a,0) bero[a\/opo ]+ j beio[a \Jopo |

beri[r/ opc ] +j beiy[r \/(DIJG] I/ 4 / ) .

berp[a \/muo 1+] belo[a OUo ]

B(r,0) = E(a,0)

The ratio is then

B(r,®) _ berl[r\[muc]-l-jbeil[r OUo ] oIn/a [ )
E(r,w) bero[r/opo ] +j beig[r\/opc ]

The time-domain fields are, from (2.1.1) and our assumptions (2.2.4) (d) and (e),

E(x,y,zt) = eI (°t7Ba?) E(r o)) 2

B(x.y,z,t) = ¢ “*Pa%) B(r0) §

so that, in terms of the complex value E(a,m),

E(X Z t) = ej (ot-pqz) E(a (D) bero[r \| OUG ] +j beio[r ‘\’Q)u(y ] 5
o " bero[a\/wpo ] +j beio[a\/ops ]

) - 386948 g 030/ B0 el bl fow ]

berg[a \/wucs ]+ ] beig[aopo ]

In the notation of Section 1.6 (d) these equations can be written,

E(x,y,zt) = eI (?t7PdZ) IPez(r.0) E(p ) 2 E(r,m) = eIz (5:0) E(r )

B(x,y,zt) = el (?t7Faz) Iepe(x,@) B(r,w)@ B(r,m) = e3?pe (/) B(r )

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

where E(r,0) = |E(r,0)| and B(r,®) = |B(r,»)| are real. From (1.6.8) we see that E(r,®) and B(r,®) are really
"line strength" type fields. As shown in (1.6.6), the physical fields could be taken as either of the

following pairs

Epnys(X,y,zt) =Re{ E(x,y,zt) } =cos[ot-Paz + @ez(r,0) ] E(r,) 2

Bpnys(x,y,2,t) =Re{ B(x,y,z,t) } = cos[ot - Baz + 0pe(r,0) ] B(r,0) 0
or
Ephys(X,y,zt) =Im{ E(X,y,zt) } = sin[ot - Baz + @ez(r,0) ] E(r,0) 2

Bphys(x’yzzzt) = Im{ B(X’yzz’t) } = sin[cot - de + (pbe(ram) ] B(r,w) 6

(2.3.17)

(2.3.18)
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(d) Plots of the round wire solution for Belden 8281 at 5 MHz.
Here is some Maple code to generate various plots, where we arbitrarily set Eq = E(a,0) = 1 volt/m, p =

Ho = 4m x 10_7, Gcopper = 5.81*107, ®=27n[5MHz ], and a =394 p -- all as appropriate for the center
conductor of Belden 8281 coaxial cable. Notice that the factor

A /*z)—" =+[4n*5.812m 10° =10734/2*581 =3.4x1073

causes B to be small even at the surface r = a. We first set in the parameters just quoted,

restart; alias{(I=I,j=sqrt{-1})):

E0 := 1: # volts/meter

u = 4*pi*10"{-7): # mu-zero

s := 5.81*%*10"(+7): # sigma for copper
a = 394*10"(-6): # 394 microns

w = 2%Pi*5*¥10°(6): # 5 MH=

z = r¥*sgrt{w*u*s): # dimensionless arg
za = a¥*sqri{w*u*s):# same at r = a

and then do the plots as follows, using (2.3.11) for E and (2.3.12) for B :

numkE := KelvinBer(0,z)+ j*KelwinBei(0,z):

denE := KelvinBer(0,za)+ j*KelvinBei(0,za):

E := EO0%*numE/denE:

plot{abs(E),r = 0..a,thickness = 2, axes=boxed)};

plot {argument (E) ,r = 0..a,thickness = 2, axes=boxed);
numB := KelvinBer(l,z)+ j*KelwinBei(l,z)}

denB := KelvinBer(0,za)+ Jj*KelvinBei(0,za);

B := -EO0*exp(ij*Pi/4)*sqrt (u*s/w)*numB/denB
plot{abs(B),r = 0..a,thickness = 2, axes=bhoxed);

plot {argument (B) ,xr = 0..a,thickness = 2, axes=boxed);
rlot{abs(B/E),r = 0..a,thickness = 2, axes=boxed)
plot (argqument (B/E) ,r = 0..a,thickness = 2, ,numpoints = 100, axes=boxed) ;

1 .
3_
0.8 5]
061 "
D_

0.4
=14
0.2 2
D T T T T T T T -3_

0 5e05 0.00010.000150.00020.000250.00030.00035 0 '5e-05 0.00010.000150.00020.000250.00030.00035 )
r v Fig 2.8
E = Magnitude of E ez = Phase of E
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0.0014 3
0.0012] 27
0.001 1]
0.0008 o
0.0005
BE
0.0004
24
0.0002
0 Er
0 5e05 0.0001 0.0002 0.0003 0 seDs 0.00010.000150.00020.000250.00030.00035 .
Y v Fig2.9
B = Magnitude of B ¢be = Phase of B
D_
0.0014]
0.17
0.0012
0.2
0.001]
0.3
00005
0.4
0.0006
0.5
0.0004
0.6
0.0002
0.7]
D_ T T T T T T T T T T T T T T
D 5805 0.0001 0.0002 0.0003 0 5eD5 0.00010.000150.00020 000250.00030.00035 .
r ' Fig 2.10
B/E = Magnitude of B/E Qbe-Pez = Phase of B/E

Regarding the fast cycling of the phases of E and B, recall the discussion above (2.1.7) concerning the
notion of the field being a highly damped radial wave, and below (2.1.7) where it was noted that in the 1D
analog, the amplitude drops to 1/e when that radial wave has progressed a mere n/2 worth of phase. We
see that happening here for both E and B.

The nature of these plots for moderate to large z = r\/wuc can be obtained from the large z limit of the
J, functions as noted earlier,

Ju(€337/42) = My(z) 3% (2 . z=ropc (2.3.3)
My(2) = e—x"%ngl 0v(2) = (zA2) + (W2) [v- 1/4] . (2.3.5)

Example: For the electric field in (2.2.22) we have this large z limit,

E(ro) = B 2P0 o Jo(eP**r\Jops) . Mo(r\Jops)  eI5[F72
(r.0)=Eo 7 (52) O Jo(e3* *aJono ) ® Mo(arjomo ) T2
/2 .
~E exp(zA[2) 21z o3 (r—a)\/mz 1/ Eo = E(a.0)

0 exp(za\|2) \/2nz
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u

Eo exp[- (a-1) ’\/(D].LG/Z ]\E e™J (a—r)\lm
E(a,0) % o (a-x) /8 =3 (a-x) /3 5 =T@no) 319

U

which shows both the exponential decay in magnitude and the phase linear inr,
Pez(r,m) = -(a-1)/3 .
Again, (2.3.19) is reminiscent of the 1D skin depth solution shown in (2.1.8),
E(x,0) = E(0,0) e /% ¢73%/3 | (2.1.8)
2.4 The Surface Impedance Z.(®) of a Round Wire
A piece of round wire can be thought of as a resistor. Consider Fig. 2.11:

+V

P
dv<0

I—bU E—>» —»z

¢

dV = V(z+dz) - V(2)

Fig 2.11

Here a piece of finite-c wire is attached to a pair of ¢ = oo contacts. The total impedance of the wire is
then determined by Z = V/I ohms where V is the voltage applied to the contacts and I is the total current
through the wire.

Alternatively, one could probe the wire along its surface as shown by the two arrows separated by dz.
There is some voltage dV between the probes due to the field E,(a) = E(a) at the surface of the wire. By
definition, the surface impedance per unit length is

Zs =(-dV/dz)/1 = E(a)/1 ohms/m . (24.1)

Since the fields and currents derived under the assumptions (2.2.4) vary only with r, Zs is independent of
z and we get

L L L
V = V(0)- V(L) =- fo dv =- fo (dV/dz) dz = fo [ Zedz=12Zs L =1Z (2.4.2)

SO
Z=7sL . (2.4.3)
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Our analysis above treats the infinitely long wire, so one must imagine L here as very large compared to
the wire radius a, so that end effects influencing Zs can be ignored.

As one might expect, Zg plays a role in transmission line attenuation.
(a) Expressions for Surface Impedance
To compute the surface impedance of the round wire, we have to make a connection to the total current I
in the wire. This time, our "math loop" is a circular ring lying just below the wire surface as shown in red
in Fig 2.11. Apply (2.2.1) to this loop (with € = 0) to get:

2naB(a) =pl . (2.4.4)
Thus, from the Zg definition (2.4.1),

Zs=E(a)/I =E(a) W/[2maB(a)] = (w2mna) E(a)/B(a) . (2.4.5)

Recalling from (2.2.24) that

J
E(a) =- (jo/B) %B(a) : (2.2.24)

we find that

Jo(Ba)
1

Zs =Zs(0) = - (W2na) (jo/P) (Ba)

or

_ -jop Jo(Ba)
Za(®) = 2af Ta(Ba) (2.4.6)

where § = (\/5 /3) e33/4 and 5 = 2/ouc as in box (2.2.30). Using these last two facts and the fact that

j3n/4

e is a square root of -j, the leading factor may be written

Ljow -i2/(582) eI3n/4

maB "~ 2pae3A(W2/5) A2 macs

giving this alternate form for (2.4.6) in which ® does not explicitly appear,

334 Jo(pa)

_ _ j3n/4  _ -
Ze0) =[5 ey Ta(pa) B=(2/5) el G-1)/8 (2.4.7)

Below we shall use form (2.4.7) to plot Zs(®) as a function of skin depth d.
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Equation (2.4.7) is, as expected, rather complex. In terms of the Kelvin functions defined in (2.3.1)
we may write (2.4.6) as

jou bero[\/2(a/3)] + beio[\[2(a/3)]

Zs = - . 2.4.8
(©) = e (2/5) ™% bery\2(a/d )] + ] beis[2(a/5)] 248
According to (2.3.1) one finds, with o = ¢33%/4 that
o dlv(oz)  dy(az) d(az , e aan

bery'(z) +jbeiy'(z) =—5— = d(0z) (dz) = aly\(0z) =eI34 1,337 4y) | (2.4.9)
Then since Jo'(x) = -J1(X) one gets

berg'(z) +j beig'(z) = €334 4z) = - 334y (33 4z)

=- e33%4 [bery(z) + j beir(z)] . (2.4.10)
Then (2.4.8) may be rewritten as
+ b 2(a/d)] + j beig[\/2(a/d
70y = Ol ero[\/2(a/d)] + j beio[\[2(a/3)] 241l

2ma(\[2/8) bero'[\[2(a/8)] + j beio'[\2(a/5)]
and this form for Zs(w) appears in Matick p 104 (4-28).
(b) Low frequency limit of Z ()

Small @ => large § => small 3, so we expand both Bessel functions of (2.4.7) for small argument:
[ Spiegel 24.5 and 24.6 ]

Jo(x)= 1 -x%/4

J1(x) = (x/2)(1 - x*/8) = 1/J1(x) = (2/x) (1 + x%/8)

= Jo(x)/J1(x) = (2/x) (1 +x%/8) (1 - x*/4) = (2/x)(1-x%/8) = 2/x - x/4
=> Jo(Ba)/J1(Ba) = 2/(Ba) - (Ba)/4 .

Then from (2.4.6)

| .
Zefo) = ks Jj((%?) 2‘;3;;3 i) - (a4 ] = s + L2

—z_'@“— /1 B2 from (2.2.3)

[-jopo]
or
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1
Zs(®) = onaZ +jm—g; = Rs +joLs // low frequency limit (2.4.12)

The first term is the uniform DC resistance of the wire per unit length, normally written p/A as in (C.1.1)
of Appendix C. The second term is jo times the DC internal inductance L; = (u/8n) H/m, as derived in
(C.3.10). Recall that this is exactly 50 nH/m if p=po, quite small, and independent of radius.

(¢) High frequency limit of Zs(®)

We first use (2.3.3) to write (2.4.6) as

Zs(0) = (o2map) [ Mo(\2 a/8) / M1(\2 a/8) 1 exp[ j{0o(\2 a/d) - 0:(\2 a/8)}] . (2.4.13)

Since large ® = small 6 = large arguments for the functions in (2.4.13), we use these large z limits
which can easily be obtained from (2.3.5) usingv=0and 1,

Mo(z) / Ma(z)=[1 + 2\/152 + O(1/2%) ]

00(2) - 01(2) = - [ (W/2) + 2\/152 +0(1/2% ] . (2.4.14)

Insertion of these large-argument expressions into (2.4.13) with z = \/5 d/a gives

o I . N S
Za(0) = Gow2maf) (1 + 5 me) exp( W2 + 5 5 5o )

(jow?2map) [ 1+ 8/(4a) ] exp(-j [1/2 + 8/(4a) 1)

e Im/2, . . .
= F7a L1+ 0/(da) o732 738 ) /] =32

2ma(\2 /8)

The phasor factors combine to give

e—jn/2 e—j3n/4 e—jn/2 _ e—jn[1+3/4] _ e—jn[2—l/4] _ e—jn2 ejrl/4 _ ejrt/4 _ (1"_])/'\/5
and then
® . s
Zs(®) = 4—71(5/7) (14)) [ 1+ 5/(4a)] e 3%/ B (2.4.15)

Then if 8 << 4a the last two factors are unity and we have
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2
oy . ouod . _ op2/ouc . .
Zs(0) = An(ald) (1+) = 4ad (1+) = dmad (1+j)  // using 82 = 2/opc from (2.2.20)

1 .
~ o@may (1) 5<<4a . (2.4.16)

Writing this as the sum of a resistive and inductive part,

Zs(0) =Rg(m) +jo Ls(w) (2.4.17)
we find
Rs(w) = 6(211ta)6 = o Lg(0) = Xps(®) . (2.4.18)

The inductance can be written several ways,

1 1 1 / 1
L = = =5 . 2.4.19
s(®) wo(2ma)d  po(2na) [> /opc 2ma 200 ( )

The resistance has a simple interpretation. It is R = 1/(cA) where area A = (2ma)d . This is the area of a
thin washer at the periphery of the wire of thickness .

The inductance is harder to understand. Its origin can be traced back to (2.4.5) above which shows
that the phase of Zs is equal to the phase of the ratio E(a)/B(a). It is a result of Maxwell's curl equations
that the phase of this ratio as seen in (2.4.16) is n/4 at the surface of a conductor in the skin effect limit.
The inductive reactance is the same as the resistance, but the inductance itself increases as frequency

decreases, behaving as L ~ 1/\/6 as shown.
Quantity Rs(®) in (2.4.18) is called Ry by Matick p 105 in his (4-35), and (2.4.16) appears as (4-36).

(d) Plots of Zs(w) versus skin depth o

From (2.4.7) we found that

¢34 Jy(Ba) i3n/4 _ . _
2 =5 a5 Ta(Po) B=(2/8) 4= (-1)5  5=+2opo . 2.4.7)

This is in SI units, but we will use a = [a(1)107®] m and & = [8(n) 10"¢] m and 6 = 5.81 x 10"mho/m for
copper, where a(u) and 6(p) means the wire radius and skin depth in microns. Then:

Ned3%/4  Jy(Ba)
A2 ma(p)od(p) J1(Ba)

Zs(w) = ohms/m N = 10?

The two limits obtained above were :
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1 ) 1 .1
Zs(w) Sh— —I-Jco—él; = onaZ T Inos? small o, large & (2.4.12)

Real part goes to a constant, imaginary part decays as 1/82

1 . 1 1
Zs(0) = o(2ma)d (1) = o(2ma)d * o(2ma)d large o, small 5
Real and Imaginary part are the same and blow up as 1/8

(2.4.16)

1N
oma®  oma(p)®

In our units above, the low frequency constant limit is Ryr =

Example: For a = 1000y, the DC resistance is Rpg = 1/((ma2) =.00548 Q/m. Since a = 1000/25.4 = 39.37
mils, 2a = 78.74 mils. From the following British units graphic, 12 gauge house wire has 2a = 80.808 mils
and has R =.001588 Q/ft which is .005210 Q/m )

TYPICAL WIRE DIAMETER AREA OHMS PER OHMS PER OHMS PER
USES GAUGE # in MILS. DIAMETER 100 FT. 10 FT. FOOT

House Wiring 50.808 5,529.90 0.15880 0.015880 0.001588

Here is Maple code which plots the natural log of the real (red) and imaginary (black) part of Zg(w) as a

function of J, and also computes the constant limit (gray) just mentioned. The copper wire radius is set to
a=1000 p.

restart,; with(plots):

beta := (sqrt(2)/delta)*ph;
ﬁp}e
B
Z := H*(ph/(sqrt(2)*Pi*a*sigma*delta))*BesselJ(0,beta*a) /BesselI(1l,beta*a) ;
2 pha
Np}s (Besseﬁ[ Nf_ J
Z:=—
2 P
2pha
naGBBesseH( ‘\f,_ J
ph = exp(I*3*Pi/f4): N := lel?: # phasor and scale number H
a = 1000: sigma := 5.81leT: i#f copper wire with radius 1000 microns
RLF := evalf(N/(sigma*Pi*a”2)): # low frequency limit

plot([log{(Re(Z)),log{Im(Z)),log(RLF)], delta = 0..a, color = [red,black,gray])
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D 2000 400 4, BU0 800 1000 ,
Fig2.12
Plot of In (Re Zs) and In (Im Zs) as function of skin depth 6 ~40 to 1000 p

for a copper wire of radius 1000 p. Red is real part, black is imaginary.
The general idea is that surface impedance goes up as & goes down (left end of graph).
Here is the same plot for 6 = 100 to 1000 without the natural logs (In = "log" in Maple) :

plot([Re(Z),Im(Z) ,RLF], delta = 1..10, color = [red,black,gray], labels = ["delta", "Z({ohms/m)"])

0.028
0026
0.024
0.0

0.02
0.01a
0.016
0.014
0.z

0.m
0.005
0.006
0.004
0.002

Ziohrms/m)

‘900 4000 BOO 8O0 1000
dalta )
Fig2.13

Plot of surface impedance Zs as function of skin depth 6 = 100 to 1000 p
for a copper wire of radius 1000 p. Red is real part, black is imaginary.

Either plot type realizes the two limits discussed above.
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For the limited range & = 1 to 10 u the above plot has this appearance ( the red and black curves are
superposed and the gray constant line at .0055Q/m is indistinguishable from the x axis) :

plot([Re(Z),Im(Z) ,RLF], delta = 1..10, color = [red,black,gray], labels = ["delta","Z(chms/m)"])

26
24
22
2
1.8
1.6
Ziohmsim)1.4
1.2
1
0.8
0.6
0.4
0.2

I

delta B 1o

]
204

Fig 2.14
Plot of surface impedance Zs as function of skin depth 6 =1to 10 p
for a copper wire of radius 1000 p. Red is real part, black is imaginary.

The resistance of our near-12-gauge house wire at & = 1 micron (4.37 GHz) is about 2.7 Q/m, which is
some 500 times larger than the DC resistance.

2.5 Surface Impedance for a Transmission Line

What is the surface impedance of an arbitrary conductor? As we have seen, a significant amount of work
was needed to obtain the exact result even for the simple geometry of a round wire with a symmetric
current distribution. One can repeat this calculation for other geometries such as a parallel plate

transmission line. The general nature of the result is always the same when 6 is much smaller than the
depth of the conductor. That result is this (with comparison),

Zs(®) Z$ (1+)) // general case (2.5.1)

1 . .
Zs(®) = m (1+)) d<<4a . // round wire (2.4.16)

where p is the effective perimeter distance around the cross-sectional surface of a conductor where
significant current flows. For the (coaxial) round wire this was p = 2ma, the circumference. For a parallel
plate line of width w, p = w. Consider these two possible transmission line cross sections:
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| | t O\

b radius a
I |
e -
- O
Fig 2.15
Cross section of a parallel plate line Cross section of a twin-lead line

In both cases we assume a frequency ® such that skin depth & is small compared to the thickness of the
conductors. Although the total cross sectional perimeter of one of the parallel plates is 2w + 2t, it seems
clear that the length of the "active surface" is only w, and one sets p = w in the surface impedance
formula. For the twin lead case with leads assumed far apart (b >> a), both conductors are immersed in
roughly uniform active fields, so the full p = 2xa is applicable just as it is for a coaxial cable.

As the two round wires are brought very close together, certainly there will develop an asymmetry so
that the currents are largest on the parts of the wires closest to the other wire. In this case, one must make
an estimate of the "effective perimeter” p . Here is a picture,

Fat twinlead Fig2.16

where we have indicated a crude graphical estimate of the "active perimeter" of current flow.
King [TLT p 30 Eq (45)] quotes an approximate surface impedance result for the case of Figure 2.16.
The effective distance is,

p=2ma/1- (2a/b)2 . a = wire radius, b = center line separation (2.5.2)

If the gap between the conductors is a/6, a rough estimate for Fig 2.16, then the radical in this formula
becomes .38, so the dark lines shown should cover 38% of the circumference. If the conductors almost
touch, then p becomes extremely small.

King makes the interesting remark (p 30) that "accurate formulas for the internal (i.e., surface)
impedance of one cylindrical conductor in the presence of another with different radius are not available."
From the potential results of Chapter 6 below one can obtain the surface charge density n(0) in terms of
On@ on such cylindrical conductors and thus the charge partial wave moments ny, used in Appendix D.
From these one could find E, at the conductor surfaces using (D.4.13) and that would seem to determine
Zs.

In general, the high frequency skin current will be large where the E and B fields are large. These
fields are large where the electric field would be large in a capacitor whose "plates" are the two
conductors in cross section. Recall that such a 2D capacitor problem seeks potential ¢ as a solution of the

96



Chapter 2: The Round Wire and the Skin Effect

equation szp(p(x,y) = 0. In regions where ¢ is very large, E = -V will also be large. This subject is
addressed in Chapter 5 below.

There is an interesting transmission line "paradigm shift" which occurs as one moves from the low
frequency domain to that of high frequency. For small o, one thinks of the currents in the two conductors
of a transmission line as being there because they are "applied" by some external agency. The current then
creates a B field around each wire which, since it is changing, creates an E field.

In the high frequency skin-effect limit, it is easier to think of the currents in the conductor surfaces as
being generated by the field activity near the surfaces. The E and B fields just outside the conductors
force themselves slightly into the surface. The resulting E field in the surface layer is then what creates
the current.

Matick's Chapter 4 computes the surface impedance for the round wire and for strip line conductors
(but not the official Stripline).
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Chapter 3: Transmission Line Preliminaries
3.1 Why is there no free charge inside a conductor or a dielectric?

Imagine that at time t = 0 there were some free charge p inside a medium having conductivity . What
would this free charge do? Intuition suggests that the individual charges in the little charge cloud would
repel each other and the cloud would spread out until it encountered boundaries. In this Section we put
that intuition on a more technical footing.

As discussed in Appendix E, for a non-neutral medium Ohm's Law takes the form

J=0cE-Dgradp, (3.1.1)
where J is conduction current and the second term on the right, associated with Fick's Law, is non-zero
when the free charge density p varies in space. This term is a diffusion term, D is the (electron) diffusion
constant for the medium at hand, and the diffusion current flows from a region of higher charge density to

one of lower density, hence the minus sign. Taking the divergence of the above equation, one finds

diVJ:GdiVE-szp

or
-dep =0 ple-DV?p // using (1.1.25) for div J, and (1.1.3) with (1.1.6) for div E
or
dep-D V2 p+(ole)p =0 (3.1.2)
or
Oep - aVzp -bp =0 where a=D, b= -(o/e) . (3.1.3)

Now let p' = p e ®* be an "adjusted" charge density. Then, since p = p'e®%, (3.1.3) becomes

[(0ep")ePE + p'beP®] - a e®EVZp' - bePEp' =0
or

dep' -aV3p =0 (3.1.4)
which is the standard heat/diffusion equation. If one starts at t = 0 with a point charge p' = q d(r) at the
origin, and if one assumes an infinite isotropic medium, one finds that at time t the charge density is given
by

p'(r,t) = q exp(-r?/4at) / (4mat)>’? . t>0 (3.1.5)
This is the 3D causal free-space propagator (Green function) for the heat equation. It is the solution of

(B¢ - a V) p'(r,t) = 3(r)3(t) p'(r,t) = 0 for t<0 . (3.1.6)
See Stakgold (5.133) and (5.136). In n spatial dimensions, the propagator is as in (3.1.5) with 3/2 — n/2

and is derived in the text leading up to Stakgold (5.140).
Consider now (3.1.3) with a source term 5(r)d(t) added to the right side,
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(O - av? - b)p(r,t) = 3(r)d(t) p(r,t) =0 for t<0 . (3.1.7)
Replacing p = p’ebt gives

dep' - aV3p' = 3(r)d(t)e Pt = &(r)d(t)
which is the same as (3.1.6). Therefore, the solution of (3.1.7) is

p(r,t) = p'ebt =q ebtexp(-r2/4at) / (4nat)3 /2 p(r,0) =q 6(r)
or
p(r,t) = q ¢ /) Cexp(-r?/4Dt) / (4nDt)3/2 p(r,0) =q8(r) . (3.1.8)

(o/e)t

The first factor e~ says that p(r,t) decays exponentially in time in a uniform manner over space,

while the second term says that the rough radius of the diffusing charge cloud is given by ry =4/4Dt .

The main point of all this math is the following: if there is any free charge in a medium, it goes away
in a timely manner. In our idealized analysis above, it runs off to r = oo, but in a finite medium it runs off
to the boundary surface of the medium and becomes surface charge.

Let's now look at two extreme cases.
For a good conductor with a low diffusion rate, equation (3.1.2) becomes
Oep T (c/e)p =0 (3.1.9)

which has the obvious solution p(r,t) = p(r,0) e~ (/€)% which replicates the first factor of (3.1.8). The
charge just "flows away" due to the large c.

For a dielectric with a very small conductivity, equation (3.1.2) instead becomes
DV?p -dep =0 (3.1.10)

which is just the heat equation whose impulse response solution is (3.1.8) with ¢ = 0, as was shown in
(3.1.5). In this case, the charge at least has time to diffuse out before it goes away!

-(o/e)t

There are then two time constants involved. The first is for the e factor where Tt = ¢/c. We can

estimate this time constant for a conductor and dielectric using € = gg, and

copper 6=75.81x 10" mho/m
g0 = 8.8541877 x 1072 farad/m (from 1.1.28)

1=¢/6~10""1/10% = 107? sec (3.1.11)
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so in copper, free charge runs off to the surface in one thousandth of a femtosecond, so we don't worry
about the diffusion time constant.

For a dielectric with 6 = 10™*® mho/m we get T larger by 1022 which is then 10° seconds or about a day.
But in this case, the diffusion mechanism wins out. As an example, for pure silicon, D = 40 cm?/sec =
4x1072 m?/sec. The time to diffuse from a delta function out to say r = 1 mm is given by

r=4/4Dt =>  t=r%/(4D)=(10"2m)?/ (4*1073 m?/sec) = (1/4) x 1073 sec (3.1.12)
so in this case the charge is pretty much gone in a quarter of a millisecond.
We arrive then at this fact:
Fact 1: In a transmission line, charge exists only on the surface of conductors. (3.1.13)

Comment: If one wants an initial charge distribution p'(r,0) to be something other than a delta function,
one may use this solution to the heat equation (3.1.4),

Pt = [2nmat ] [ 0°° rdr p'(r',0) { exp[-(r-r')%/4at] - exp[-(r+r')*/4at] } (3.1.14)

which appears in Polyanin 1.2.3-10. Setting p'(r',0) =q d(r') =q 8(r’)/(4nr'2) then replicates the earlier
result (3.1.5), after using L'Hopital's Rule on the integrand. The reason 3(r) = 8(r)/4nr2 is that it makes

de d(r) = 1 when integrated over a sphere of any radius.

There is an exception to our rule that p = 0 inside a conductor. If magnetic fields are present in the right
manner, it is possible to have an extremely small p # 0 inside a conductor -- so small that one can ignore it
in any practical application. An example of this situation is presented in Section N.7 which concerns what
we call the Radial Hall Effect in a round wire. The tiny charge density is required to produce a radial Hall
field which offsets conduction electrons' radial Lorentz force. In the regular Hall effect, this Hall field is
generated by surface charges on opposite faces of a sample, but in the round wire case only one surface is
available, which is the surface of the round wire.

3.2 How thick is the surface charge layer on a conductor?

This is a fascinating subject and the interested reader will find an analysis in Appendix E from which we
now quote. Since there is no free charge in the dielectric outside the conductor, and since electrons at
normal temperatures cannot jump off the conductor due to its so-called work function, the surface charge
is actually a layer just below the nominal surface of the conductor, but can essentially be regarded as
being right at the surface. The situation is much different when a conductor is immersed in a solution of
charge-carrying ions or molecules.

It turns out that the charge density decays exponentially away from the surface into the conductor and
drops to 1/e of its surface value at a distance called the Debye length. For copper, this distance is roughly
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0.6A (Angstroms), which is 6 x 107** m. The crystal spacing for copper is 3.6A, and the copper atom
radius is about 1.3A. Thus,

Fact 2: The thickness of the surface charge density on the surface of a conductor is incredibly small. For
copper, it is less than the radius of one copper atom, and the general result applies to any metal.  (3.2.1)

Table (2.3.9) shows that the skin depth o for copper at 100 GHz is about 0.2 microns which is
2x1077 m ~ 2000A. Even at this large frequency, the skin depth is still about 4000 times larger than the
thickness of the surface charge layer. At 1 GHz this ratio is 40,000.

Fact 3: Whereas current can exist "deep" under the surface of a conductor, even when the skin effect is
dominant, the surface charge can always be thought of as being exactly at the surface. (3.2.2)

Motions of surface charges can create a 2D current density on the surface, which we might refer to as a
Debye Surface Current (see Section D.9). In a transmission line, even in the extreme skin effect regime,
any such Debye surface current is completely swamped by the skin effect current, and so can be ignored.
In effect, one can regard such a Debye current as a very tiny fraction of the total skin effect current. We
just saw above how the Debye current layer might be 0.6 A thick, while the skin effect current at 100
GHz is 2000A thick.

3.3 How does loss tangent affect dielectric conductivity?

The total current in a dielectric may be written, as noted in (2.2.1),

Jtot :j(DSdE + (SdE . (331)

The first term is the displacement current and the second term is the conduction current. At high
frequencies (say 1 GHz), the dielectric constant g4 acquires a small imaginary part due to the presence of
absorption resonances in the medium at infrared frequencies. One can write,

€a=¢€g-jg"a =¢€'a[1-j(e"a/e'a) |=€'qa[l -] tany], tan, = ("q/€'q) . (3.3.2)

If one plots €4 in the complex plane, tang, (called the loss tangent, aka tand) is the tangent of the small
angle 01, of the triangle whose perpendicular sides have length €'y and &"q where €"4 is normally very
small. That is to say, the loss tangent is (minus) the ratio of the small imaginary part to the dominant real
part of €4. tang, is commonly referred to as the dissipation factor. When this expression is inserted into
(3.3.1) the result is,
Jtot = joeg E + 64E =jwe'q [1 - j tan,]E + o4E
=joe'q E + (04 + o¢'q tany,) E

=joe'q E + cees E . (3.3.3)

In effect, the dielectric has now acquired an effective conductivity,
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Ceff = (Og + ®€'q tany) . (3.3.4)

Because the DC conductivity of a good dielectric is so small, the loss tangent contribution to Cegs
dominates even at quite low frequencies. For polyethylene we can use these ballpark numbers,

64~ 107 mho/m ga~ 2.3 tang, ~2 x 107 (3.3.5)

taken from the following 2008 studies of Low and High Density Polyethylene done by Eaton and Kmiec,

Figure 10 Figure 11
Dielectric Constant of LDPE @ 2.47 GHZ, 23°C Dissipation Factor of LDPE @ 2.47 GHz, 23°C

£ 23 % 0.00040

F 229 & T

g 508 1] |: 0.00030

S 227 § o.00020 — —

§ 226 2 000010 +— |
2 2254 —I w

5 224 . . . I_ & 0.00000 . .

A B G D E A B c D E
Sample Sample
Figure 10: Dielectric Constant of LDPE @ 2.47 GHz, Figure 11: Dissipation Factor of LDPE @ 2.47 GHz,
23°C 23°C
Figure 8 o ) Figure 9
Dieletric Constant of HDPE @2.47 GHz, 23°C Dissipation Factor of HDPE @ 2.47 GHz, 23°C

E 238 g 0.000150

g 23 g —

R — 1 = 0.000100

S 232 1 2

= 230 +—1 —— 0.000050

Hi= ] ={IE o
2208 . . . . | & 0.000000 . . . . .

A B c D E A B c D E
Sample Sample

Figure 8: Dieletric Constant of HDPE @2.47 GHz, 23°C Figure 9: Dissipation Factor of HDPE @2.47 GHz, 23°C

and for conductivity, Fig 3.1
Typical properties of polyethylene
|ASTM te stl Property Low density |Medium density |@1 density | Ultrahigh molecular weight |
D144 Dielectric strength (Vitmil) short time, 1/8-in. thick 460-700 460-650 450-500 900 KVicm
D150 Dielectric constant At 1kHz 2.25-2.35 2.25-2.35 2.30-2.35 2.30-2.35
D150 Dissipation factor At 1kHz 0.0002 0.0002 0.0003 0.0002
D257 WVolume resistivity (ohm-cm) At 73°F, 50% BRI 1015 1015 10--15 1018
D495 Arc resistance(s) 135-160 200-235 - -
http://www.sdplastics.com/polyeth.html San Diego Plastics, Inc.

Note: This table claims pg = 10> ohm-cm = 10*3 ohm-m, but most other sources give larger values. We
assume pq ~ 107 ohm-cm = 10*® ohm-m and therefore G4 ~ 1075 mho/m. It does not matter much!

Even at 1 Hz, the loss tangent contribution dominates in (3.3.4). Using the above figure for tang, here are

a few values of Gegs = (€4 tany)® versus frequency: (f=.0 is really 10°=1 Hz)
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el := 8.8B5e-12: tanlL := .0002: ep := 2.3%*e0:
sig_eff 1= (f) ->» evalf(le-15 + 2*pi*f*ep*tanl):
printf(" f(GHz) sigma eff(mho/m)\n");
for n in [0,8,9,10,11] do f := 10"n;

printf(" %h.1£, %4.le\n",£/1e9,sig eff(f));
od:

£(GHz) sigwa eff(mho/m)

.0, 2. 7e-14
1, 2. 6e-06
1.0, 2 . fe-05
10.0, 2. Ge-04
100.0, 2. 6e-03 //=2.6x1073
SO
Caers(®) = (eqtanp)o = 4.1x107° 0 =2.6x 107> f(GHz) . /I PE (3:3.6)

0715 mho/m, at

Thus, in a transmission line, although the nominal DC dielectric conductance might be 1
operating frequencies the effective oq is much larger, being for example 2.6 x 107> mho/m in
polyethylene at 1 GHz. However, even if we replace o4 by the much larger ceg¢ in the complex dielectric

constant &g,
Ea=¢€'qt Cess/j0 =¢€'q+ [04+ 0€'q tany]/jo = €'q+ [@e'q tang,]/jo
=¢gq[l +tany/j] =€'q ~&q (3.3.7)
we still find for a material like polyethylene that
Ea~ €4 (3.3.8)

at least to 2.5 GHz. It is not hard to write an expression for tan; as a function of frequency since it
involves the real and imaginary parts of the dielectric constant gq4(w) which has infrared resonances
dependent on the medium. Since RF frequencies up to perhaps 10 GHz are much less than infrared
frequencies, although tan; does increase somewhat with « in this range, one still has tan; << 1.
Advanced dielectrics typically have tang, in the range .002 or less at 10 GHz.
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3.4 Size of E fields in conductor and dielectric; conservation of total current at a boundary

We know from (1.1.48) that the following E field condition applies at a boundary between two media,
where n refers to the normal component,

E1En1 = &2En2 // frequency domain (1.1.48)
or

(81 T 01/jo) En1 = (€2 + 62/j®) En2 34.1)
or

h _ é_z _ 82+62/j0) _j(082+02

Eno B &1 B €1+ G1/j(l) N j(081 + 01 (34.2)

Since most dielectrics have a small imaginary part for €1, we must interpret 63 as being the Geg¢ shown in
(3.3.4).

01~ (O1pc + €1 tang). (3.4.3)

Let 1 = dielectric = polyethylene and 2 = conductor = copper with these assumed parameters

£1=23 g0 €2 = €0 g0 =8.85x 10712
61pc = 10712 62=5.81x10" . tang, =.0002 (3.4.4)
Then
Eni1 joEn + G2 2nfes + 62
= = J - L (3.4.5)
n2 jogg + o1 J2me1 + 01
Pl = evalf({Pi):
el := 2.3%0: e2 := e0: el := 8.85e-12:
sldec = le-15: g2 := 5.81le¥: tanL := .0002:
sl = sldc + 2%*pi*f*el*tanl:
rat = ((*2*%pi*f*a?+s52)/(]*2%pi*f*al+sl): collect(®,f);
0560618998 10_10jf+ 5E1 108
-13 -8, -14
(2507884738 10 +.1278942365 10 © /1 f+.1 10
Looking at this ratio, for f in the range ( 10 Hz, 10*¢ Hz) we can approximate the ratio as
Eni G2 En1 o2 18
rat = Eno  j2nfes Enz| ~ 2nfer 45x10°°/fF . (3.4.6)

Then for the "practical" range (10 Hz, 500 GHz) this ratio varies from ~10*7 to 10%. We conclude:

Fact 1: At a boundary between a good dielectric and a good conductor, the normal E field is at least 1
million times larger in the dielectric than it is in the conductor for frequencies under 500 GHz.  (3.4.7)
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Fact 2: This large jump in E, at the boundary must be supported by a significant surface charge density
ng on the boundary since, according to (1.1.47), ng = €1En1 - €2En2 = €1En1. (3.4.8)

Using J; = 6:E; we can restate the above facts in terms of current densities,
(j(DSl + (51) Eni = 00)82 + 02) Eno . (341)

(jwe1 +061) (Jn1/01) = (jwez + 62) (Jn2/02) .

[1+jo(e1/01)] Ja1 = [1 + jo(e2/52)] Tnz (3.4.9)
joes . .

[1+ m] Jn1 =[1 +jo(e2/62)] Jn2 // using (3.4.3)
j27[f81 .

[1+ 1Jn1 =[1 +j2nf(e2/62)] Jn2 /l @ =2xnf (3.4.10)

o1pc + 2nfe; tang,

For f>> o1pc/(2mestany) = .04 Hz, one can ignore 61pc on the left to get

dielectric conductor
[1 + j/tanpg]Ja1= [1 + j2af(e2/62)] Jn2 f>> 61pc/(2nestany) (3.4.11)
cond disp cond disp

where we have now labeled the conduction current and displacement current terms. Using the numbers
above one finds,

dielectric conductor
[1 + 5000j]Jn1 = [1 + 10718 f1Jn2 (3.4.12)
cond disp cond disp

For f in the range (10 Hz, 10%® Hz) it is clear that in the dielectric, essentially all the current is
displacement current, while in the conductor it is essentially all conduction current. We conclude:

Fact 3: For any practical frequency and good dielectric, the total current in the dielectric is almost all
displacement current, while that in the conductor it is almost all conduction current. (3.4.13)

Imagine now a tiny patch of area (bordered in red) on the surface between a conductor and a dielectric,

Fig 3.2
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Defining a total current Jeot,n = joeEn + oEq, as in (2.2.1), we have shown that this total current flows
right through the patch but changes its nature from nearly all conduction current in the conductor to
nearly all displacement current in the dielectric. In the next section, we identify the normal direction with
the local radial direction. Then the total current passing through a tiny square patch like that in Fig 3.2 can
be regarded as being "fed" by the radial conduction current J, just inside the conductor where J,. = 6E,.
This current feeds the surface charge on the boundary which creates a large E field and thus a large
displacement current in the dielectric. We sometimes refer to this mechanism as "charge pumping".

Recall now some results from Section 1.5,
Jn1 =ng(o1/€1) (1.5.15)
Jon =(&1/e1) o) ng =[jo + (c1/61) | ns . (1.5.16)
It follows that (remember that these J's are conduction currents)
Jon = jong +Jn1 . (3.4.14)

We interpret this to say that during the charge pumping process, some of J2j, is used to feed the change in
the surface charge ng (think d¢nsg), and the rest flows through into the dielectric as J,1. This last equation
is just an application of continuity (1.1.35) at the boundary.
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3.5 The TEM mode fields and currents for an ideal transmission line

In this and the next section, we take a crude qualitative look and the various E,B and J components first
for an ideal transmission line, then for a practical one. An example is repeatedly used in which the
conductor of interest is the round center conductor (radius a = 1 mm) of a properly terminated 75 Q
coaxial cable driven by 7.5 volts, and thus having a current of 100 mA. The two tables obtained (one
ideal, one practical) mainly serve as an exercise in applying the various concepts reviewed in previous
sections.

By "ideal" we mean that the conductors have near infinite conductivity and the dielectric has zero
conductivity. Consider a cross sectional view of one conductor of a transmission line having arbitrarily
shaped conductors (the shape is uniform in the z direction). For a given point on the surface, define a
cylindrical coordinate system (axis through red dot) so that

r = radial direction = the normal outward from the surface (local x)
0 = azimuthal direction = tangential to the surface in the cross section plane (local y)
z = tangential to the surface along the transmission line (local and global z)

skin depth sheath
of thickness o

Fig 3.3

The following table shows the qualitative sizes of various components of E,B and J (conduction current)
near the surface of a transmission line conductor. Several regions of space are of interest:

1. Deep in the conductor, under the surface charge layer and under any current layer.
2. In the conductor, just under the surface charge layer, and in the skin current layer.
3. In the dielectric, just outside the super-thin surface charge layer.

The reader is warned that the rest of this section and Section 3.6 make very tedious reading because an
argument must be made for the general size of every single item in the two large Tables. We recommend
that the reader just peruse the two Tables and ignore the Explanation sections unless there is an interest in
some particular table value.
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First is the Table for the ideal transmission line conductor :

Table 1: E.B.J for an ideal transmission line

Region 1. Deep in the conductor, under the surface charge layer and under any current layer.

E-=0 B =0 J-=0
Ee=0 Be:() Je:O
E.=0 B,=0 J2=0

Region 2. In the conductor, just under the surface charge layer, and in the current layer.

E, = very small B, =0 J = small
Ee=0 Bg = large Joe=0
E, = small Bz = small Jz = very large

Region 3. In the dielectric, just outside the super-thin surface charge layer (explanations below):

E, = large B, =0 J.=0
Ee=0 Be = large Jo=0
E, = small B, = small J,=0 (3.5.1)

Explanations of Table Entries

Region 1: (the interior) In the interior we know that E must satisfy the Helmholtz equation (2.1.6a). Due
to the powerful exponential effect of this equation (see (2.1.8) and (2.3.7) for the round wire), we know
that E fields cannot exist deep inside the conductor, and can exist only in the skin depth region. Maxwell
(1.1.2) says curl E = -joB in the @ domain, so if E = 0 in the interior, so also is B. A "perfect conductor"
has ¢ = extremely large, and 6 = extremely small since & = \/2/ ucw . Thus, conductor E and B fields can
only exist very close to the surface. In region 1 of the above table, we show all fields as being 0
underneath the very thin current sheath. Since E = 0 in the perfect conductor interior, it follows from J =
oE that J = 0 there as well (region 1). Thus, all current is confined to the thin current sheath of regions 2.
Everything is quiet in Region 1.

Region 2: (the current sheath) As just noted, all currents flow in a very thin sheath at the surface of
thickness . Since the thickness is tiny, the current density J, there is "very large" as marked in the table.
Imagine a total current I flowing down the conductor, but it is restricted to flow only in the thin sheath.

In this thin layer, there is some radial pumping of charge to the surface to "feed" the surface charge
which is always changing in time, so we indicate a small J. term. As noted in Section 3.4, this same J,. is
"feeding" the total current flow through the surface, and the surface converts this total current from
conduction current on the inside to displacement current on the outside. An argument will given below for
why Jr is small compared with J, and we duly mark J, as "small" in region 2.

Application of Ampere's Law (1.1.37) to the small red loop in Fig 3.3 (Bg = 0 on the left long edge)
shows that the large J, sheath current creates a "large" Bg ficld in the sheath which grows from 0 on the
sheath's inner boundary to some large value at the conductor surface. Ignoring dramatic p differences, this
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Be then exists just outside the surface as well according to (1.1.42). We thus mark Bg as "large" in both
regions 2 and 3. If | = 100 mA and a = 1 mm for a round conductor, then Bg = pol/(2wa) = 20 uT at the
wire surface. (Earth field is 32 uT). This is a large value for Bg in our current context.

Since E = J/o, even though J, is very large, ¢ is extremely large, so we shall mark E, as being
"small". And since J, is already marked "small", we mark Ey = J,/c as "very small". The small radial
current J, might create some small B,, so we throw in a small B, entry as well (see Region 3 below).

The remaining three entries (By, Ee, Jg) in region 2 we leave at 0, though they might have some very
tiny values.

Region 3: (the dielectric) Since we are now outside the surface charge layer, (1.1.47) says there is a large
radial electric field E, which is supported by this charge density (Gauss's Law), so we mark E, as "large"
in region 3. The tangential electric fields are continuous through the boundary according to (1.1.41).
Therefore, we give Eg and E, the same values they had in region 2.

We already observed that Bg continues being "large" just above the surface.

It was noted above that there is a radial pumping current J, inside the conductor. This pumps charge
onto the conductor surface, and is converted to displacement current in the dielectric, as discussed above
in Section 3.4 (think of a simple parallel plate capacitor where this also happens). This displacement
current and J, are relatively small currents and they create a small B, field as we now crudely
demonstrate. Consider a very tall and thin (small w) red math loop whose one edge lies parallel to the z
direction between the conductors and whose top edge is very distant.

displacement

current
-

SR NN

Fig3.4

Consider Ampere's law (1.1.37) relative to this loop and with respect to the displacement current flowing
through the loop between the conductors,

$Heds = [ oDedS . (1.1.37)

Integration of the small displacement current 0D passing through the loop gives some small non-zero
value for the area integral on the right. Meanwhile, the line integral on the left has cancelling
contributions from the vertical loop sides (w is very small), while the loop top is far away so contributes
nothing. The result is some small H, and hence small B, in the region between the conductors. Since B,
is a tangential field, it will exist also just inside the conductor surface, as indicated by (1.1.42). Both these
B fields are marked "small" in the table for regions 2 and 3. As a crude estimate, a loop of width w = A/2
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would capture a full I worth of displacement current, so our thin loop captures ~ I w/(A/2). If I ~ 100 mA
and A =~ 1 m, then Ampere's law above says (Bz/to)w = I w/(M/2) so B, = po I(M2) = 4n x 1077(0.1)(1/2) =
6.3 x 1078 = .06 uT, which is small compared to our 20uT estimate for Be.

Since the ideal dielectric has zero conductivity, the conduction current components are all set to zero.

In the dielectric, if we ignore the small E, and B, field components relative to the large E, and Be,
we find that (see Fig 3.3) just outside the surface, the E and B fields are perpendicular and are both
transverse to the z direction. Hence this is a TEM (Transverse Electric and Magnetic) mode of the
transmission line. Their cross product is the Poynting vector (1/pg) E x B which is in the +z direction
coming at the viewer in Fig 3.3. This is the direction of power flow along the transmission line. (Jackson
p 259, Eq. 6.109: S=E x H in SI units) .

The remaining two entries (B, Eg) in the region 3 we leave at 0, though they might have some very
tiny values.

3.6 The TEM mode fields and currents for a practical transmission line
We now "turn on" the imperfections of the transmission line. As soon as ¢ in the conductor becomes large

but finite, the infinitely thin current sheath spreads out over some moderate skin depth 6. At very low
frequencies, the current J, is spread across the entire conductor and there is no Region 1.

skin depth sheath
of thickness o

Fig 3.3

At higher o there still is a Region 1, but we shall ignore it from now on. We are still interested in region 2
which is just below the surface charge layer. Recall from Section 3.2 that the surface charge layer remains
nearly infinitely thin even for a non-perfect conductor.

So here is the new table. The superscripts refer to descriptive sections below. Other values are just
carried from the previous table. In order to make ballpark magnitude estimates, we again assume that the
transmission line is 75 ohms, is properly terminated, and is driven by a voltage of amplitude 7.5 volts, so
the current is 100 mA.

110



Chapter 3: Transmission Line Preliminaries

Table 2: E.B.J for a practical transmission line

Region 2. In the conductor, just under the surface charge layer, and in the current layer.

E. = very small [ B =0 J = small
Ee=0 Be = large Joe=0
E, = smal] [2! B, = small J, = large [?]

Region 3. In the dielectric, just outside the super-thin surface charge layer.

E. = large [®] B, =0 Jz = very small [P
Ee=0 Bg = large Jo=0
E, = small [3! B, = small Jz = very small [P (3.6.1)

Explanations of Table Entries

[a] E; and J, in the conductor; E, and E, outside the conductor

Inside the conductor, a non-zero E., exists due to the current flow in the z direction and the finite
conductivity of the conductor. As an estimate for a round wire not too close to the other conductor,
assume that the wire has diameter 1 mm, and is operating at 1 GHz with a skin depth 8 = 2 microns as in
(2.3.9). The cross sectional area for current flow is then about 27rd = 47 x 10™° m®. If 100 mA flows
through this wire, then J, = 0.1/(2nrd) = 8 x 108 amps/mz, and this J, is marked "large" for region 2 in the
above table. Then E; = J;/0 = 8 x 10% /5.81 x 107 = 0.14 volts/meter. This E, is marked "small" in the
region 2 part of the above table. At lower frequencies where skin depth is larger, E; is less.

Since E, is a tangential (parallel to conductor surface) E field, according to (1.1.41) it has the same

value in region 3, so that is also marked "small" above.
In contrast, if the conductor separation is 0.5 cm, and if we crudely assume the E field is constant
between the conductors, then E, between the conductors is 7.5 volts/ 5 x 1073 m = 1500 volts/m. This is

marked "large" in region 3 above. So in region 3 just outside the conductor,

E: ~ 1500 V/m E,~0.14 V/m ratio (E,/ Ez) < 1074 (3.6.2)

[b]Jx, E; and J, in the dielectric

As shown in (3.3.4), the effective conductivity in the dielectric is given by
Cegs = (0q+ ®€'g tang) . (3.3.4)

For polyethylene, 64 ~ 10™*° and can be ignored, while €'q ~ 2.3 €0 and tang, ~ 2x10™% as in (3.3.5). For a
frequency of 1 GHZ, we then find

Gegs ~ 0€'q tany ~271 10°*[2.3 * 8.85x 1071?]1*2x 10™ = 2.6x 107> mho/m . (3.6.3)
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This is 12 orders of magnitude smaller than the o of copper ~ 107, but it is 10 orders of magnitude larger
than the DC conductivity of the dielectric ~ 107,

It was shown in (3.4.12) that the conduction current in any good dielectric is much smaller than the
displacement current by a factor of 1/tany. Thus, since the dielectric's total radial dielectric current equals
Jr in region 2, and since that is marked small, we mark J, in the dielectric as "very small".

Finally, we already noted a small E, just outside the conductor, and since the dielectric has some very
small conductivity (ceg¢), there will be some J, in region 3 which is also "very small".

[c] Ex and J inside the conductor

We have already estimated that E, inside the conductor surface is less than 107 what it is outside the
surface, see (3.4.7) Fact 1. Thus, if E, outside is 1500 volts/m as in our section (a) example, E, inside is
less than 1.5 mV/m at 500 GHz, and is proportionally less than this at lower frequencies, so E, in region 2
is marked "very small", just as in the previous Table. In the example above we found E, ~ .14 V/m inside
the conductor. Thus we have E, << E, inside the conductor which in turn means J, << J, . Below we
shall provide more support for the idea that J, <<J, .

3.7 The general shape of fields, charges, and currents on a transmission line
(a) Eg at a conductor surface vanishes

We start by borrowing Fig B.6 from Appendix B (similar to Fig 3.3 above),

-

Fig B.6

The figure shows a transmission line conductor of some arbitrary (but reasonably smooth) cross sectional
shape. At the point of interest s we construct a cylindrical coordinate system as shown, such that the
coordinates (1,0,z) are appropriate for point s and its immediate neighborhood. Basically we approximate
the piece of conductor surface near s as if it were the surface of a round wire of some radius r. At this
point s, then, we can talk about fields Eg, Ey, Be, and By.

For a transmission line we shall use E¢ to refer to the transverse components of an electric field, as
opposed to the longitudinal component E;. In Cartesian coordinates Ex = (Ex,Ey) and in the local

cylindrical coordinates just defined at a surface point s, Ex = (Er,Ee). The important point is that Eg is our
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notation for the component of E which at some surface point is tangent to the surface, while E, is normal
to the surface ( we will also call this E, below).

A fundamental assumption of our transmission line theory is that the cross-section tangential electric field
at a conductor surface vanishes, which is to say, Eg as defined above vanishes at all points on the surface.
This assumption is examined in Appendix D.8 and here we accept it as fact. The basic idea is that surface
charge is free to move along the conductor surface in a z=constant plane to neutralize any Eg that might

develop, and this mechanism of maintaining Eg = 0 on the surface works from DC up to perhaps 1000
GHz. So:

Fact 0: Eg =0 at the surface of a transmission line conductor. (3.7.0)

This assumption, stated in partial waves, appears in (D.2.27) and is one of two boundary conditions used
in Appendix D to determine the internal fields of a round wire, the other boundary condition being
(D.2.26). One can consider Fact 0 to be part of the "electro-quasi-static" model of a transmission line.

(b) The transverse vector potential components are small

Fact 1: In the King gauge, for a transmission line operating in the transmission line limit, the transverse
vector potential is very small: |A¢| < 107* |A,| for =0 to 500 GHz. (3.7.1)

This is demonstrated in Appendix M, see (M.16). The basic idea is that in a transmission line the major
current is in the z direction, and A ~ J according to the Helmholtz integral. Then since |J¢| << |J,|, one
finds that |A¢| << |A,| .

(c) The scalar potential @ on a conductor surface

By "conductor surface" we mean the boundary of a cross-sectional slice at z = constant through a
transmission line conductor. In electrostatics one has E = - Vo and then E¢x = Vo for the transverse
electric field. In the neighborhood of a surface point s we write this as Eg = (1/r)0g¢ and E, = 0,¢. Since
Fact 0 says Eg = 0 at any s on the surface, we conclude that ¢ = constant all the way around the conductor
boundary. This is fine for ® = 0, but for ® > 0 we have from (1.3.1) that E =-V¢ - joA and so

Et = —Vt(P -jCOAt (372)

and now it is no longer possible to immediately claim Eg = 0 => ¢ = constant on the boundary. We shall
now show that, under suitable conditions, the last term -jwA¢ is much smaller (in magnitude) than the

first term -V, and therefore we have E¢ = -V¢¢ and then ¢ = constant by our argument above.

An arm-waving argument is to say that Fact 1 implies that the transverse potential At can be neglected in
a transmission line and therefore E¢ =~ -V¢. But |A¢| << |A;| does not prove |[0A¢| << |V | so we shall
try to do better with a more substantial argument.
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First, we divide up the frequency domain (relative to some transmission line geometry) into a set of
regimes. We state these for a round wire of radius a, but for a general conductor one can replace a with
some typical transverse dimension of the conductor :

& >al/lo d<a/l0 & <a/1000
low frequency strong skin effect extreme skin effect (3.7.3)

Here 6 = \/2/(couc) is the skin depth of (2.1.8) or (2.2.20). Obviously the classification is arbitrary, we
might have taken & = a/5 as the strong skin effect boundary. We shall find that some facts which are
approximately valid for the strong skin effect regime are almost exactly valid in the extreme skin effect
regime.

Here then is what we want to show:

Fact 2: ¢ = constant on a conductor boundary (z = constant) in the strong or extreme skin effect regimes
within the Transmission Line Limit. (3.7.4)

See Comments below the proof regarding the significance of Fact 2.

Our proof proceeds in a set of Steps (the Transmission Line Limit is defined in Step 4). As a guide, here
is a little graphic showing how this proof works:

dimensions —» Step 2 transmission line limit

A
Appendix M - >Step 4 —» ¢ = constant

EJo=~0 —p Step 1 —p Step3
Step 1. In the strong or extreme skin depth regime, A, = (1/vq) ¢ . (3.7.5)

As usual, the subscript "d" refers to a value in the dielectric between conductors, and here vg = 1/A/a€a

is the speed of light in the dielectric and also the phase velocity of a wave going down our low-loss
transmission line. Similarly, Bg = (®w/v4) is the wave's wavenumber in the dielectric. Using 0, — -jBq as in
(D.1.16) and our usual 0 — jo we find from (1.3.1) that

E; =020 - oAz =]jBag - joAz =](0/Va)p - j0Az =jo [@/Va-Az]. Ba = (w/va)
= @/va- Az =Ez/(jo) (3.7.6)

Inside a good conductor E is small to begin with, and in the limit & — 0 (w—) the right side of (3.7.6)
1s small due to this fact and due to the 1/w factor. Therefore,

Az = /vy small or extreme skin effect (3.7.7)

Sometimes a different argument is given to obtain (3.7.7). In the King gauge we know from (1.5.5) that in
the dielectric,
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div A = -j (B®/w)o (1.5.5)
or

(OxAxTOyAy) + 0zAz = -j (de/ )¢
or

(OxAxtOyAy) - iBaAz = -j (BaZ/®) . (3.7.8)

Without a proof, we extend the usual arm-waving argument that Ay components can be neglected to say
that transverse derivatives of A¢ can also be neglected so (0xAxt0yAy) = 0, and then we have

-jBaAz = 5 (Ba*/0)p
or
Az~ (Ba/0)9 = o/

which replicates the conclusion (3.7.7) seemingly without the skin effect restriction. A more careful
analysis must show that (OxAx+0yAy) can only be so neglected in the strong or extreme skin effect limits.
This issue reappears in (M.17) and Section 7.5.

Step 2. Claims that |V@| = (1/D)|e| where D is a characteristic transverse dimension of the transmission
line.

We might argue this on dimensional grounds alone, but consider

\Y%
10x0| = Ay = p = (/D) ]e| . (3.7.9)

This is a very crude use of the = sign, there could be a factor of 10 or 1/10 on either side, but when
combined with << in Step 4 below we still obtain a reasonable conclusion. Here V is the potential
difference between the two transmission line conductors, and D is their "separation". Obviously |0x®| is
not the exact constant V/D at every point in space between the conductors, this is meant only as a ballpark
estimate of the size of |Ox(| in some average sense.
Step 3. Claims that |0Ax| << 2m |p| (1/A) where A = traveling wave's wavelength.
From Fact 1 we have,

[Ax| <<|Ag]. (3.7.10)
With Step 1 (3.7.7) this says

|Axl <<lo| /va = |o| (Bs/®)
or

oAz << 21/A) || Ba = 2m/A (3.7.11)

where A is the wavelength of our transmission line wave.
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Step 4. Claims that |[0Ax| << |0x0|

In Chapter 4 we shall introduce the notion of the Transmission Line Limit which is a requirement that on
a transmission line, the wavelength A must be much larger than any transverse dimension D of the line,

A>>D (3.7.12)
or

(1/x) << (1/D)
or

2n || (1/A) <<2m|g| (1/D) . (3.7.13)

Combining this with Step 3 (3.7.11) we find
oA << 21/2) |o] <<2m|g| (1/D)
or
|0Ax| <<2m |o| (1/D) .
Bringing in the ballpark estimate Step 2 (3.7.9) that |0x¢| = (1/D) |p| we then have
|0Ax| << [0x0|
where we just ignore the 27 factor relative to our extreme << situation. Doing this also for y, we have
[0Ae] <<|Viq| . (3.7.14)
Looking then at (3.7.2) one finds
Ee=-Vio-joAe = -Vio
and this concludes our longwinded explanation of why ¢ =~ constant on a transmission line conductor's
cross section surface. We had to assume the Transmission Line Limit ( A >> D) and we had to assume the
strong or extreme skin effect regime to show ¢ = constant.

Comments:

1. Intuitive proof: We need high o to get small 6. Currents in the thin § surface sheath are in the z
direction and there is "no room" for transverse currents in the sheath so J+ =0 and then A = 0 so WA¢ =

0so E¢=-V¢¢ and then finally Eg = 0 => ¢ =~ constant.
2. The fact that ¢ =~ constant on each conductor surface embodies the electro-quasi-static transmission

line theory. It will allow us to treat the transmission line as a "capacitor problem" in Chapter 5, as if we
were doing electrostatics, even though we are at high © and in the skin depth regime.
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3. We know that ¢ = constant at ® = 0, but in order to prove that ¢ = constant at ® > 0 we had to make the
extra assumptions stated above. We have not provided any proof that ¢ = constant for the "low
frequency" range of (3.7.3), except for @ = 0. It seems likely that ¢ = constant is correct for very low
frequencies close to ® = 0 and below some w3, and probably ¢ = constant is reasonable for the rest of the
low frequency range (but we have not proved this). Here then is the situation:

very low ® low ® strong skin effect extreme skin effect
0<ow<mp o1 >0 >a/l10 d<a/l0 0 <a/1000
¢ = constant ¢ = constant ? ¢ = constant ¢ = constant (3.7.15)

(d) B and A, on a conductor surface

Fact 1 (3.7.1) says that |Ax,y| << A for a transmission line, and so we just set Ax = Ay = 0. In this case
we find that

B =curl A= & (OyA; - 0zAy) +§ (02Ax - OxAz) + 2 (OxAy - OyAx)
~ R (OyAz) +§ (- 0xAz) =Bt (3.7.16)

which says B = By is mainly in the transverse direction. In the extreme skin effect regime, we know that
inside the conductor B decays to 0 quickly over distance 6 (see Fig 2.9 for an isolated round wire). This is
akin to the Meissner Effect where magnetic fields are excluded from the interior of a superconductor. In
the extreme skin effect limit & — 0, just below the thin surface current sheath we then have B, = 0 (since
B = 0), where By, is the component of B¢ normal to the surface. According to box (1.1.51) we know that
B is continuous through the boundary, so we must have B, = 0 just outside the surface as well. This is an
application of

divB=0 & Is BedS =0 S is any closed surface (1.1.34)

for a thin red Gaussian box shown here end-on on the left:

On the left we imagine 6 — 0 so the box can be made extremely thin so the left and right sides of the box
then make no contribution to the flux. The front and back sides have no flux since B, = 0 and because the
sides are thin. Thus B, vanishes on the top face of the box since it vanishes on the bottom face. For finite
0 on the right, this same thin box does not deliver this result. A more detailed argument would show that
Bn = 0 to the extent that skin depth 6 << r where 1 is the local radius of curvature of the surface. For a
"perfect conductor" we have 6 = 0 and B, = 0 exactly. We summarize our conclusions:
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Fact 3: (a) In general, the B field at a transmission line conductor surface has a negligible z component
and so B = B; (b) In the extreme skin effect regime, B =~ By has no normal component B, at the
conductor surface. This is approximately true in the strong skin effect regime. (3.7.17)

Corollary: In the plane of a transmission line conductor cross section, and in the extreme skin effect
regime, the magnetic field line pattern in the dielectric is such that just above the surface of each
conductor there is a closed tangential B field line enclosing the conductor which is almost exactly parallel
to the surface at every point. This fact is approximately true for the strong skin depth regime. (3.7.18)

This is illustrated in the following figure where B field lines are shown in red:

Fig 3.5

Fact 4: In a situation where Ay, y can be neglected relative to A, we have seen that the B field lines are
constrained to cross sectional planes. For any such planar set of B field lines, each B field line is an
equipotential contour for A,. (3.7.19)

Proof: Consider a small rectangular "math loop" into the plane of paper (depth dz) as shown in the above
Figure. The black segment shows this loop edge on. Since this loop is parallel to a B field line, the
magnetic flux through the loop is zero. According to (1.1.39) we know that

curl A=B o  $cAeds = [sBeds. (1.1.39)

The line integral of A around our math loop must therefore vanish. But since A has only the component
A, the line integral has contributions only from the two sides of the loop (both of which are

perpendicular to paper). Thus JSC Aeds =[Ax(1)-Az(2)]dz =0 so Az(1) = A,(2). By this argument,

all points on the red B field line shown have the same value of A, and thus that red B field line is an
equipotential contour for A,. But this applies to any of the red B field lines, so in general, each such B
field line is an equipotential for A,. This is reminiscent of the fact that E field lines are equipotentials for
¢ in electrostatics.

Fact 5: On each conductor boundary, A, = constant in the extreme or strong skin effect regimes.(3.7.20)
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From (3.7.18) we know that in the extreme skin depth regime, the innermost B field line almost exactly
skirts the conductor perimeter. From (3.7.19) we know that any B field line is an equipotential contour.
Thus, the cross section perimeter itself is very close to an equipotential contour of the function A,(X,y,z).
In the strong skin effect regime this constancy of A, on the boundary is only approximately true.

Comment: In Fact 2 we argued that ¢ = constant on a conductor perimeter in the extreme skin effect
regime. We also argued in Step 1 that A, = (1/vq)e everywhere inside the conductor and therefore also at

the conductor surface. Thus, Fact 2 that ¢ = constant on the perimeter is consistent with Fact 5 that A, =
constant on the perimeter, and these two constants are related by A, = (1/vq) ¢. That is,

A,( any point on perimeter) =~ (1/vq) ¢(any point on perimeter) /lextreme o (3.7.21)
and for the strong d regime, this is approximately true.
A Counter Example and Comments on the Low Frequency Regime

We have argued above that in the strong/extreme skin effect regime, the perimeter of a transmission line
conductor's cross section will align with a B field line and will have a constant value of A,. This is in
general not true for low frequencies. In particular, it is not true at ® = 0. As an example of this fact, we
consider a pair of parallel round wires carrying current I and -1 . Since the current density in the wires is
uniform, it is an easy matter to compute B for each conductor and superpose to get the total B field due to
both conductors. Here is a plot of the resulting magnetic field lines (details in Appendix O),

Fig 3.6a

Notice that the red magnetic field lines, being loci of constant A,, do not align with the black conductor
surfaces. One can conclude that the conductor surfaces are not surfaces of constant A, in this very low
frequency example (o= 0).

Now, having said this, we can make some very approximate low frequency remarks. In Chapter 5 we
will arrive at following equations involving ¢ and A, and their transverse partners @« and Az¢ :
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1
0(%Y,2) = 2= 4(2) 9e(%.y) (5.1.1)
Ax(xy.2) = 2= i(2) Aze(xy) - (5.2.1)
[VE+ BSKD)] 0exy)=0  0e(C1) =Ki 0(C2) =Kz Ki-Kz=K (5.3.10)
[Ve2+ BakD)] Aze(xy) =0  Aze(C1) =Wi Age(C2) =Wz Wi-W=K .  (5.3.11)

These two boundary value problems assume the extreme skin effect regime so that ¢r and A are
constants on both black circles. For the 8—0 skin depth limit, we expect then to have Az¢(X,y) = @e(X,y).
Using pe = 1/vg® and

i(z) = q(2) va, (4.11.17)

if one has A,+(X,y) = 0+(X,y), then from the ratio of the first two equations above one also has A,(X,y,z) =
(1/vg) 0(x,y,z) which is the Step 1 fact (3.7.5) above (stated there for finite ).

The question then is this: to what extent is it true that A, = (1/vgq) ¢ in the low-frequency regime
shown in (3.7.3), all the way down to @ = 0 ? Looking at Fig 3.6a, we can certainly find two red loci
which are somewhat similar to our black conductor boundaries, missing perhaps by 30%. These two red
closed curves would then define a boundary value problem with a solution A+ that is roughly on the
same scale as the solution A, at high frequency. So our answer is this:

Az~ (1/va) @ in the low frequency regime 3.7.5)10w

where ~ means both sides have the same general scale. Here is another version of Fig 3.6a in which the
A values of some of the red curves are shown,

Fig 3.6b

As an alternate to the above language, we could say that A, is ballpark constant on the right black circle,
in that A, only varies from -0.4 to -1.25 (and not, say, from -.001 and -1000).
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How Fig 3.6b was made. Az(x,y) for one cylinder at DC is computed in Appendix B with result (B.7.7).

We can superpose that A, with a similar A, for the other cylinder giving this result,

Asey) =57 * (-l 0van) + [(1n2ar®)2 - na ] O(ry<ay)

+Inrp O(rz>az) - [ (1-12%/a2%)/2 - Inaz ] O(r2<az) } .

The drawing below shows the r; and a; with origin at the center of the left cylinder :

(x.y)

r2

N

<

a2

a 4
N

o

Setting a; = ap = 0.5 and b = 1.25, and ignoring the overall constant ul/2w, the plot was made using
Maple's implicitplot call which is an x-y scanner producing a crude but acceptable plot:

kvals := [-1.4,-1.25,-1.1,-0.9,-0.7,-0.4,0.4,0.7,0.9,1.1,1.25,1.4]:

p = implicitplot({seq(Bz(x,v) = k,k = kvals)},x=-3..3,y=-2..2, scaling =
constrained,grid = [50,50], wview = [-2..3,-2..2]):

cl := circle([0,0],al,color=black):

c¢?2 = circle([b,0],a2,color=black):

display(p,cl,c2);

(e) Observations about the E and B field lines in a transmission line dielectric

Fact 6: In a cross sectional sketch of a transmission line, the E field lines land on the conductors at right
angles to the conductor surface. This is exactly true for the TEM mode, and applies to all points on the
conductor surfaces. (3.7.22)

Proof: This follows from Fact 1 (3.7.0) which says Eg = 0 at the conductor surface.

Fact 7: In a longitudinal sketch of a transmission line, the E field lines still land on the conductors at very
close to right angles. (3.7.23)

Proof: Although Eg = 0 at the conductor surface, E, is not zero, though it is very small. We know that E,
exists inside the conductor to support J, = oE, , and we know by (1.1.41) that E, is continuous through
the boundary, so the longitudinal E field landing angle will not quite be /2. The deviation from 7/2 is less
than 107 radians according to (3.6.2), and the deviation is in the direction of current flow at each
conductor. This causes a very slightly warping of the otherwise planar cross-sectional field line grid.
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Fact 8: Apart from an overall scale factor, the cross-sectional field shape of a TEM wave on a
transmission line is independent of position z along the transmission line, and is independent of time t.
The shape is also independent of . (3.7.24)

Proof: As we shall see below, the TEM form of any field or current is F(x,y,zt) = ¢3 [0t *=ter (@) Iy v

where F(x,y) is real and all t and z dependence is in the exponential. We can take the physical field to be
the real part as discussed in Section 1.6 s0 Fphysica1(X,y,z,t) = cos[ot-kz+@r(®)] F(x,y). Thus, the cross
sectional shape of the field is determined by F(x,y) and is the same at all values of z apart from an overall
scale factor cos[wt-kz+@g(m)]. This scale factor varies between +1 and -1 as one moves down the line in z
at some fixed t, or as one observes at some fixed z as time varies. Later we will see that this shape F(x,y)
can be found by solving a certain 2D Helmholtz equation, and we find that the shape is determined
entirely by the shape of the boundaries of the conductors. Different vector fields (e.g., J and E) might
have different m-dependent phases in this wave motion which we indicate by ¢pg(®) for F(x,y,z,t).

Fact 9: In a cross sectional sketch of a transmission line operating in the extreme skin effect regime, the E
and B field lines are very nearly perpendicular at every point in the dielectric. In the strong skin effect
regime, the fields are approximately perpendicular. (3.7.25)
Proof: From Maxwell's curl E equation (1.1.2) in the ® domain we have

curl E=-joB . (1.1.2)
Then

BeE= (-jco)'1 curl E e E

= (-jw) ™ [ ( OxEy - OyEx)E; + (OyEz - 0:Ey)Ex + ( 0zEx - 0xEz)Ey ]. (3.7.26)

In the extreme skin effect regime, for a given @ we think of conductivity ¢ being very large, and so the
conductor's E, is very small. Since E; is continuous at the conductor boundary, E, is also very small in

the dielectric. In contrast, due to the surface charge on the conductors, the transverse fields Ex and Ey, are
very large in the dielectric. If we neglect E, and its derivatives in the above expression we find that

BeE= (-j0) " [ (- 9:Ey)Ex + (9:Ex)Ey ]
~ (o) [Ey? 02(Ex/Ey)] . (3.7.27)
However, we argued in Fact 8 that the shape of fields does not vary with z. Thus, the ratio of two
components like Ex/Ey cannot vary with z, so 0z(Ex/Ey) = 0. Alternatively, we make the usual
replacement 0, — -jk (see Fact 8 proof) to get

BeE= (j©) ' [(-9:Ey)Ex +(0:Ex)Ey] =(-j0)™ [ GKkEy)Ex + ( -jkEx)Ey ]

= (-j©) ™ )(k) [ (Ey)Ex + (-Ex)Ey] = 0 . (3.7.28)
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We have already shown that at the conductor surfaces, E is normal to the surface and in the extreme skin
effect regime B is nearly tangent to the surface, so we certainly have B ® E = 0 at the conductor surfaces.

(f) Drawings of the fields

We are now in a position to draw some sketches of fields on a transmission line. Let's start with the
transverse or cross section picture:

Fig 3.7

Fig 3.7: Cross section view

Although this figure is drawn for two round conductors, its general features apply to any conductors. The
figure is a snapshot at one instant in time and at some value of z. The ¢ and ® indicate current flow
direction in the conductors. Positive charge exists on the surface of the left conductor, and is strongest on
the face of that conductor which is closest to the other conductor. Negative surface charge lies on the right
conductor. The electric fields are as shown and are strongest in the region between the conductors. The
magnetic field directions derive from the right hand rule relative to the current in each conductor. The
lines of E and B always intersect at right angles as noted in (3.7.25).

The magnitude of the E field is determined by the potential difference between the conductors and the
geometry. It is independent of frequency. Similarly, the magnitude of the B field is determined by the size
of the current in either conductor and is also independent of frequency.

Consider a 75 Q transmission line that is properly terminated and is driven by a 7.5 volt amplitude
sine wave. Regardless of frequency o (but ® large enough so Zo = 75Q, see (4.12.18)) , the magnitude of
the current in this transmission line is 100 mA, and the magnitude of the potential difference is 7.5 volts.
Of course both these quantities have sinusoidal time dependence. At some instant in time, the fields and
currents are as in Fig 3.7.

We are always talking a lossless or very low-loss transmission line here. If the conductor resistance
and/or dielectric conductivity are significant, then yes, both I and V decrease as z increases down the line.
This decrease is realized by the k in e3 (“*"*2) having a small negative imaginary part (Appendix Q).

We have just argued then that not much happens in the transverse directions x and y as frequency
sweeps up from strong skin effect to extreme skin effect. The rate at which the pattern oscillates back and
forth increases, but the field pattern shape does not change. This may seem contradictory. In general, one
is used to o affecting things due to equations like
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curl E = -joB Maxwell curl E equation (1.1.2)

The resolution is that all the spatial variation happens in the longitudinal direction. Here then is a top
view of the same transmission line:

- = === = + + +++ + +
E RN
2
B® @leeelle® ® B ® Q| elee ® ® —pz
1 E
+ H +++ + + - m emiem oam em | m

< look here to see view of previous figure

Fig 3.8: Top view of transmission line Fig 3.8

The red E arrows are all of unit length and serve to mark the direction and density of electric field lines
lying in the plane containing the center lines of the conductors. The blue B arrows are seen end-on and
indicate the same for the magnetic field. On the left they come out of the plane of paper and on the right
they go into it. Later we shall learn about the "transmission line limit" in which the wavelength A of the
wave propagating down a transmission line is assumed to be much larger than all transverse dimensions
of the line. The reader should understand the above picture as being in that limit, but one would have to
stretch the picture at least 10X horizontally to make it be reasonable. At all places ExB points to the right,
so we have a wave propagating to the right (+z).

Now apply the Maxwell curl equations using the two loops shown. Loop 1 is positioned to pick up
magnetic flux, so we use (1.1.36) which in the frequency domain says

curl E = -joB o $Eeds =-jo[JsBeds] (3.7.29)

Notice the o sitting on the right side. We argued in the last section that the amplitude of the B field does
not change as o changes. Thus, the right side of (3.7.29) is proportional to ®. As ® increases, the line
integral of the E field around loop 1 must increase. Thus, the rate of change of E must increase in the z
direction! In other words, as ® increases, the whole pattern of Fig 2 contracts in the z direction, which

causes all z derivatives to increase, thus increasing fﬁE*ds for the same fixed loop 1. Remember that the
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strength of the E field is indicated in Fig 2 by the density of the red arrows, not by the length of the red
arrows.

A similar argument applies to loop 2. This loop appears end-on in Fig 3.8. It is set up to sense the
electric field flux. The appropriate curl equation is (1.1.38) which says

curl B = pgeqjoE + pdc = fﬁ Beds = g fs [egwE + J.] o dS

~ jopgca | E-dS. (3.7.30)

Since we are now in the dielectric, we have ignored the small conduction current, and have kept the
dominant displacement current, see (3.4.12). Again there is a factor of  on the right side, arising from a
time derivative. As o increases, the line integral of the B field must increase. Thus, the B field must
change faster in the z direction. As ® increases, the curl equation (3.7.30) is satisfied by having the entire
pattern contract in the z dimension.

If the frequency ® doubles, the wavelength A goes to half. This of course is no surprise, since ® and A
are related by the speed of light v4 in the dielectric,

A =vg/f=2nv4/m . (3.7.31)
The main point of the above discussion is to show how the Maxwell curl equations force the field
pattern to contract in the z direction as ® increases. In the transverse direction, the field pattern shape
stays constant.
(g) More on the field and current structure
Here we explore in more detail the general distribution of fields and currents in a transmission line. The
goal is to establish the phase relationships among the electromagnetic fields and various currents. Once

this is done, it is possible to make an estimate of the ratio J./J, and that is done in the following section.

Consider the following more elaborate version of Figure 3.8 :
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Tilted overhead view of a transmission line Fig 3.9

The picture is quite complicated and deserves clarifying comments:

(1) Unlike in Fig 3.8, the E and B arrows indicate the E and B vectors, and are not just field direction and
field line density indicators.

(2) The E and B field vectors are shown along some line which lies in the plane of the center lines of the
two conductors and which points in the Z direction, as do those center lines.

(3) The blue B field arrows lie in the blue plane which is meant to be perpendicular to the plane of the
conductor center lines, which is the plane of paper. The red E field arrows are in the plane of paper.

(4) Looking at E x B, one sees that the wave is traveling to the right in the 2 direction.

(5) The E field arrows point from positive charge to negative charge, so this is why the + and - signs are
distributed as shown.

(6) The conductors are fixed to the paper, everything else is moving to the right at velocity vq. This
includes the E and B arrows and their curves, the charge density and its curve n, and the two current
curves drawn on the bottom conductor.

(7) At point Q on plane z = zg, since B is coming out of paper to the viewer, the longitudinal current J, in

the lower conductor must be pointing to the right. This is why J, is shown positive at this point in the
lower conductor, and this calibrates the position of the J, curve. Maximum J, occurs with maximum B.

126



Chapter 3: Transmission Line Preliminaries

(8) There exists a displacement current Jgisp = OtD = €4 O¢E in the dielectric whose magnitude is shown
as a red curve. For an observer sitting at fixed point P, since the wave is moving to the right, the value of
O¢E is at its instantaneous maximum positive value. This is why the red Jaisp curve has a positive
maximum at point P.

(9) As discussed in Section 3.4, the displacement current is "fed" by the radial current J, inside the lower
conductor, so the Jr curve also has its maximum positive value at point P. This J, current is busily
radially pumping positive charge to the surface of the lower conductor at point P so that charge will be
there when the wave has moved A/4 to the right. Of course this radial J, is doing this charge pumping all
around the lower conductor, but we only show it in the plane of paper. [ See Section D.9 (¢) ]

(10) We have glossed over the fact that the E and B fields track each other in magnitude. The Maxwell
equation curl E = -joB requires that E and B vanish at the same place (z = zp). Since E and B have the

same wavelength, they must also have their maxima at the same place (z = zg). This same correlation
occurs in a normal plane wave. The maximum of E at z = zg is associated with a maximum of the surface
charge, while the maximum of B is associated with a maximum of J,.

(h) Estimate of the ratio J./J,

Having drawn and described this elaborate Fig 3.9, we now consider the inscribed green Gaussian box
which contains no surface charge. We first assume cylindrical conductors so this box is a cylinder. At the
instant in time for which Fig 3.9 is drawn, the total current flowing into the endcaps of the box is 2I,
where I is the peak longitudinal current -- the magnitude of the longitudinal sine wave. Therefore, the
total J» integrated over the sides of the green cylinder must also be 2I.

To obtain a ballpark estimate of the situation, we assume that the two round conductors are far apart
compared to their radii, in which case J. is roughly symmetric around the conductor surface. Then the
total radial current emitted by the curved surface of the green Gaussian cylinder is:

radial current total = [ (2/m)J¢ ]* 2ma * (W/2) = 21

Since J, is a longitudinal sine wave, we have added a factor 2/xn to get its value averaged over the length

of the Gaussian box. In a more general case, we can replace 2ma with distance p which represents the
active portion of the conductor perimeter, as illustrated in Fig 2.16. Then we have

[@/m)e *p* (W2) = 21 =>

Je =2al/(p) . (3.7.32)
On the other hand, for a round conductor operating in the strong skin effect regime

Jz = 1/(pd) (3.7.33)
where p is the same active perimeter just mentioned. So

Il = 21 (8/A) . (3.7.34)
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For 6 we had

8 =[2/ops . (2.2.20)

From (3.7.31) we have A = vg/f = 2nvg/0 where vg4 is the wave phase velocity. Then

2 ® 20 1 4ruf 1
®/2) = \|opuc 2mvg  \uo 2mve  \ UG 2mvg (3.7.35)

Setting vg ~ ¢ and p=po=4nx 107" and 6 = 5.81 x 107 (copper) and f = 10°f(Ghz) we get

_4mf 1 471 10° f(GHz) 11
OM) =\l 2mva =~ \Jdmx107 x 581 x107 21 3x 10°
_ [10™RGHy) 1 1 [RGHz) 1 . 5 ,
=\/7 581 2m 3x10° '\ 581 6n 107 = 7x 107 fGH)

I/T, = (2m) (8/4) = 4.4x107° \[f(GHz) . (3.7.36)

and so

For £ <10 GHz we then find
I/, < 1.4x107%. f<10 GHz strong skin effect regime (3.7.37)

showing that the radial charge-pumping current density J, is much smaller than the longitudinal current
density J, in the conductor sheath.

What about the low-frequency situation with no skin-effect sheath? For simplicity, we assume now two
round conductors of radius a which are widely spaced. No skin effect means roughly 6 > a which means

\/2/(nu0 >a

In this low frequency regime we must replace (3.7.33) by

> ®<2/(uoa?) or wa/2 < 1/(poa) . (3.7.38)

Iz = 1/(ma?) . (3.7.39)
Since (3.7.32) is still valid, we find now that

Jz ~ 1/(na?)

Jz = 2al/(p)) = 2xl/(2mak) = I/(ak)

SO
Te/1z = m(ald) = (ma)(0/2nve) = wal2va = (0a/2)(1/va) . (3.7.40)
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Using (3.7.38) for wa/2 we get
J/Jz < 1/(uoavy) . (3.7.41)

With p=po =4nx 1077, 6 =75.81x 107 (copper) and vq =c = 3 x 108 we find for a wire of radius 1
mm,

1 107>
4m*581 %107 *3%10° ~ 4n*5.81*3

I, < = 4.6x 1078, low frequency (3.7.42)

The conclusion is that in general J, << J, under 10 GHz and finally we justify entries made in the tables

of Sections 3.5 and 3.6. The basic fact is that the green cylinder in Fig 3.9 is long, so the surface area
through which J, flows is much larger than the area through which J, flows.

Comment: The explicit round wire field solution of Appendix D verifies that |Jz/Jz| << 1. See (D.2.33)
and Observation (3) following. Roughly the conclusion is that |[J./J,| = |Ba/B'| << 1.

3.8 Review of Transmission Line Preliminaries

A transmission line normally has two conductors. The cross sectional shape of these conductors is
assumed constant in the direction z along the transmission line. The transverse directions are x and y.

A wave propagates down a transmission line in what is called the TEM mode. TEM means that the
electric and magnetic fields of a wave traveling down the line are transverse, as in Figures 3.7-9. What
this really means is that an electromagnetic wave goes straight down the conductors as guides with no
surface reflections, unlike what happens in a waveguide, see Appendix F. Apart from a small drag on the
wave due to losses in the conductors, the wave proceeds with wavenumber Bg and velocity vq as it would
in an open medium. The conductors shape the E and B fields as in Fig 3.7, so the wave is not a "plane
wave". Nevertheless, at each point in the dielectric, E and B are perpendicular (strong skin effect regime)
and E x B points down the transmission line.

We now summarize a set of basic facts about this TEM mode, most of which were addressed in the
previous Section.

Fact 1: The major current for the TEM mode is the longitudinal current J,. We just showed in the last
section that J, << J,. Moreover, J¢ = cEg vanishes at the surface from (3.7.0) and is presumably either
tiny or non-existent inside the conductor. (3.8.1)

Fact 2: There is no cutoff frequency one has to operate above. The TEM mode works all the way down to
DC (although at low frequencies, the attenuation per wavelength becomes large). See Appendix F for why
operation down to DC is not possible in a waveguide. (3.8.2)

Comment: In the low frequency regime of (3.7.3) there is still a TEM wave going down the transmission
line, but since we are not then in the strong or extreme skin depth limits, some of the facts of Section 3.7
do not apply. For example, looking at Fig 3.6, the conductors are no longer wrapped by tangent B field
lines, and A is no longer constant on the conductor perimeter, and E e B is no longer 0 at the surface.
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Corollary 2: If one operates a transmission line below the cutoff of the lowest waveguide mode, the TEM
mode is the only possible way of moving energy down the line. (3.8.3)

Fact 3: The simplest expression of the boundary conditions (at least for large ®) are in terms of
potentials, not fields, so the potential wave equations are used to solve problems. (3.8.4)

Those boundary conditions are that ¢ and A, are constant on conductor cross sections at a given z, as
stated below in Facts 6 and 7.

Fact 4: The transverse components of the vector potential A can be neglected, so A, is the only
component of A we have to worry about. (3.8.5)

Proof: This is addressed in (3.7.1) and Appendix M, but we give a brief summery here. Consider
equation (1.5.9) where both conductors have the same p,

n o JBaR
A(x,co)=4n J(x',0) R av' . (3.8.6)

Here, J represents the currents in the conductors and the volume integration is over both conductors in x,y
and z, and R = |x-x'|. There is clearly going to be a strong A, component since the predominant conductor
currents are in the longitudinal direction. According to Fact 1 above, transverse currents are very small, so
the corresponding transverse components of A will also be very small and we shall completely neglect
them.

When we compute A in the above integral, we can still decompose A into Az, Ay and Ag . These
components are, however, with respect to some fixed coordinate system located perhaps on some
approximate center line between the two conductors. Thus, each potential of the pair Ay and Ag will feel
the effect of both J. and Jg , but these are both very small. Moreover, there is considerable cancellation
which takes place as pieces of J, and Jg are added up in the integration. We rely mainly on the fact that J,
and Jg are very small to conclude that Ay and Ag may be safely neglected.

This is very different from what happens with A,. In the region of one conductor, the summation is
additive for all nearby pieces of current J, in that conductor, assuming that the wavelength A of
longitudinal propagation is much larger than any transverse dimension. The only place A, is small is on a
longitudinal line between the conductors where their contributions cancel.

We conclude then that A, and Ag can be neglected relative to A,.

Fact 5: The potential ¢(x) can be identified with the transverse "voltmeter voltage" . (3.8.7)

In the transverse direction (z = constant), and in the extreme/strong skin depth regime, we know from
(3.7.14) that E¢ = -V¢0 -joA¢ = -V0. In the drawing below there is no difference then between the line
integral of the electric field between the two black dots and the potential difference ¢1-¢2 between these
same points. Since there is no B field perpendicular to the plane of paper, there is no time-varying
magnetic flux through any loop containing the probe wires of our "planar" voltmeter, so there is no
"EMF" induced in these leads to confuse the meter reading, and the meter directly reads V = @1-¢2. If in

130



Chapter 3: Transmission Line Preliminaries

the drawing we move the right black dot attachment point to a point on the left conductor in some other z
plane, the meter leads then enclose B field flux and -joA, comes into play in E; = -9,¢ - joA, and it is
then less clear what the voltmeter is reading :

voltmeter
or scope Flg 310
Fact 6: The potential ¢ is constant over the surface of either conductor at a fixed z. (3.8.8)

This was addressed in (3.7.4) where we had to add the assumptions that we are in the strong or extreme
skin effect regimes and we are operating in the transmission line limit. Although ¢ = constant at © = 0, we
concluded only that @ = constant in the low frequency regime of (3.7.3).

Fact 7: The potential A, is constant over the surface of either conductor at a fixed z. (3.8.9)

This was addressed in (3.7.20) and is only valid in the strong or extreme skin effect regimes. At low
frequencies Fact 7 is definitely not valid (see Fig 3.6a).
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Chapter 4: Transmission Line Equations

In this Chapter we use the potential integral expressions derived in Chapter 1 to derive the classical
transmission line equations. It is shown that most transmission line parameters are determined by a single
geometric integral K. The approximations are clearly stated.

4.1 Computation of potential ¢ due to one conductor of a transmission line

Our starting point is the potential ¢ expression given in box (1.5.23) for the potential at some arbitrary
point x in the dielectric due to conductor C; of a transmission line,

| e JBaR
01(x,0) = _47T§d fC p1(xLy'.Z,®) R dx'dy'dz' . R=|x-x| (4.1.1)
1

Here the integration point x' = (x',y',z") runs over the surface of C; and R is the distance between the
observation point x in the dielectric and the point x'. Parameters 4 and &g are for the dielectric.

Comments on py ;
1. ps is the volume charge density associated with "surface charge" nj according to p1dV'=n1dS'.

2. ps is a distribution. For example, for a round wire of radius a we expect p; to be proportional to 6(r'-a)
where 1’ = \/x'z-i-y'2 . Perhaps p; = f(0")d(1r"-a) where (1',0',z') are cylindrical coordinates with axis at the
round wire center.

3. Recall from Section 1.5 (c) and (1.5.17) the fact that there are two distinct areal charge distributions
called n. and ng which are related by ne = (E4/eq)ns. Here ng is the actual surface charge distribution,
whereas nc is an adjusted charge density which is directly associated with the current I in the conductor
and which accounts for possible leakage in the dielectric. Our n; and p; are associated with this ng
adjusted charge distribution, not with ng. That is why the external factor in (4.1.1) is 1/4n4 instead of
1/47[8d.

Consider now this charge density p1(x). Following a standard methodology, we make the assumption that
its functional form may be factored in the following manner,

p1(X,y,z) = 01(x,y) qu(z) . (4.1.2)
C/m3 1/m? C/m

The dimensions of the functions in this factorization are as indicated, so the charge goes with q.
Moreover, without any loss of generality we select the relative scale of the two factors such that the
integral of a1(X,y) over a slice of conductor C; at any z is unity,

[ dxdyasxy)=1. (4.1.3)
C1
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Therefore, one can interpret q1(z) as the total charge per unit length on C; at location z :

[ dxdypoyn=a@ [ dedymy=a@: ! -a@).
1 C1

Assume that q2(z) is the charge on the other conductor C, of a two-conductor transmission line. If q1(z) +
q2(z) # 0, then there is a net charge per unit length and the transmission line is acting as a radiating

antenna as well as a transmission line. From now on, we ignore this superposed radiation problem and
assume that at each value of z, the net charge on both conductors is 0 -- the line is "balanced". Thus,

q2(2) =-q1(2) = -q(2) . (4.1.4)

To simplify notation, we now dispense with the subscript and denote q1(z) = q(z). However, we maintain
the subscript on a1(x,y) to emphasize that the two conductors can have completely different cross
sectional shapes. The shape of the transverse distribution of charge on C; is determined by a;(X,y), but
the total charge is q(z) per unit length.

How can we justify assumption (4.1.2)? This is "separation of variables". The idea is that we assume it
without any justification, and then we try to find a solution to our problem which is consistent with the
assumption. All we really want is to find a solution to our basic differential equations with their boundary
conditions, and any assumptions we make can be justified in the end once we have found a solution. On
the other hand, if an assumption like (4.1.2) does not lead to a solution, then it must have been a bad
assumption. We have seen earlier how the expected EM field pattern on a transmission line has a constant
transverse "shape" and this certainly motivates the assumption (4.1.2).

Now insert (4.1.2) into (4.1.1) to get,
e~ JBaR

¢1(x.y.2) = 4,@ [ dza@) [ acdymey) (4.1.5)

R? = (xx)? + (y-y)? + (z2)? .

Technical Note Concerning the condition (4.1.2) and (4.1.3)

For some general quantity Q we must in general assume the following
Qx.y.z0) = Q(x.y,2) €% = [Q(xy.z) %R ¥+=) eIot

QPhySical(X,yazat) = RC(Q) = |Q(X,y,Z)| Cos [ ot + (PQ(XaY»Z) ] = real

In general, Q(X,y,z,t) can have a phase ¢g(x,y,z) which is a function of position (x,y,z). For example, in
Chapter 2 we found for a round wire that E(r) = E(a) JOEE % where B = eI3n/4 \/E /8). In this case, E(r)

certainly has a phase which depends on location r in the wire.

133



Chapter 4: Transmission Line Equations

In (4.1.2) we write the partition p1(x,y,z) = a1(X,y) qi1(z). In general, a1(x,y) could have a phase
which varies with x,y. Suppose that fCl dx dy a1(x,y) = kx, where « is some complex number. We can
then define primed quantities a'1(X,y) = a1(X,y)/x and q'1(z) = q1(z)x . In this new partition we then have
p1(x,y,z) = a'1(x,y) q'1(z) where J‘Cl dx dy a'1(x,y) = 1. The point is that, even though a1(x,y) might be
a complex function of variables x,y, we can always find a partition p1(x,y,z) = a'1(X,y) q'1(z) where
a'1(x,y) is a complex function of x,y, but nevertheless fcl dx dy a'1(x,y) = 1.

Having said all this, we now further claim that we can take a1(X,y) to be purely real with zero phase
in our development below. We will be assuming that ¢ = constant on a conductor perimeter in any z =
constant plane. If it were possible for p1(x,y,z,t) to "peak" at different times at different points on the

perimeter, then such a p; would differ from its quasi-static equilibrium form in which ¢ = constant, and
then one would have ¢ # constant. Thus for all points on the perimeter p1(x,y,z,t) must reach a peak value
at the same time, which then implies that a;(x,y) does not have a phase which varies with x,y and can
then be taken to be a real function.

4.2 Computation of potential ¢ due to both conductors of a transmission line

We now write the potential at an arbitrary point x in the dielectric due to both conductors C; and C, :

012(X) = 91(X) + @2(x) =

-3BaR -3BaR
L J‘ 0 d 1 ) J‘ d ld 1 1 ' e J‘ d Vd 1 ' 1 e

e ) 42 q(z'){ o, ' dna w(xiyi) TR~ o, T2 dv2 az(x2\y2) TR
Ri% = (xx1")2 + (y-y1)2 + (z-2)? =512+ (z-2)? s12= (xx1)% + (y-y1)? (4.2.1)
Ro® = (x-x2)" + (y-¥2)* + (22)* =s2° + (2-2)° s2° = (xx2)”+ (y-y2) -

The minus sign between the terms is due to (4.1.4). Each conductor has its own arbitrary transverse
charge distribution a;. The transverse integration variables on C; are dx;' dyi', while those on C, are
instead dxo' dy2'. In the last two lines we introduce certain transverse distances s; and s, as shown. The
same dz' integration variable is used for both conductors. The following drawing shows an arbitrary
dielectric point x = (X,y,z) located in the z = z plane. The point x;' = (x1',y1',Z') lies on C; at some point
of the C; integration and similarly for x2' = (x2',y2',z'). The full distances R; and R, and the transverse
distances s; and s, are shown. We show x3' and x5' on the surfaces based on Comment 2 above.
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Fig 4.1

One can imagine an expression similar to (4.2.1) for a transmission line consisting of N conductors where
Zi=1Nqi(z) =0, but we shall restrict our interest to N = 2.

4.3 The Transmission Line Limit

Consider again the potential at x due to both conductors shown in (4.2.1),

1 w e~ JBaR e JBaR
012(x) = 4_7@ f_oo dz' q(z){ fCl dx1' dy1' 01(x1',y1") R~ fcz dx2' dy2' az(x2'y2") R }
43.1)

As the red-dashed z = 7' plane shown in Fig 4.1 is pushed back far from the z = z plane, the vectors which
are labeled by distances R; and R, become more aligned, and both Ry and Rz become larger. During the
transverse integrations over x;' and x2', these R; vectors then don't vary much. One could then replace the
transverse charge density a1(x1',y1') with a point charge at the "center of the conductor" and not make
much difference in the Ry vector and its length R;. In this situation, the {...} integrand of the above
integral has this form

e~ JBaR1 e~ JIBaR2

{ R, R, b // when |z-Z'| is large (4.3.2)

If we then expand the exponentials showing the first few terms, this becomes

1-iBaR1+(iBa)®R1%/2  1-iBaR2+(jBa)*R2%/2
Polla WP 2 R e R 2 | s -7 1+ [iBa* B+ (B2 [Ra-Re] + .
={l RLI -RLZ ] - (B4®/2) [R1-Rz] + order(Bs>) } (4.3.3)

135



Chapter 4: Transmission Line Equations

Since Ry = Ry for large |z-Z'| as just discussed, both the leading term and the de term are small in an
absolute sense as long as Ba? is not huge. When |z-z'| is large, both Ry and R are large and thus both 1/R;
and 1/Rz are small, and [ 1/R; - 1/Rz] is smaller still due to cancellation between the terms.

So our first point is that, in the dz' integration, the main contribution to @12(x) comes from regions of
z' for which |z-Z'| is small.

Given then that the dz' integration in (4.3.1) is dominated by that part for which |z-Z'| is small, we can
see that for this controlling integration region the size of distances R; and R, will be on the order of the
transverse dimension of the transmission line, assuming that we select the point x somewhere between the
two conductors. If we vaguely define the transmission line's transverse extent as distance D, then suppose
we make the following assumption concerning Pq :

BaD <<1 "small Bg" . (4.3.4)

In this case, we can replace e 3Pa®1 = | and ¢"3PdR2 = | in the integration without significantly changing

the result. Then as shown in (4.3.3) there will be a correction term that is order de which we shall
neglect, as well as higher terms of order B4" with n> 2.

Notice that the linear Bg term vanished exactly in our large |z-Z'| analysis. This linear term also
vanishes in the full analysis since the o transverse charge functions are normalized to unity:

' ' ' l _deRl ' ' ' ' 'deR2
1 fcl dx1' dy1' a1(x1'y1") Ry fcz dxz' dy2' a2(x2',y2") R, }

= (-iBa) { f c dx1' dy1' o1(x1'y1") - fcl dx1'dys' 01(x1%y1) ) = (jBa) {1-1} = 0. (4.3.5)

Thus, by setting Bg = 0 in (4.3.1) we are ignoring corrections on the order of de and higher, and if B4 is
small, these corrections are very small.

The Helmholtz parameter B4 for the dielectric is 2n/A where A is the wavelength of a wave passing
down the transmission line. Thus, our "small B4" assumption stated above can also be written

which says the wavelength is much longer than the size of the transmission line transverse dimensions.
This assumption is called the Transmission Line Limit. [f we operate within this limit, then (4.3.1) may
be approximated as

1 0 1 1
P12(X) = Inty f_oo dz' q(z'){ fcl dxa'dy1’ ea(x1'y1) 7~ Jng dxz' dyz' e2(x2'y2)  } - (4.3.7)

We shall now use the small Bg assumption one more time. We assume that the linear charge density q(z")
has the characteristics of a wave traveling down the transmission line (see also Chapter 5),

q(z) = q(0) e”Pa* /1 q(z.t) = q(0,0) eI (**~Pa) (4.3.8)

which is appropriate for a lossless line (see below for a lossy line). Therefore,
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q'(2) = -iBa q(2)
q"(z) = (-iBa)’q(z) and so on.

We can then write a Taylor expansion for charge density q(z') which appears in our integration,

q(@) = q(z) + (z-2) 4(2) + (112) (z-2)* q"(2) + ...
= q(2) + (iBa) 4(2) (z-2) + (1/2) (-iBa)? () (z-2)* + ...
=q(@) [ 1 + (§Ba) (z-2) +(112) (§Ba)’(z-2)* + ... 1. (4.3.9)

Since both R; and Ry are even functions of the quantity (z'-z), and since there is no other (z'-z)
dependence in the (4.3.7) integrand, the (-jBg) term in (4.3.9) contributes nothing (this is also true more
generally for (4.3.1)). Thus, if we assume small Bg, we can approximate q(z') = q(z) where we are then
ignoring a P4® size term. Once again, if Bg is small, Pa? is very small so our error in replacing q(z') by
q(z) is very small. We are only interested in the contributing region where |z-Z'| is on the order of
transverse dimension D, so one is using the same gD << 1 as assumed earlier.

We arrive then at our final result for the potential at a point x between the conductors,

1 o 1 1
P12(X) = dntg q(z) f_oo dz'{ fcl dxa'dya" oaa(x1'y1) g7 - fcz dxz' dy2" 02(x2'y2) g7 ) (4.3.10)

where we have thrown out terms of order de and higher. In this transmission line limit approximation,
our Helmholtz integral (4.3.1) has been reduced to essentially an electrostatics Coulomb integral where
we just sum over the contribution of each piece of charge to the total potential. As noted earlier, q(z) has
the normalization of n and not ng as discussed in Section 1.5 (c) which explains why the leading factor is

1 . ) .
—— and not >—— . This allows for the dielectric to have some conductance.
471',§d 47I8d

It should be noted that the integral of (4.3.10) converges due to the subtraction of the two terms which
in turn results from the two conductors having opposite longitudinal charge densities q(z) and -q(z). The
individual terms in (4.3.10) do not converge and are in fact each logarithmically divergent in the sense
that

f0°° dz' (1/2) = In(0) = o .

This will become clearer in (4.4.5) below.

Transmission Line Limit for a Transmission Line with Losses

When a transmission line has losses, we will show later in (5.3.5) that the z dependence of q(z) and other
line quantities is not e 34% but rather e 3%* where jk = \/ (R+joL)(G+jowC) where R,L,G,C are certain

transmission line parameters. The lossless case is recovered by setting R = G = 0 so jk =/-0“LC and

then k = co\/LC . It will be shown in (4.12.19) that in this case \/LC = 1/vgq so then k = ®/vgq = Ba. In the
lossy case, to make the argument above concerning q(z') = q(z), we must show that k| D <<1 in addition
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to PpaD << 1 of (4.3.4). Appendix (Q.2.1) shows that k| = [(R*+®?L?)(G*+w2C?)]*4, so the
"transmission line limit" then requires that these two conditions be met :

o\JLCD <<1 /I BaD <<1
[(RZ+02L?)(G*+02CHM D << 1. // for a lossy line, |k| D <<1 (4.3.11)

Since |k| > Pg (see Fig Q.5.8), the second inequality is more stringent in determining the maximum
general © for which the analysis presented above is valid. Using the quadratic formula, the last inequality
can be written as

w? <<[-b+ \/b2 - 4ac ]/(2a) // transmission line limit for lossy line (4.3.12)
a=L2C? >0
b = L?G*+R?C? >0
¢=R?G?- 1/D* <0 (for D small enough to put things in the transmission line limit)

As an example, if we insert the parameters appropriate for Belden 8281 coaxial cable (see Appendix R),
and use D = a, = the cable radius, we obtain from (4.3.12) that ®® << 6 x 10** so ® << 8 x 10*? and
finally f << 12 GHz. At such a high frequency, Fig Q.5.8 shows that Im(k) = 0.1 so a signal would decay
to 1/e in 10 meters of cable.

4.4 General Calculation of V(z)

We now introduce two new points x; and x,. The point x; lies on C; in the z = z plane, while x; lies on
C> in this same plane. We then evaluate @12(X) at x = x1 and subtract from that @;2(x) at x = x2 and in
this way we obtain the potential difference between the surfaces of the two conductors at z = z. Recall,

Fact 2: ¢ = constant on a conductor boundary (z = constant) in the strong or extreme skin effect regimes
within the Transmission Line Limit. 3.7.4)

Thus, assuming the small 6 regime and treating ¢ ~ constant as an equality, the potential difference will
be independent of the locations of xz and x; as long as they are on their respective surfaces and both have

z = z. For this reason, the potential difference is a function only of z. Thus we write, using two copies of
(4.3.10),

V(z) = ¢12(X1) - 12(X2)

_L fwd' J‘ d |d 1 1 ' L f d 'd 1 ' ' L
“dng, 1@ ) 47 o, ' dn o1(x1'y1) g - c, 32 4z oz(x2'y2) g, ¥

1 ® 1 1 1 1 1 L 1 1 1 ' L
- It q(z) f_oo dz' { ‘[C1 dx1'dy1' a1(x1',y1") Rp1 fcz dxz' dy2' a2(x2',y2") Rz 1 (4.4.1)

where
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R11% = (x1-x1)? + (y1-y1)? + (z-2)? =s1:.° + (z-2)? s11° = (x1-x1)% + (y1-y1')?
Ri2” = (x1-x2)” + (ya-y2)? + (z2)° =s12° + (z2)° s12° = (x1%2)° + (y1-y2)*
R22% = (x2-x2)? + (y2-y2')? + (z-2)? =s22° + (z-7)? 5207 = (x2-x2)% + (y2-y2')?
R212 = (X2—X1')2 + (yz—yl')z + (Z—Z')2 = 8212 + (Z—Z')2 5212 = (X2—X1')2 + (yz—y]_')2 . (4.4.2)

The vector R12 points from our new point x; to an integration point X' on C,. Here is a drawing of our
new and more complicated situation:

Fig4.2
We next rearrange the four terms in (4.4.1) to get

V(2) (4.4.3)

1 ® 1 ] 1 1 A\l L L 1 A\l ] 1 L L
a0 g |zt [ o, 1y a0y (R Ry ) I ¢, B2 a2l aa(2'y2) (R - Ry, ) b -

It is now possible to carry out the dz' integrations. The generic integral of interest is the following,

oo | 1
| x| JE T V= In(b%a?). (4.4.4)

Since this is quite important, we confirm with Maple,

Int{1l/sqrt(a”2+x"2) - 1/sqrt(b”2 +x"2), x=—-infinity.. infinity) .,

0]

1 1
- ax
\/a2+x2 \/b2+x2
pes)
value (%),

—]n(az) +]n(b2)
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The separate integrals here are logarithmically divergent, but the combination converges. Thus,

1 1
+ (ZZ '\/S21 + (Z Z)

f 2 (g L ——)= [T dz¢ L L ) = In(s22%/5122) (4.4.5)
R12 "Roy o \lslzzJr (z-z')z \/5222+ (z-z')2 22 /812 4.

5) = In(s21%/511%)

1 ©
J. dz! (R11 R21): f-oo dz (\/suz

so that
1
V(2) =q(2) dnig { fcl dx1' dy1' ax(x1'y1") In(s21%/s11%) - fcz dx2' dy2' a2(x2y2") In(s22%/s12%) }

s21? = (x2-x1))? + (y2-y1)? s22° = (x2-X2')° + (y2-y2)? (4.4.6)
s117= (x1x1')° + (y1-y1)? s12% = (x1-x2) + (y1-y2)°

The four transverse distances are shown in this figure,

Fig 4.3

Equation (4.4.6) expresses the potential between the two transmission line conductors at some plane z in
terms of the charge distributions on the conductors a;. In general, these charge distributions are not
known, so one cannot regard (4.4.6) as a general purpose silver bullet to solve transmission line problems.
On the other hand, as we shall see, equation (4.4.6) is one of a group of equations which will allow us to
express several different transmission line parameters in terms the same integral, and one then obtains a
relation between these parameters.

For example, in analogy to what we did with a parallel plate capacitor in (1.5.19), we may define the
complex capacitance C' per unit length of our transmission line using (4.4.6) as follows:
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L J— V Z — 1 ] 1 1 1 2 2 ] 1 1 ) 2 2
C —J—lq(z) =g I e dxa' dyz' ea(xa'y1) In(s21%/s112) - [ C2 dx2' dy2' 02(x2',y2") In(s227/512%) }
1 1

~dmey and V()= q(2) g7z K (4.4.7)
where

— ' ' ' ' 2 2 ' ' ' ' 2 2

K = ch dx1' dy1' aa(x1'y1') In(s21%/s11%) - ch dx2' dy2' o2(x2',y2") In(s22°/512°) . (4.4.8)
1 2

Eq (4.1.2) shows that a;(x,y) has dimensions 1/m?, so K is a dimensionless number. As observed at the
end of Section 4.1, Fact 2 of (3.7.4) that ¢ = constant on the cross section perimeter allows us to define
a1(x1',y1') to be a purely real function. Thus, K is a dimensionaless real number obtained from a 2D
geometric integral of the normalized transverse charge distributions a;.

Recall from (1.5.20) that (C', C and G are discussed further in Section 4.11 below)
C'=C+1/(joR) =C+ G/(jo) (4.4.9)
where conductance (per unit length) G is associated with the imaginary part of C'. We then have

Antg/K = C' = C + Gljo

or
4n(egtog/jo)/K =C+ G/jo // (1.5.1a) for &g
so that
C =4neq/K capacitance per unit length of the transmission line
G =4ncs/K conductance per unit length of the transmission line
o)
C/G=¢4/04 . (4.4.10)

Here G = 1/Rg is the conductance across the dielectric between a unit length of the two conductors. This
is unrelated to the longitudinal resistance R of the conductors themselves, though that parameter will arise

later on in the form of surface impedance Zs. We only have G # 0 if the dielectric has some conductance
06470 (orocess #0asin (3.3.4)).
Note from above and (1.1.28) that dim(C) = dim(g) = farad/m and dim(G) = dim(c) = mho/m .

We now quote several results that will be derived later in Section 4.11.

First, we show below in (4.10.8) with (4.12.20) that the external inductance per unit length of our
transmission line is also related to this same constant K,

Le = (ua/4m)K . (4.4.11)
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Second, we show in (4.12.18) that the characteristic impedance of the transmission line is given by
V(z[ R +joL
=) G +ch (4.4.12)
At sufficiently large o we can neglect the R and G terms to get this real value,

Zo = // large ® (4.4.13)

=

Third, we show in (4.12.26) that, for large o, L — Lg so

Le | (/4K
\/g (i;jta T/?( = (1/41) K\ua/ea = (1/41)K Zp // large ® (4.4.14)

where Zp = \/ud/sd is the "intrinsic impedance of the dielectric medium" having pg and &4. Recall that
for free space we had in (1.1.29)

Zes =\[Mo/eo =376.73032 ohms =>  Zgg/4n =29.97948 =30Q . (4.4.15)

[ Obscure fact: the color NTSC frame rate is 30¥1000/1001 = 29.97002997 Hz. = 30 Hz. ]

Typically one has pg = po so then (note that €e1 and K are dimensionless),

Zn=1Hd/ta :\/Mo/sd :\/Mo/So \/80/8d =Zgs /\|€rel I €ze1 = €d/€0
SO (4.4.16)

Zo = (1/4n) K Zn, = (1/41) K (ZesA[ezer ) = (KAftre1 ) (Zes/dm) = (K Afezer ) 30Q.

We then summarize the parameters of a transmission line in terms of dimensionless real integral K :

C =4neg/K capacitance per unit length (4.4.17)
G =4ncs/K transverse conductance per unit length
Le = (ua/4m) K external inductance per unit length
~ (K /\/;el ) 30Q characteristic impedance pg = o, €re1l = €4/€0
R =Re(Zs1tZs2) resistance of conductors, see (4.12.24)
L=Le t+ (/o) Im(Zs1+ Zs2) total inductance, see (4.12.24)

Zsi = surface impedance of conductor i, see (2.4.1) and (4.12.9)
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The last three items are not determined by integral K and we just mention them for completeness's sake.
All these equations will be more fully developed in Section 4.11 below, but we have jumped ahead a bit
in order to treat two important examples which hopefully will be refreshing after all the above "theory".

Intrinsic Impedance Comment: Notice that the intrinsic impedance of a dielectric medium Z, = \/ Ua/€q
is different from the characteristic impedance of a transmission line Zg, although the numbers are in the
same ballpark. For large o, we showed in (4.4.14) that they are related by the equation Z¢ = (K/47) Zp,.
Both have dimensions of ohms (not ohms/m).

One can define a different intrinsic impedance Zy, = \/ud/éd [ recall (1.5.1a) that &g = &4 - jog/® | and

corresponding characteristic impedance Zo which have the relationship Zo = \|/L/C' = (1/4w) K Z with
C' as shown in (4.4.9) above. Belden sometimes refers to to Z, as 1. We shall have no need for the
quantities Z¢ and Zp, since we handle conducting dielectrics without involving these quantities.
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4.5 Example: Transmission line with widely-spaced round wires of unequal diameters

Consider a transmission line made from two round wires of radii a; and a, and center line spacing b. In
the case that b >> a; and ap, the charge distribution on each round wire is symmetric about the wire and in
this situation ( a rare one admittedly) we know the two transverse charge distributions:

01(xy) = ax(r,0) = 8(r - a1)/(2maz)
02(x,y) = 02(r,0) = 6(r - a2)/(2may) . 4.5.1)

The 1/(2maq) factor is required so that the integral of a is unity as required by (4.1.3),

2n 0 2n ©
| 0. dxdy aa(xy) = fo do | , Tdraa(ro) = ) , do fo rdr 8(r - a1)/(2may)
1

2
- 0" d0 ay/(2may) =2mar/(2may) =1 . (4.5.2)

Note: The reason the o3 are symmetric is that the two conductors are so far apart that each one is
essentially "in isolation" and so the charge assumes an axially symmetric distribution. An analogy would
be that for two point charges far apart, the E field close to either point charge is spherically symmetric
because close to one charge the field of the other can be neglected.

Our task is then to compute the integral K shown in (4.4.8),

2n
K= | , 40 ] (j'l radry [8(r1 - a1)/(2ma1)] In(s212/s112)

2
- o“dez ] 0“2 radry [8(r2 - a2)/(2maz)] In(s22%/s122) .

2 2 2
— fo d6; 1/(2m) In(s21%/s11%)

2n 2 2
- f . d0, 1/(2m) In(s22%/512°)

= v@m) { [ d0s nGszn®) - InGsai®) - [ d0z linGs22) - Ins122)] 45.3)

where we then have four integrals to evaluate.

We shall choose our V(z) potential-determining reference points x; and x, as shown in this drawing,
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Fig4.4
The four s; 5 distances can be read off from the drawing using the law of cosines,
5212 = a;% + (b-a1)? - 2 a(b-a1) cos(61)
s112 = a12 + a12 -2ajajcos(0y) = 2a12(1 - cos(01))
2__ 2 2 _ 2
S22° =ax” tax” -2 azazcos(m-02) = 2ax°(1 + cos(02))
s122 = az? + (b-az)? + 2 az(b-az) cos(02) . (4.5.4)
We then invoke the following integral from p 531 of GR7,
9% ] In(a+beosz) de = mln w [a = |b| = 0] GW (322)(15)
( =
which we rewrite as
2
fo "d01n (A £Bcos) =2m In[(1/2)(A + \/AE-B2 )] . (4.5.5)

The four integrals are then easily evaluated. First,
2n 2 2n 2 2
[ d0rinGs20®) = [ 7 dosin(ar® + (b-a1)® - 2 ax(b-ar) cos(0n)]

A=a %+ (b-a;)? B = 2 ay(b-a1)

AZB? =[a;? + (b-a1)?]? - 4 a ®(b-a1)® = [a1? - (b-a1)®]® =>~[AZ-B? = (b-a1)*-a:°>0  b>>ay

= | 02" d0y In(s21?) =2m In[(1/2)( a1? + (b-a1)® + (b-a1)? - a1?) = 2m In[(b-a1)?] .
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The fourth integral is the same with 1«<»> 2, and the different sign of the second term in 5122 makes no
difference,

) 02” d0z In(s122) = 27 In[(b-a2)?] .

The second integral is

2 2
) . " 401 In(s112) = fo " d011n([212(1 - cos(61))] A=B=2a;2, A2B%=0

= 271 In[(1/2) 2a;%] = 2= In(a1?) .

The third integral is similar giving
2n 2 2
| ) 402 In(s22%) = 2nin(az) .

To summarize:
2n 2 2
| , 461 1n(s21%) =2 In[(b-a1)’]
2n 2 2
| , 461 In(s11%) = 2 In(ay?)
2r 2 2
| ) 402 In(s22%) = 2nin(az®)

foz" 0, In(s122) =27 In[(b-a2)?] . (4.5.6)

Then from (4.5.3) we find

K= vem { [ a0 linGszn®) -] - [ 2 a6z finsae?) - InGs222)]
(b-a1)?(b-az)?
- _2_2

= In[(b-a1)*] - In(ar®) - In(a2®) + In[(b-a2)*] =In[— 77 |
(b-ay)(b-a) b? .
=2In[——— ] =2In]J ] // since we assumed at the start that b >> a,, a5
ajaz aiaz
=4 ln(b/\/alaz ) . 4.5.7)

Therefore the transmission line parameters from (4.5.7) and (4.4.17) are,
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K=4 ln(b/\/a ) // widely-space round wires, b >> aj, ap
C = 4neq/K = neq / In(bAfazaz )

G = 4nog/K =64/ In(bAfa1az )

Le = (na/4m) K = (ua/m) In(bAfazaz )

Zo =(K /\/srel ) 30Q2 = (l/ﬂsrel ) ln(b/\/alaz ) 120Q. (4.5.8)
Sometimes these formulas are written in terms of wire diameters d; = 2a; in which case
K =4 In[bAJajaz ] =4 In[2b/A/d1d2 ]= 2 ln[4b2/d1d2] . (4.5.9)

Since we are assuming b >> d;,d, we know that x = 2b2/d1d2 >> 1. Therefore

ch™x =1In[x + \/ x2-1 ]~ In(2x) // an identity Siegel 8.56, then an approximation (4.5.10)
)
ch™(2b%/d1d,) = In(4b%/d1dy) .

Then we can write K as

K = 2 In[4b%/d1dz] =2 ch™*(2b%/d1d2) (4.5.11)
and so
Zo= (K Aferer ) 30Q = (1Afezer ) ch™1(2b%/d1d2) 60Q . (4.5.12)

It is not easy to find expressions for C,G and L for the unequal radii geometry, but Zo does appear for
example in Reference RDE page 29-23 where we find:

N. Balanced 2-wire—unequal diameters
AIJ 4@
[ D 1

Zy = (60/€'?) cosh™'N

N = 1[(4D%/d\dy) — (d,/dy) — (dy/d))) Fig 4.5

with D = our b. For D >> dj,d; this shows N = 2D?/(d1dy), and this then agrees with (4.5.12). This

quoted result is in fact correct (with the two extra terms shown in N) even when D is not large. We shall
derive this full result in Chapter 6, equation (6.3.12).
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In the special case that a; = ap = a we get,

K =4 In(b/a) // widely-space round wires, b >> a;=a,
C =4neg/K = neq/ In(b/a)
G =4noyg/K = nog/ In(b/a)
Le = (na/4n) K = (ug/m) In(b/a)
Zo= (K Afeze1) 30Q = (IAfeze1 ) In(b/a) 1200
= (1A[eze1 ) In(2b/d) 1200 d=2a. (4.5.13)

The first three results agree with King TLT p17 (30b),

_ w _ e . _ 8, b
I=mw/ ‘“hom ==l (300)

The expression for Zg agrees with the RDE source quoted above,

Zy = 120 cosh™ ' (D/d)

® _'E)k_ =~ 276 log o(2D/d)

Ll i

I D | = 120 log,(2D/d)
Fig 4.6

where again D =b and gre1= 1.

Power Transmission Lines (also Telephone and Telegraph)

Ignoring proximity effects of the ground and possible ground wires, one can consider a single phase
power transmission line as fitting into this example. The first interesting number is skin depth. For
aluminum at f = 60 Hz one finds,

Caluminum = 3.7 X 107 mho/m // recall Geopper = 5.8 X 107 (annealed)
to =4m x 1077 henry/m

8 =1[2/(opo) = \[2/(2nfigo) =~[1/(nfiueo)

delta := sqri(l/(Pi*60*4*Pi*3.7)): evalf (%),
O106B178037T

So 6 = 1 cm. Thus, skin effect could be significant for a very large diameter wire. Typically the individual
strands of a 1500 amp cable are 1/6" in diameter or 0.2 cm in radius, so there is some slight non-
uniformity in the current distribution. If the strands are not insulated one should think of this more in
terms of the total cable diameter including all strand layers which might be 1".

Usually the requirement of low power loss requires that R be relatively small compared to wL. The
1500A cable just noted has R = .02Q per thousand feet. Similarly, the conductance G (mostly from
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insulator leakage) is very small compared to C. Thus, (4.4.12) leads to (4.4.16) stating Zo ~ K 30Q . If
the full cable is 1" in diameter and the two lines are spaced 1 m apart, we can compute K from (4.5.13),

K =4 1In(b/a) =4 In( 1m/0.5") =4 In(39.37*2) =17.5
so then from (4.4.16),
Zo=~K30Q =17.5*30Q =524Q .

Notice that halving radius a (or doubling b) increases K by 4In2 = 2.77 which is only 16% of 17.5, so Zg
is fairly insensitive to the line geometry. Rajput (p 554) claims power lines typically range from 400 to
600 Q. See southwire.com for data on transmission line cables.

A twin-line telegraph or telephone cable falls into this same impedance class, with 600 ohms being
the traditional Z¢ number. A single telegraph wire over the ground plane has a similar Zg. For a = 1/8" =
0.32 cm and height 4 m, K = 2 In(2h/a) from (6.3.21) below, so K = 2 In(8/[.32x1072]) = 2 In(2500) =
15.64 giving Zo = 469 Q.
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4.6 Example: A coaxial cable
A coaxial cable is the other transmission line where we know the surface charge distribution is that given

by (4.5.1). The analysis of the previous section resulting in (4.5.3) is then unchanged, and we find that K
is still given by (4.5.3),

K = 1/2n){ f:"del [In(s212) - In(s119)] - 02” d05 [In(s222) - In(s122)] } . (4.5.3)

What is different is that we have a different picture describing the various s; 5 distances. The new picture
1s this, where the cross section circles have radii a, > a; :

Fig 4.7

As done in the previous section, we "read off" the s; 5 expressions using the law of cosines:

8212 = a12 + a22 -2 ajazcos(0;)

5112 = a12 + a12 -2ajajcos(B1) = 2a12(1 - cos(01))

Sp22 = a,% + 2,2 -2 as ap cos(02) = 2322(1 - cos(02))

5122 = a22 + a12 -2 ajap cos(02) . (4.6.1)
Recalling,

) 02" do In (A = Beos6) = 2r In[(1/2)(A +~[AZB? )] . (4.5.5)
one finds,

f02n do, ln(szlz) = J‘:n do, 1n[a12 + azz - 2ajazcos(01)] A= a12 + a22 B =2aja,

A% B%= (al2 +a22)2 - 4a1%a,% = (a12 -a22)2 => \/AE-B2 = (a22 -a12) >0 since ap > a;
SO
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foz" d01 In(s21?) =2m In[(1/2)( a12 + az® + (a2? -a1%) ) = 2mn(az?) .
Similarly

fozn d0, In(s12?) =27 In[(1/2)( a1? + ax® + (az® -a1%) ) = 2mIn(az®) = same as above .
The other two integrals are,

2n 2 2 2 2
| , 401 In(sna®) = fo d01 In[2a:%(1 - cos(01))] A=B=2a
=21 In[(1/2)2a1%] = 2nln(a; %)

2n 2 2n 2 2
| ) 402 In(sz2%) = fo d01 In[222%(1 - cos(02))] A=B=2a,

=27 In[(1/2)2a2%] = 2nln(az?) .
To summarize:

2n 2 2
| , d01In(s21%) = 2nin(ag?)
2r 2 2
| ) 4011n(s11%) = 2 In(as)
2n 2 2
JIO dez 11’1(522 ) =2n ll’l(az )
2
) Onde2 In(s12%) = 27 In(a?) . (4.6.2)

Then from (4.5.3) one gets,

K

ven { [ 02" d6y [In(s212) - In(s12%)] - [ 02 d0; [In(s22?) - In(s122)] }

In(az?) - In(ai;?) - In(a®) +In(az?®) = In(az*/a1%) =2 In(az/a;). (4.6.3)

The coaxial transmission line parameters are then given by,

K= 2In(az/aj) // centered coaxial

C =4neqg/K = 2neq / In(az/ay)

G =4nog/K = 2704 / In(az/a;)

Le = (na/4mK = (Ma/2m) In(az/az)

Zo = (K Afezer ) 300 = (1A[ezer ) In(az/a;) 600 (4.6.4)

We verify the C and L parameters from http://en.wikipedia.org/wiki/Coaxial_cable,
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Fundamental electrical parameters [edit]

« Shunt capacitance per unit length, in farads per metre. ]
Cy _ 2me 2mepe,

(E) " In(D/d) In(D/d)

s Series inductance per unit length, in henrys per metrea.

(- i - i

Fig 4.8

To verify the Zo value, first recall that (the positive square root is implied here)

ch™x =In[x + \[xz—l 1 . // Spiegel identity 8.56, valid for x > +1 (4.6.5)

1
SettinngE(%Jr )=5 ab and assuming a > 0 and b > 0,

1 1 (a2+b?)? - 4a2b? _l(az_bz)z
-l =37 =g a’b® N

2 . 1ba
= x—1=§ b =s1gn(b—a)§(g—g)

b/a b>a
> x X1 = += )+81gn(ba)2( b) _{a/b a>b

= In[x +1[x1] =In[ { Zjﬁ :;g ] = sign(b-a) In(b/a) .
Thus we have shown that (note that both sides are invariant under a <> b )
'1[% (% + g )] = sign(b-a) lng . a>0andb>0 (4.6.6)
With this rather elaborate fact, and since b > a, rewrite Z¢ above as
Zo = (1Afeze1) ch'l[% G +2)] 60Q . (4.6.7)

Again we quote from reference RDE page 29-24
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U/. Eccentric line

Z, = (60/€"?) cosh™'U

=1 — (4c?
U = ; [(D/d) + (d/D) — (4c*/dD)] Fig 4.9

In our centered case ¢ = 0 so U = (1/2)(D/d+d/D) and we have agreement. The full off-center result is
derived later in Chapter 6, equation (6.3.15).

Comment: In the examples of Sections 4.5 and 4.6, the current distributions in the involved round wires
are axially symmetric. Therefore all the results of Chapter 2 apply. In particular, Chapter 2 calculates the
surface impedance Zg for a round wire in complete detail, including its limits for large and small ®. For
example, at low frequency for a wire of radius a,

1 -
Zs(o) i +j0)‘§? = Rs +joLsg // low frequency limit (2.4.12)

and one sees that Rg is the expected DC resistance (C.1.1) and Lg is the internal impedance L; as
computed in (C.3.5).

Having presented our two Examples, we now resume development of the transmission line equations.
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4.7 Computation of A, due to one conductor of a transmission line

Summary box (1.5.23) states the following Helmholtz integral for the vector potential arising from
currents in a set of conductors,

1 e JBaR
A(X,0) = in i f pidi(x',m) R dv' (1.5.23)

where the sum X; is over the conductors and p; is the permeability of conductor i.

In our transmission line context, and as discussed in Chapter 3, the dominant current is in the z
(longitudinal) direction, while transverse currents are very small. For example, in the estimate of Section
3.7 (h) we found that J./J, <1.4x 107 below 10 GHz and J /), < 46X 1078 at low frequency. Looking
at the above Helmholtz solution to the Helmholtz equation, if we neglect these transverse currents, we are
then in effect neglecting the transverse components of A, and this is what we shall do from now on. This
approximation, discussed in Chapter 3 as Fact 1 (3.7.1), is restated below, and details are given in
Appendix M.

Fact: The transverse components Ay and Ay can be neglected so that A = A.Z. (Appendix M) (4.7.1)

Our starting point then is the following expression for the potential A, at some arbitrary point x in the
dielectric due to conductor C; of a transmission line,

e JBaR
Az1(x,0) = Z—; J.C J1 Xy, 7\ o) R dx'dy'dz' . R=|x-x| (4.7.2)
1

Here the integration point x' = (x',y',z') runs over the volume of C; and R is the distance between the
observation point x in the dielectric and the point x'. Parameter Bq is for the dielectric while i is for the
conductor.

In the analogous ¢ solution (4.1.1) everything has the same form as (4.7.2) but in (4.1.1) the charge
density exists only on the conductor surface. Nevertheless, we represented that charge density as a
volume density, and only later in examples set that volume density to a surface distribution. Thus, the
parallel between the ¢ and the A, analysis is very close, not surprising in light of (1.3.11). Another
difference is that for ¢ the leading factor is 1/(4n&gq) where £q was the complex dielectric constant of the
dielectric. In (4.7.2) this factor is replaced by (ui1/4mw) where pg is the magnetic permeability of the
conductor Cj.

We next make the same assumption of separation of variables to write

Jz1(X,y,z) = b1(x,y) 11(2)
A/m? /m*> A (4.7.3)

where 13 is scaled such that
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[ dxdybixy)=1. (4.7.4)
C1

As shown in the Technical Note below (4.1.5), even though b1(x,y) is in general a complex function with
a phase which varies with x,y, we can always find a partition (4.7.3) such that (4.7.4) is true. As that same
Technical Note points out, we expect J,1(X,y,z) inside a conductor to have a phase which varies as x and
y vary over the conductor cross section, just the way E(r) of Chapter 2 has a variable phase. For this
reason, we cannot partition the current so that b1(x,y) is a purely real function as we could with a1(x,y).

Function bs(x,y) describes the distribution of the current density across the conductor C1 cross section. At
DC this density is a uniform constant, but at higher ® the density becomes non-uniform in two ways.
First, it becomes concentrated away from the central region due to the skin effect. Second it is non-
uniform in that it tends to concentrate on the portion of conductor C; which is closest to conductor Ca. In
the corresponding equation p1(x,y,z) = 01(X,y) qi(z) of (4.1.2), a1(x,y) exists only on the conductor
surface, and is generally non-uniform in the second sense noted above for bi(x,y).

As before, we can now interpret i1(z) as the total current in C; at z. Again assuming that there is no net
superposed radiating antenna current, we have equal and opposite currents in the two conductors so the
line is a balanced line, and then

i2(2) = - 11(z) = -i(2) . (4.7.5)

This then leads to

M1 poo ¢ PR
Analyd) = gr | d2i@) [ dedybaiey) R (4.7.6)

Note: In the © domain, J,1(x,y,z) is complex with a position-dependent phase, as for example in the plot
of E; = J,/c shown in Fig 2.8. Thus, b1(x,y) is complex and has a position-dependent phase. This does
not stop us from allocating the phase between the two terms in (4.7.3) so that the integral of bi(X,y) is
unity as in (4.7.4). One ends up then with i1(z) having some phase that in general is non-zero.

Comments regarding p

This is a subtle subject and is not discussed in King's transmission line theory book. In this section we
regard conductor C; as having parameters €3, (13 while the dielectric outside the conductor has €4 and pg.

Before dealing with A, and p, it is useful to start with ¢ and &. Our Helmholtz integral solution for ¢ at a
point x in the dielectric, expressed for a single conductor C1, can be written as follows based on (1.5.13),

o(x,0) =

J- e~ JBaR
Aneq Clns(x',oo) R ds' . R=x-x'| (1.5.13)
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The potential ¢ is continuous at the boundary, but 0,¢ is not continuous, having a jump there, though this
fact is not obvious since we only have ¢ stated for x in the dielectric. We do know from (1.1.47) that,

[€aEan - ebE2b] = Nfree - (1147)

Letting a = dielectric and b = conductor, and with fi pointing out from the conductor, we translate this
equation to read,

€dEn,a - €1En,c = ng (4.7.7)

where ng is the free surface charge appearing in (1.5.13). According to (4.7.1) we can set transverse Aj;
components to zero, so then (1.3.1) which says E = - grad ¢ - joA tells us that E, = -0n¢. We then have

€a (-On((X1)) - €1 (-On@(X-)) = ns(X) (4.7.8)

where x+ is just outside the conductor surface and x- is just inside. From this result one can compute the
discontinuity or jump in On¢ at the conductor boundary. If 5 = €1 = €, then Onp(X+) - On@(X- ) = -ng/ep,
for example.

Normally, however, En, ¢ = 0 so (4.7.7) reads eqEn,q =ns and then E,, 4 = ns/eq is the normal E field
in the dielectric just outside the conductor. And since E,, . = 0, we have ¢(x,0) = constant inside the
conductor, so we are generally not interested in finding a version of (1.5.13) that is valid inside the
conductor. We just evaluate (1.5.13) at the surface for some x+ and that gives ¢ inside the conductor.
Thus, the Helmholtz integral (1.5.13) provides our full solution of interest, and we have no homogeneous
adder terms to worry about of the type discussed below. Another interpretation is that ng(x) just assumes
whatever value is needed to make (4.7.8) be valid.

With this as warm up, we now consider the case of A, and p. Our Helmholtz integral solution for A, at a
point x in the dielectric, expressed for a single conductor C4, can be written as follows based on (4.7.2),

1 e JBaR
Az1(x,0) = i IC J21(XLy',7,0) R dx'dy'dz' . R=|x-x'| (4.7.2)
1

where p; is for the conductor C;. The potential A1 is continuous at the boundary but dhAz; is not
continuous, having a jump.

Appendix D.9 shows that there is a miniscule free surface current K,° which flows on the surface of a
transmission line conductor, which we call the Debye surface current. It is ng being moved by E, at the
surface. Although ng is significant from the point of view of the Ey 4 field it creates in the dielectric, its
effective 3D density is tiny compared to the density of conduction electrons in the conductor. Equation
(D.9.3) shows that the Debye current contribution to the above integral is totally negligible relative to
bulk current contribution, so the left side of (4.7.2) is unchanged if we completely ignore this Debye
current contribution to J. Thus, we are in effect setting K,° = 0 in this well-justified approximation. We
may then apply (1.1.46) to find that
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(1/ua) (OnAz1(x1)) - (1/11) (OnAz1(x-)) = 0 . (1.1.46)

Thus we arrive at these boundary conditions on A,; produced by conductor Cy :

A, l(X+) =A; l(X')
(1/pg) OnAza(x+) = (1/p1) OnAz1(X-) (4.7.9)

where again x+ is just outside the conductor surface and x- is just inside.

If p1 = pg, there is no "magnetic boundary" at the surface, and (4.7.9) says OnAz1(x+) = OnAz1(X-), SO
both the function Az; and its normal derivative are continuous through the boundary -- nothing special is
happening there. Thus, the Helmholtz integral solution (4.7.2) provides the whole solution for Az1 in both
the dielectric and conductor since it meets both "boundary conditions" at this pseudo boundary.

If on the other hand we have pi # g, then there is a magnetic boundary between conductor and
dielectric which we have to worry about. In this case, (4.7.2) applied in both dielectric and conductor
cannot possibly satisfy the second boundary condition of (4.7.9) since, as already noted, the A1 of (4.7.2)
satisfies OnAz1(X+) = OnAz1(x+). Thus, in this case (4.7.2) is not the full solution for Az1. One must add a

homogeneous Helmholtz equation solution to (4.7.2) in order to have a proper solution for A1 that
satisfies both equations in (4.7.9).

It turns out that the correct total A1 solution can be generated by adding a certain fictitious surface
current term to piJz1 in (4.7.2). Since such a surface current vanishes on both sides of the boundary
between g and p1, the Helmholtz solution due just to this surface current term is in fact a homogeneous
solution to the Helmholtz equation in both the conductor and dielectric regions, away from that boundary.
It turns out moreover that the correct fictitious surface current to add is in fact the magnetization surface
current Jn, which is created at the boundary between pg # p1. Adding this surface current is just a "trick"
in order to generate the correct homogeneous adder solution so that the resulting total A1 satisfies both
boundary conditions in (4.7.9). Formally speaking, the J; appearing in (1.5.4) and then J1 in (4.7.2)
should not include such magnetization currents since this J is really the J in Maxwell's equation curl H =
OeD + J, and this J does not include magnetization currents -- it includes only normal conduction
currents.

In our current Chapter 4, we want (4.7.2) to represent the complete solution for A,; and for that
reason we must restrict our analysis to the situation where dielectric and all conductors have the same
permeability which we shall just call ug. In practice, one normally has pg = p1 = po. In order to handle the
more general case of pug # p1, we have to deal with the inhomogeneous adder solutions or equivalently
with the abovementioned fictitious surface current, and this complicates our analysis which is already
quite complicated. So, for the moment, we now make the same assumption made by King and other
authors:

Fact: From now on, conductors and dielectric must have the same permeability pg. (4.7.10)
After fully developing this special case, we extend the theory in Section 4.13 to allow for pg # 1.

There are several Appendices which relate to this subject :
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Appendix G shows for the round wire how the inhomogeneous adder solution is found and how it then
causes the boundary conditions (4.7.9) to be met when p; # pg. However, in Appendix G the notation is
different: 1 = dielectric and 2 = conductor, so that p3 # ug — M2 # U1 .

Appendix B shows how the addition of a fictitious surface current term poJn provides an alternate and
simpler solution to the same problem of meeting boundary conditions (4.7.9) when p; # pa. It then shows
exactly how this works in the special case of a round wire (same notation as Appendix G).

4.8 Computation of potential A, due to both conductors of a transmission line
We now write the potential at an arbitrary point x in the dielectric due to both conductors C; and C,. We
accept the requirement of (4.7.10) and require that all conductors have the same p as the dielectric, so

then H1 = U2 = Ug. Then,

Az12(X) = Az1(X) + Az2(x) =

ta " e-jﬁde e-deRz

ym f_oo dz'i(z") { fcl dx1'dy1' bi(x1'y1) R, fcz dx2' dy2' ba(x2',y2") R, }

Ri% = (x-x1)? + (y-y1)? + (z-2)? =s1% + (z2)? s12 = (x-x1)% + (y-y1')? (4.8.1)
Ro2 = (x-x2)2 + (y-y2)2 + (z-2)? =822+ (z-2)? s22 = (x-x2)2 + (y-y2) .

The picture going with the above equation is identical to Fig 4.1 [below (4.2.1)] except the points x1' and
X' can be in the interior of the conductors, not just on the boundary of the conductors.

4.9 Transmission Line Limit Revisited

Section 4.3 discussed the so-called transmission line limit of small B4 in the context of the scalar potential
¢. The flow of that section applies to A, with the following substitutions:

. 1
a(z) — i(2) 01— bs 912 > As12 pr el

The conclusion is that in the transmission line limit (small B4, long wavelength A = 2n/B4) one may write
_E : @© 1 1 ' Al ' L 1 ' ' Al L
Ani2) =g i) [ a2t [ axtdyababatyi) g - dedybately) Ry b 49

which is analogous to (4.3.10). Also, in analogy with (4.3.8) we write for a lossless line,
i(z) = i(0) ¢"3Paz 1/ i(z,t) = i(0,0) ¢ (@t "Paz) (4.9.2)

and for a lossy line
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i(z) = i(0) e™3%= 1/ i(z,t) = i(0,0) 3 (@t7k=) (4.9.3)
as explained in the discussion leading up to (4.3.11).
4.10 General Calculation of W(z)

As before, we now introduce the two new points x; and x,. The point x; lies on C; in the z = z plane,
while x3 lies on C; in this same plane. We then evaluate Az12(x) at x = x3 and subtract from that Az12(x)
at x = xp and in this way we obtain the A, potential difference between the surfaces of the two conductors
at z =z which we shall call W(z). Recall,

Fact 5: On each conductor boundary, A, ~ constant in the extreme or strong skin effect regimes. (3.7.20)
Thus, assuming the small d regime and treating A, = constant as an equality, the A, potential difference
will be independent of the locations of x2 and x; as long as they are on their respective surfaces and both
have z = z. For this reason, the A, potential difference is a function only of z. Thus we write, using two

copies of (4.9.1),

W(z) = Az12(X1) - Az12(X2)

:— 2 i(2) f dz' { f | dya ey ,yl)R - f , dxa dy2! ba(xz] ,yz)R o)

_d 1 0 1 1 1 1 N — 1 1 1 ) [
- 45 1@ '[-00 dz' { fcl dxy' dy1' bi(x1 ’Y1)R21 - fcz dx2' dy2' ba(x2',y2") R22 } (4.10.1)

where
R11% = (x1-x1)? + (y1-y1)? + (z2)* =511’ + (z2)? 12 = (xaxa1)? + (ya-yr)?
R12% = (x1-x2)? + (y1-y2)? + (z-2)? =s12° + (z-2)? S122 = (x1-x2)* + (y1-y2)?
Rp2% = (x2-x2')? + (y2-y2)? + (z-2)? = s22% + (z:2)? s22° = (Xa%2)% + (y2-y2))°
R21% = (x2x1)? + (y2y1)? + (z2)? =s21% + (z-2) s21” = (xzx1)* + (y2-ya)* . (4.102)

The picture going with the above equation is identical to Fig 4.2 [below (4.4.2)] except, once again, the
points x1' and x3' can be in the interior of the conductors, not just on the surface of the conductors. Also,
we replace the figure's double arrow label V(z) with W(z). We then reorder the four terms to get

W(z) (4.10.3)

:— 1(z)f dz' { f | ' dya'ba(xy’ ,yl)(Rll R21) f , 4x2 dyz' balx2 =Y2)(R12 R22) b

The dz' integrals are the same as those done in Section 4.4 and we then arrive at
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"
W@ =@ ([ o, B dya'baGxalya) In(s21%/5112) - | c, 82 dv2'ba(xzly2) In(s22%/s12%) }

s217 = (x2-x1)% + (y2-y1)? 5227 = (x2x2')% + (y2-y2)? (4.10.4)

s1° = (x1-x1)? + (y1-y1")? s12° = (x1%2)% + (y1-y2)°

which is analogous to (4.4.6) for V(z). The corresponding drawing is analogous to Fig 4.3 where, once

again, the integration points x1' and X2 are inside the conductor :

Fig 4.10

Equation (4.10.4) expresses the A, potential between the two transmission line conductors at some plane

z in terms of the current distributions b; within the conductors.

Now, the Stokes theorem applied to B = curl A says

curl A=B o $Aeds = [sBeds . (1.1.39)

Consider the red loop shown in this top view of the two transmission line conductors. The loop is
intended to have a tiny width dz, and the top view obscures the fact that each conductor has an arbitrary
cross section. The loop makes contact with the points x; and x2 shown in the previous figure,

Fig4.11
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Since we neglect any transverse components of A, the Stokes theorem says

[Az1(top) - Aza(bottom) | dz = [ magnetic flux through red loop] = J‘s BedS . (4.10.5)

If we regard the two short dz length conductor pieces as forming a tiny "inductor", closed on the ends by
the vertical red lines, we can use this definition of inductance to compute the inductance of that inductor:

[magnetic flux through red loop] = (Ledz) i(z) . (4.10.6)

Here (Ledz) is the inductance of our tiny loop, so Le is the transmission line inductance per unit length.
We know (as in Appendix C) that there will be magnetic flux inside the conductors as well as between
them, and for that reason Le as defined here only accounts for the "external" inductance of the
transmission line, again see Appendix C.

Since [Az1(top) - Aza(bottom) | = W(z) according to (4.10.1), we may combine (4.10.5) and (4.10.6)
to obtain

W(z) = Le i(z) . (4.10.7)

Therefore from (4.10.4) we have found that

_W(@z) _ Ha
Le =% — an Ko (4.10.8)

where Ky, is the following dimensionless number,

Ky = fC dx1' dy1' bi(x1'y1') In(s21%/511%) - ‘[C dxz' dy2' ba(x2',y2") In(s22%/s122) . (4.10.9)
1 2

This number is reminiscent of the dimensionless real number K obtained in Section 4.4,

K= ch dxa' dyz1' 0a(x1'y1) In(s21/s11%) - ch dx2' dy2' 02(x2y2") In(s22%/s12%) (4.4.8)
1 2

As noted in the comments after (4.7.4), the transverse current density bi(x,y) is in general complex and
not real, just based on the fact that we know that the skin effect warps current phase as a function of r
from Chapter 2. For this reason, it would appear that the integral Ky, might be complex as well. In an

integral of a complex function, it is possible for the imaginary part to cancel out. That seems to be the
case with Ky, since we will later show in (4.12.20) that K3, = K and K is real. Thus, Le is also real.
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4.11 Relations involving C and G and the charges and currents in a transmission line
Before continuing our development of the transmission line equations, we need to establish the
connections between parameters C and G and the charges and currents in a transmission line Then we

resume the development in Section 4.12.

Consider this picture showing a section of a transmission line of length dz :

z z+dz
<—dz;
Cl I(Z) — » i(Z"’dZ}
ic(2) = 15(1) + i6(2) >z) 's(2) =Jolqsdz] = jo[CV(z) dz]

/ ic(z) = [Gdz] V(2)

Co i(z) - €«—— i(z+dz)

<—dz—p

% Z1dz Fig 4.12

We focus on the upper conductor C1. Over the distance dz, the current i(z) in this conductor is reduced by
amount - di(z) = i(z) - i(z+dz) > 0 by the fact that current flows transversely to feed the surface charge qs
and to feed the conductance G between the conductors.

Since the blue Gaussian box embedded just inside the upper conductor contains no free charge, we know

from (1.1.35) that divJ = 0 and fs J o dS = 0. The latter means that the sum of all currents crossing the

box boundary is 0. Thus,
-di(z) =1ig(z) +is(z) . " current loss feeds capacitance and conductance" (4.11.1)
The two currents may be written
ig(z) = [Gdz] V(z) // ig flows through the dielectric (4.11.2)
is(z) = jo[qs(z)dz] . // 1 feeds the true surface charge per length qs (4.11.3)

The section of dielectric has some transverse resistance Ry = 1/[Gdz] and then ig(z) =V(z)/R¢. Quantity G
is the conductance of the dielectric per unit length of the transmission line. The true total surface charge
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per length is qs and is feeds this charge according to is(z) = jo[qs(z)dz] ( is = O¢[qsdz] in the time
domain). But we know for the dz-length capacitor that qs(z) = CV(z) where C is the capacitance per
length. Then (4.11.1) can be written

- di(z) =ig(z) +is(z) = [Gdz] V(z) +jo[CV(z)dz] =[G +joC]V(z)dz . (4.11.4)
Dividing by dz and taking dz—0 then gives,

0zi(z)=- [G+joC]V(2) . (4.11.5)
This is in fact one of the two "transmission line equations" we shall be deriving below.

Quantity qs(2) is the true surface charge (per length) at location z. Corresponding to this charge is the so-
called transport charge (per unit length) qc(z), where

qe(2) = (Ea/2a)qs(2) (4.11.6)

as shown in (1.5.17). Here qs and qc are the integrals of the corresponding surface charge densities ng
and qs over the surface of the C; conductor section shown in Fig 4.12. The transport charge density qc is
larger than gqs because it accounts for both the surface charge and the charge lost due to leakage into the

dielectric, as described in Section 1.5. The two charges are related to the real and complex capacitances in
this manner

gs(z) =C V(z) C = real capacitance (per length) 4.11.7)
qe(z) = C'V(2) C' = complex capacitance including effect of G (per length) (4.11.8)

where the second line really defines the complex capacitance C' . Therefore using (4.11.6) and (1.5.1c¢) for

Ea;

C/C =qc(2)/qs(2) = (Ea/ea) = [ea - jod/w]/ ea =1+ (1/jo) (c4/eq) (4.11.9a)
or

C'=C+ (Clio) (caza) (4.11.9b)
or

joC'=C(c4/eq) + joC . (4.11.9¢)

The current feeding the transport charge in the transmission line section of length dz is given by

1c(z) = 1(z) + ig(2) (4.11.10)
where
ic(z) = jo [qe(z)dz] . /l'ic = 0¢[qedz] in the time domain (4.11.11)

Using (4.11.8) this says

163



Chapter 4: Transmission Line Equations

ic(z) = jo [C'V(2)dz] . (4.11.12)

Then (4.11.10) and (4.11.4) imply

jo [C'V(z)dz] = [ G+ joC ] V(z)dz (4.11.13)
so that
joC'=G +joC . (4.11.14)

Comparing this with (4.11.9¢) shows that
G= C(Gd/sd) (4.11.15)

which is an interesting relationship between G and C for a transmission line with arbitrary conductor
shapes. We saw this relationship just below (1.5.20) for the special case of a parallel plate capacitor.

Finally, were we to assume that transmission line quantities all have the simple z dependence e 3%=
(implying a traveling wave e “*7¥2) ) then starting with (4.11.5),
0zi(z)=- [ G +joC ] V(2) (4.11.5)
-k i(z) = - joC' V(z) // " 3*% dependence and (4.11.14)
or
i(z) = (w/k) C' V(2)
or
1(z) = qe(z) (0/k) // using (4.11.8)
or
i(2)=qe(2) v . //v=(w/k), e ¥ assumed (4.11.16)

In the last line we use the fact that v = (w/k) is the complex phase velocity of the wave e (“*7%2) This
last equation can be interpreted as saying that the total current i(z) acts as if the transport charge qo(z)
were traveling at speed v down the transmission line. If G = 0, then g = €4 and qc = qs . Furthermore, if
o is large, then k = Bgo = (m/ Ua€a = ®/vq [ see (1.5.1b) | where vg4 is the speed of light in the dielectric.
In this case one finds that

i(z)=qs(z) va - G =0 and large ® (4.11.17)

Again, one has the illusion that the current i(z) consists of the surface charge qs(z) moving at v4. Since vg

is some large fraction of the the speed of light, we know that the surface charge electrons are not really
flowing down the line at such a speed (they flow a few mm per second). This interesting issue is
addressed in Appendix D.9 (c).
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4.12 The Classical Transmission Line Equations

The results of the Sections 4.1 through 4.10 of this chapter may be succinctly summarized as:

@12.1)
1l V@ 1
C ~q(2 _ 4niq K (4.4.7)
W(z la
L. :%(232 - By, (4.10.8)
K= -[C dxa' dy1' ea(x1'y1) In(s21/s12%) - IC dx2' dy2' 02(x2',y2") In(s22%/5127) (4.4.8)
1 2
Ki= fc dx1' dyz' bi(x1'y1') In(s21%/s11%) - ch dx2' dy2' ba(x2',y2') In(s22%/512%) (4.10.9)
1 2

Notice that we have made no assumptions whatsoever about the cross-sectional shape of the transmission
line. We have only assumed that the transverse dimensions are small compared to the wavelength A that
corresponds to Bg -- this was the transmission line limit.

(a) Initial Processing

There are several equations from Chapter 1 we shall now press into service:

E =-grad ¢ - 0:tA (1.3.1)
div A = - ngeq Ot - Ua04Q . // the King gauge (1.3.18)

In the frequency domain these become,

E =-grad ¢ - joA
divA=-j(P/o)e. // the King gauge, see (1.5.5) (4.12.2)

According to Fact (4.7.1), potential A has only component A, so these equations become

Ez(X) = - 020(x) - joAz(X)

02A2(x) = - j (Ba®/m) p(x) . (4.12.3)
However, as was shown at the end of Step 1 below (3.7.8), the second line of (4.12.3) can only be
justified in the strong or extreme skin effect regimes, and we continue then to assume our transmission

line is operating at sufficiently high o to be in the small  regime.

The potentials in the above equations are those due to both conductors and were denoted as @12 and Az12
in the previous sections. We then rewrite the above as
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Ez(X) = - 02012(X) - joAz12(X) (4.12.4a)
0zAz12(X) = - j (Ba/®)p12(X) (4.12.4b)

Recall now the conductor-surface-located points x; and x2 as shown for example in Fig 4.10. If we
evaluate each of the above equations at x = x; and then x = x3 and then subtract, we get

Ez(x1) - Ez(X2) =-0z[Q12(X1) - 12(X2)] - jo[Az12(X1) - Az12(X2)] (4.12.5a)
O2lAz12(X1) - Az12(x2)] = - j (B¥/0)[@12(X1) - P12(X2)] - (4.12.5b)

Then using these definitions (again, we are assuming the strong or extreme skin depth regime),

V(2) = ¢12(x1) - 912(X2) (4.4.1)
W(2) = Az12(X1) - Az12(X2) (4.10.1)

we may rewrite (4.12.5) in this simple manner,

Ez(x1) - Ez(X2) = - 82V - joW (4.12.6a)
W =-j(BZ/o) V . (4.12.6b)

The quantity E,(x1) is the longitudinal electric field at point x; on the surface of conductor Cj. It is
related to the conductor's at-the-surface current density by J.(x1) = oEz(x1). If the conductor were
"perfect", we would have 6 = o0 and E,(x1) = 0, but real conductors are not perfect. However, since we
are assuming the strong or extreme skin effect all along here in our analysis, we do know that E,(x1) and
E.(x2) are very small.

(b) Averaging Repair and the Transmission Line Equations
Our theory now has an inconsistency which needs to be fixed.

We know that for a general transmission line operating at ® > 0, the current density J, inside the
conductors will not be uniformly distributed. It will be larger in the conductor region closest to the other
conductor. This "proximity effect" is discussed in Appendix P from an eddy current point of view, see Fig
P.13 for an example. The J, current non-uniformity can be very dramatic as for example in a transmission
line having this cross section, where J, will be large near the gap and small far from the gap:

I C1 I C2 |

Fig 4.13

Since J, is non-uniform in each conductor, so is E,, and so we expect E,(x1) to be a strong function of the
point x; on the perimeter of Cq, certainly for the above cross section example. This means that the left
side of (4.12.6a) is a function of x3 = (X1,y1,Z) and X, = (X2,y2,Z) whereas the right side in our theory is a
function only of z. To remedy this inconsistency, we now have to think of V and W as having very slight
dependence on x; and x, which we generally ignore, but which we must face up to in (4.12.6a). In reality
we have V(x1,X2) and W(x1,x2). This is a manifestation of the fact that in reality ¢ ~ constant and A, ~
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constant on the boundaries (with = and not = ). In the extreme skin effect regime (think a very good
conductor), the left side of (4.12.6a) can be a violent function of x; and x, as in the case of the above
figure, but the left side is always very small, even where it is largest, and its variation can be
accommodated by the right side of (4.12.6a) which is the difference of large-valued functions which vary
only slightly with x5 and xz. So first rewrite (4.12.6a) as

Ez(x1) - Ez(x2) = - 0z V(x1,X2) -jo W(x1,X2) . (4.12.6a)
Backing up another step, we write out of (4.12.4a) for the two perimeter points x; and Xz,

(1/6)J2(x1) = Ez(X1) = - 02012(X1) - joAz12(X1) X1 on perimeter of Cy
(1/0)J2(x2) = Ex(X2) = - 02012(X2) - joAz12(X2) . X2 on perimeter of C; (4.12.4a)

Calling the perimeter distances of the conductors P; and P, we then average each of these equations

around its appropriate perimeter. Apply (1/P1) fc1 ds; to the first equation and (1/P2) fc1 dsz to the

second to get [ ds; is a distance element along the perimeter of C; |,

(1/0)<Jz(x1)>c1 = <Ez(X1) >c1 = - 0z<@12(X1) >c1 - JOo<Az12(X1) >c1
(1/6)<Jz(x2)>c2 = <Ez(X2) >c2 = - 0z<@12(X2) >c2 - jo<Az12(X2) >c2 .

Subtract the second line from the first to get,

[<Ez(xl) >c1 - <Ez(x2) >C2:|
= - 02[<12(X1) >c1 - <Q12(X2) >c2] - jo [<Az12(X1) >c1 - <Az12(X2) >c2 ] -

We now redefine V and W to be the averages appearing in these equations, along with E;; and E,5 :

Ea1(z) =<Ex(x1)>c1 = (1/P1) Jc1dsy Ea(xq)

Ez2(z) =<Ez(x2) >c2 = (1/P2) fcz dsz Ez(x2)

V(z) = <@12(x1) >c1 - <@12(X2) >c2 = <V(X1,X2)>c1,c2
W(z) =<Az12(X1) >c1 - <Az12(X2) >c2 = <W(X1,X2)>c1,c2 (4.12.7)

with this result
[Ez1(2) - Ez2(2)] = - 02 V(2) -jo W(2) . (4.12.8)
Meanwhile, the surface impedances on C; and C; are defined by (see C.2.1) ,

Ez1(x1) = Zsi(x1) i1(2)
Ez2(x2) = Zs2(x2) 12(2) (C.2.1)
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which we average in the same way to obtain
Ee1(2) = Zs112(2) Zer = (1P) Jcdsy Zaa(xa)

EL2(2) = Zaz i2(2) Zez = (P2) [ cadsy Zea(xa) . (4.12.9)

There will be some location on C; where E,1(x1) and thus Zs1(x1) will be maximal (for example on the
walls of the gap in Fig 4.13). Referring to this value as Zs; ,max We can define

P1 = (Zsl/Zsl,max) P1
p2 = (Zs2/ZSZ ,max) P, (4.12.10)

where p; is the effective length of the "active perimeter" of C;. This then provides a crude model for the
symbol p which appears in (2.5.1) and Fig 2.16 which we replicate here,

Fat twinlead Fig 2.16
Now using i(z) = i1(z) = -i2(z) and (4.12.9), rewrite (4.12.8) and (4.12.6b) as

[Zsl + ZsZ] I(Z) = - 6z V(Z) 'j(’) W(Z)
0:W(z) = - j (Ba/®) V(2) (4.12.11)

where the second equation above is the < >¢1,c2 average of (4.12.6b).

Continuing this repair effort, we back up to box (4.12.1) and write

Vi) = a() Clxax) =a) [z Kxaxa) ]

W(x1,X2) = i(2) Le(X1,X2) =i(2) [2;“; Kr(x1,x2)] (4.12.12)

which we average in the same way to get

Vo) =0 & W) =i(2) La

1 1
C (I/Pl) JICI ds1 (I/PZ)fCZ dSZ C'(Xl,Xz) =< C'(Xl,Xz) >Cl,C2

=
o
Il

= (1Py) Jcadsy (1P5) [ cadsy La(xaxz) = <La(x1.X2)>c1,c2 - (4.12.13)
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The "constants" K and Ky, in (4.12.1) are similarly replaced with their <>¢1,c2 averages.

In the discussion below, we shall no longer mention the averaging process, but it should be understood
that for closely spaced conductors the symbols Zs1, Zs1, Le, C', K, Kz, V, W are the perimeter-averaged
values discussed above. For widely spaced conductors, J, is roughly uniform over the conductor cross
sections and perimeters and the averaging process is not needed. The whole subject of averaging is
reviewed in more detail in Appendix S.

Inserting the equations on the first line of (4.12.13) into (4.12.11) we get

(Zs1 +Zs2) i(2) = - 8;V(2) - jo Le i(2)
Le 8 i(z) = - j (Ba*/0) V(2)

which we then rearrange as

02V(z) = - [ Zs1t Zs2t+ joLe] i(2)
821(z) = - [ jBa*/(0Le)] V(2) . (4.12.14)

These are the classical transmission line equations. They are usually written in this form: [ 6/0z = d/dz]

dV(z ) di(z
A~ i) sz—l - _yV(2) (4.12.15)
where
Z = Zs1t Zs2t jole =R +joL // z and R are ohms/m
y = jBa®/(©oLe) =G HoC = joC'. //'y and G are mhos/m (4.12.16)

Note: We have been using bold notation only for vectors, and we now break that guideline by bolding
these complex quantities z and y. Our purpose for this bolding is to distinguish them from Cartesian
coordinates z and y which typically appear in the same problem. In King's books, all complex parameters
are put in bold font, but we do this only for z and y.

The quantities z and y are called the transmission line impedance and admittance. On the right we have
partitioned the expressions for z and y into their real and imaginary parts in terms of four real parameters
R,L,G and C.

Parameters R and L are defined to be the resistance and inductance of the transmission line (per unit
length). When @ = 0, R = R4 = the total DC resistance of both transmission line conductors, but when ®
is large this is no longer true. One can associate this fact with the skin effect which displaces current away
from the conductor's central region

Comparing the right equation in (4.12.15) to (4.11.5), we may immediately interpret the real
parameters C and G as the capacitance and conductance of the transmission line (per unit length) as
discussed in Section 4.11. The fact that G +joC = joC' has been shown in (4.11.14), where C' is the
complex capacitance (per unit length) of the transmission line.

169



Chapter 4: Transmission Line Equations

If one applies O, to either equation in (4.12.15) and then uses the other, one obtains these corresponding
wave equations (but in the ® domain, so they are really Helmholtz equations),

d?V(z) di(z) .
2w V(z)=0 W i(z)=0 . (4.12.17)

We refer to (4.12.15) as the first order transmission line equations, and (4.12.17) as the second order
transmission line equations.

Jumping the gun a bit, if we assume now a traveling-wave z dependence e? (“**2) for both V(z) and i(z),
where k is the wave's (possibly complex) wavenumber, then 0, — -jk and the transmission line equations
(4.12.15) become

-k V(z)=-zi(z) and -iki(z)= -y V(z)
or

-jk=-z1i(z)/V(z) and -ik= -y V(2)/i(z) .
Equating these last two expressions gives

-21(z)/V(z) = -y V(2)/i(z) => z/y = [V(z)/i(z)]2

and we then have,

. z R +joL
Zo =V(2)/i(z) =\/; =1 /G_Jr.]]'(o_C (4.12.18)

where by definition Zo is the characteristic impedance of the transmission line. Obviously Zg is
completely different from z even though both are referred to as an impedance.

Looking at (4.12.16) we see that
joC' = jBa*/(0Le)
SO

LeC' = (Ba/®)? =pala  // using (1.5.1a) (4.12.19)
LeC = pgea = I/de . // using (4.11.9a) that C'/C = ({q/eq) and then (1.1.29)

Recall now from summary box (4.12.1) that

L _V z = L = "
C “qo dmgg & T Ok (4.4.7)
W(z) 1
ke 7T ~ i K (4.10.8) (4.12.1)

Inserting these expressions into (4.12.19) that [Le][C'] = pa&a gives
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(49 Ku] [4nEa/K] = paka

or
Ki=K . (4.12.20)

This is a remarkable connection between our two seemingly unrelated constants K and Ky,

K fc dx1' dy1' a1(x1'y1") In(s21%/s11%) - fc dx2' dyz' 02(x2',y2") In(s22%/512%) (4.4.8)
1 2

K= J‘C dx1' dyi' bi(x1'y1") 11'1(5212/5112) - JIC dxz' dy2' ba(x2',y2") ln(Szzz/Slzz) . (4109)
1 2

Since K involves a peripheral line integral of surface charge densities o; whereas Ky, involves a full cross
sectional area integral of the current densities bj, it seems unlikely these integrals would be equal, but
they are equal.

(c) An example of K=K,

The equality even seems unlikely in a case with symmetric densities on round wires, so let's do a check
using our Section 4.5 example with widely-spaced round wires of unequal diameters. The first thing we
need is a new picture to display the "kinematics" of the Ky, integral (since densities are symmetric, one
should regard this picture as having b much larger than shown relative to a; and ap),

Fig 4.14

As before, we read off the four distances of interest using the law of cosines. The new distances are all
different from before since x1' and x,' are now each integrated over their respective disks instead of the
bounding circles.

5217 =11% + (b-a1)” - 2 r1(b-a1) cos(61)
s112=r1%2+a12 - 211 a3 cos(01)

szzz = r22 + a22 + 2 12 az cos(02)

s122 =122 + (b-az)? + 2 ra(b-az) cos(02) .

The integration rule is still
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2
) . " d0 In (A = Beos) = 2 In[(1/2)(A +~/AZ-B2 )] . (4.5.5)
The first integral is:
2n 2 2n 2 2
_[0 d0; In(s21%) = fo dO1In([r1” + (b-a1)” - 2 r1(b-a1) cos(61)]
A=r1%+ (b-a1)? B = 2ri(b-a;)
A%B? = [1? + (b-a1)? - 4 112(b-a1)* =[r1” - (b-a1)’]® =>+[AZB?=(b-a1)>-11°>0  b>>a
2
=> fo " d01 In(s212) =27 In[(1/2)( 122 + (b-a1)? + (b-a1)?-112) = 2 In[(b-a1)?]
But this integral is the same as before! The s112 integral is obtained from the above with b-a;—aj
2r 2 2
| ) 401 In(s11%) = 2m In(as®)

which is also the same as before. The other two integrals are found from 1— 2. Our integral summary is
then exactly the same as (4.5.6),

2r 2 2
| , 401In(s21%) =2 In[(b-a1)’]
2n 2 2
| , 401 In(s11%) = 2 In(ar”)
2n 2 2
| ) 402 In(s22%) =2m In(az)

| 02" d6, In(s12?) = 2w In[(b-a2)?] . (4.5.6)

We now assume that the current densities b; each have radial symmetry ("widely spaced wires")
b1(r1,01) = ba(r1) (4.12.21)

where b1(r1) is a completely arbitrary function, with the following normalization of (4.7.4),
2
[ a0, [ oal r2dry ba(ry) = 1 - Oal rydry ba(ry) = 1/27 . (4.12.22)

0

We now proceed to calculate the constant Ky,
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2 2
K= f() " do, Jloal ridry b1(r1) 111(5212/5112) - _[0 " d0z radrs bz(l‘z) ln(5222/5122)

2n 2n
foal r1dr1 b1(r1) JIO d61 11’1(5212/8112) - foaz I'2dI‘2b2(1‘2) f() dez 11’1(S222/5122)

2n [ 0a1 rydry ba(rs) [In[(b-a1)?]- In(as)] - [ Oaz radraba(r) [ In[(b-az)?] - In(az?)]

2m [Inf(b-a1)/22%] [ * radra ba(ra) - 2 [Inf(b-a2)?/a2%] [ ** radrz b(r)

[In[(b-a1)?/a1?] - [In[(b-az)?/az?]

(b-a1)?(b-a)?
=In [723—22—]

=K  asobtained in (4.5.7), third last line (4.12.23)

and we have then shown Ky, = K for this particular example. The key fact is that the df integrals appear to
be functions of r; , but the riz terms cancel and so the d6 integrals are independent of r;.

The summary of results on the next page includes a few items not yet derived, as indicated by references.
It seemed good to gather it all in one place.
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(d) Summary of Results

Classical Transmission Line Equations and Parameters (®» domain) (4.12.24)

K = fc dxy' dys' aa(x1'y1) In(sp1%/s112) - [ o, dx2' dy2' aa(x2'y2) In(s22%/512%) (4.4.8)
1 2

Ky = fc dx1' dy1' bi(x1y1") In(s21%/s11%) - ‘[C dxz' dy2' ba(x2'y2") In(s22%/s122) (4.10.9)
1 2

K=Kj real and dimensionless (4.12.20)

dv d

# =-71(z2) (Ez -zy)V(z)=0 z=R+jolL  transmission line equations

di d

lezﬁ = -yV(z) (d—zz -zy)i(z)=0 y =G HoC (4.12.15,16 and 17)

2=7Zs1 +Zs2 +jole (4.12.16) Xn=0le , Xc=1/(0C)

y=joC'=joC+G (4.12.16) G = (04/eq)C (4.11.15)

R =Re(Zs1t+ Zs2) L=Le+ (l/®) Im(Zs1+Zs2) = Le + L3 // from above

Ua

Le= i K (4.10.8) and (4.12.20)

C'=4nEy/K 4.4.7) C'=(&/eq)C (4.11.9a)

C =4neg/K above two equations

G =4nog/K above and (4.4.10) G/C=o04/eqa (4.4.10)

LeC' = pgéa (4.12.19)

LeC = paga = 1/vd? (4.12.19)

zZ R + joL . - -
Zo = \/; =1\ /G_+§E (4.12.18) ik =4lzy = \V(RHoL)(GHoC)  (5.3.6)
Le
Zo (large @) = \/% ~ \/g = (1/4n) K~Jpa/ea = (K/4n) Zn ~ facts above; (4.4.14)

A>>D (4.3.6) assumed transmission line limit where Pgq = 27/A

Ba® = Haga®? - jola0a = 07} (€4 - joa/®) = 0°ta Ea €a =€a-jodo . (1.5.1a)
Bd02 = cozudsd = (wz/vdz) => Bao = (©/vg) (1.5.1b)
F(2)/F(0) = e %% =¢™a% ¢73b2 a=-Im(k) =Re(\[zy) = attenuation

ik=atib=lzy  k=-jatb=-j\[zy b= Re(k) =Im(\/zy) = phase see (5.3.6)
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Comments:

1. In Chapter 2 we computed the surface impedance Zg for a round wire in the case of axially symmetric
current and we found that, for large o,

1 .
Zs(w) = m (1+) (2.4.16)
8 =1/2/opuc = skin depth (2.2.20)
so that

1
Zo(®) = 3=\ /—2“5 1+ Vo . (4.12.25)

Presumably the result will be Zg(®) ~ \/?0 for any conductor cross section shape. Then
L=Le + (l/®) Im(Zs1+ Zs2) = Le + (stuff) 1/\/6 — Le for large ® (4.12.26)
For this reason, the high frequency characteristic impedance Zg can be written as shown in (4.12.24).

2. Conductors have internal inductance L; as well as external inductance Le. In Appendix C.3 (a) we
compute the low frequency internal inductance of a round wire to be L; = W/8n = (/o) * 50 nH/m . Our
Chapter 4 transmission line development makes no mention of L;. This can be traced to Figure 4.11
where only the external magnetic flux is involved. In fact, L; is accounted for in the imaginary part of the
surface impedance Zs . For example, we found that for our round wire situation,

1
Zo(®) =——z +jo - = Rs +joLs // low frequency limit (2.4.12)
and here one sees that Lg = —g; =L;.

3. We have assumed that g4 and pg are real. If not, the usual adjustments can be made in (4.12.24) for the
interpretations of R,L,G and C. See for example (3.3.4) concerning ¢ being replaced by cegs if € has an
imaginary part.

4. Apart from the symmetric cases like the examples of Section 4.5 and 4.6, we do not yet have a way to

compute K and the transmission line parameters since the charge and current distributions o3 and b; are
not known. This matter will be remedied in Chapter 5.
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5. A strip transmission line of width w and separation s with s << w is the simplest example of the above
summary:

E=V/s n=¢gqE = e4V/s g=nw C=q/V =ggqw/s =>K = 4ney/C = 4n(s/w)
SO
C =4neg/K = &g (W/s) K =4 (s/w)
G =4ncs/K = 64 (W/s)
Le = (na/4m) K = Ha (8/W)
Zo = (K Aferer ) 30Q =4n (s/w) (1Afeze1) 30Q = (s/w) (1A[erer ) 37702 (4.12.27)

(e) Time domain equations (telegraph equations)

The results above are all stated in the frequency domain, but it is a simple matter to convert them to the
time domain using jo <> O¢. One then makes these replacements

z = R+joL — Lo +R
y =GHoC - Coe +G
zy = (R+joL)( GHoC) — (R +Le)( G+ Cdy) =LCOZ + (LGHRC)d: + RG . (4.12.28)

Here then are selected equations and their translations to the time domain:

Transmission Line Equations (4.12.14b) : [ coupled first order PDE's]

0V=-zi = 0zV(z,t) = - Loti(z,t) - LR i(z,t)

Oz1=-yV = 0z 1(z,t) =- CoeV(z,t) - CGV(z,t) (4.12.29)
Transmission Line Wave Equations (4.12.15) [ damped wave equations ]

(822 -zy) V(z) =0 — [ 052 -LC 8¢ - (LG+RC)d¢ - RG] V(z,t) =0

(0,2 -2y)i(z)=0 = [8,%-LC 8¢% - (LG+RC)dt - RG] i(z,t) =0 (4.12.30)

If we set the loss parameters R and G both to 0 these equations become

0zV(z,t) = -Loti(z,t) [ 852 - LC 6¢?] V(z,t)=0 [ undamped wave equations]
8z i(z,t) = -CoeV(z,t) [ 822 - LC 0:%]i(zt) =0 // lossless (4.12.31)

At large ® one has L = L (note 1 above) and since (4.12.19) says LoC = pagq = l/de we conclude that
the factor LC appearing in the above wave equations is 1/va® where vq is the dielectric wave velocity.

The various transmission line equations shown above in the time domain are often referred to as
telegraph (telegrapher, telegrapher's) equations. See wiki.
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4.13 Modifications to account for pg # p1 # 1o

These modifications only affect the A, and W(z) part of this chapter, not the first six sections which are
concerned with ¢ and V(z). So changes start with Section 4.7.

If the equality pg = p1 = e assumed in Section 4.7 is broken, the result is that surface magnetization
currents appear on one or both of the conductor surfaces and these cause an alteration of the theory.
Thanks to the "J, Theorem" proven in Appendix B, this alteration can be carried through with a very
minimal impact, as we now show.

In Appendix B conductor magnetization surface currents are studied in some detail. The reader
interested in how the magnetic modification is carried out would do well to read Appendix B at this point.
A reader less interested can accept the Appendix B results and continue here to learn that basically
nothing changes except R and L and parameters like Zy and k which are functions of R and L.

So imagine starting with pg = p1 = p2 and then changing p; and pz to new values. The question is: how

do the various parameters and equations of the theory change? The first modification arises in Section
4.7. As described in Appendix B.6, the modified version of (4.7.2) is this,

™ f o e JBaR
Az1(x) ~n c [Jz1(x") + E Jzm1(X") ] R dx'dy'dz' . R=|x-x| (4.7.2)
1

where J,n1 includes only the surface component of the magnetization current on conductor C; . Section
B.6 shows how this J,n1 adder term in effect adds a certain homogeneous solution to the particular
solution (first term above) of the A, Helmholtz equation such that the A, boundary conditions are duly
satisfied at the magnetic conductor C; boundary. According to (B.1.10), the surface current J,n1 when

M1 K4

expressed in surface rather than volume notation is given by K, = - ( o E ) Hg and thus vanishes

when 1 = g, resulting in the unmodified version of (4.7.2).
We maintain the next two equations of Section 4.7 as is, involving separation of variables,

Jz1(%,y,2) = b1(X,y) 11(2)
A/m? /m?> A (4.7.3)

where 1; is scaled such that
[ dxdybixy)=1. (4.7.4)
Ci1

This i1(2) is still the total conduction current in C;. But we now add two new equations,

J21m(X,¥,2) = b1n(X,y) i1m(Z)
A/m? I/m> A (4.13.1)
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where 11, 1s scaled such that
| . dxdy bua(xy) = 1. (4.13.2)
1

It is understood here that bin(x,y) is a distribution which is restricted to the surface of C1, but we continue
to write it as if it existed at all points in the cross section of C;. The integration in (4.13.2) is of course
meant to include this surface distribution.

We know from (B.1.11) and (B.1.12) that, for an arbitrarily shaped conductor C;, the bound magnetic
current is given by,

i1m(2) =- (ﬁ ; ﬁ Vi) [ 1z = conductor Ci, g = diclectric ] (4.13.3)

and the ratio of this to the total free current is therefore given by,

fim = i1n(2)/ i(2) =- (% ; f ). (4.13.4)

With the above definitions, our modified (4.7.6) becomes

-JBaR
l'll ® { 1 1 1 1 1 I-LO i\l 1 e
Az1(xy,z) = an J.-oo dz'i(z") fCl dx'dy' [ b1(xy") +Ef1m bim(x,y") | R

-JBaR
Hd poo v B ., Ho LS
= [ azie) [ a0 dy [Ihty) + b ) TR (4.13.5)

where notice that pug is now out front in place of pi. This leads us to define a new effective transverse
current density,

] — “’1 [ ) E [
b'1(xy) = Ebl(x )+ a fim bim(x\y")

M1 M1
= — 'v') + _— '
a bi(xLy") + [1 lle]blm(x,y) : (4.13.6)

This new transverse density b'y is still normalized to unity, using (4.7.4) and (4.13.2) above :
[ axdybaey) =5 [ dxdybaey) #0127 dxdybuatey)
C1 Ha C1 Ha C1

b1, Ha
ot B RS T T 4.13.
Ha e (4.13.7)
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How does b'; differ from b;? The difference is that b; does not include a surface current and b'; does.
We can represent equation (4.13.6) in this symbolic graphic manner:

= 1 b + 1-&
o e 1 [ l-ld]

(4.13.6)
Thus, from (4.13.5) and (4.13.6) we have this new version of (4.7.6),
e~ JBaR
Az1(xy,z) = 4n f dz'i(z) f Xy ba(ey) TR (4.7.6)
The differences are that the leading factor is pg instead of p1, and b is replaced by b';.
Moving into Section 4.8 we have this new version of (4.8.1),
Ale(X) = Azl(x) + Az2(x) =
- o~ IBaR o~ IBaR
E J‘-oo dz' i(z') { J.Cl Xm' dyl' b'l(X1’,y1') —R _ J.Cz dX2' dyz' bv2(X2’,Y2') }
(4.8.1)

which is identical to (4.8.1) except b; — b';. Then in the transmission line limit, we get this new version
of (4.9.1),

IJ'd : © 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Az12(X) = 4 i(2) J._OO dz'{ fcl dxa"dya"ba(x1'y1) g7 - fcz dxz2"dy2"b2(x2'y2 )z 1 - (49.1)

From this point onward, all equations are the same apart from b; — b';. Here are some of those equations
after modification:

W(2) = Az12(X1) - Az12(X2) (4.10.1)

:— 1(2) f dz' { f dX]_ dy1 b1(X1 ,y1)R — _[ dXz dY2 bz(Xz ,y2) R12 }
- E i(2) f dz' { f dX1' dys' b'1(x1',}’1')R_21 - fcz dxz' dyz' b'a(x2',y2") R_zz }

W(z) (4.10.3)

_bd 1(z)f dz' { f |l dya baGaya (g R11 R21) f , 4x2 dy2' ba(x2’ ’y2)(R12 R22) b

179



Chapter 4: Transmission Line Equations

R
W@ =@ ([ . &1’ dy2' Daxatyn) In(sznsnn®) - fc dxz' dyz' b'a(x2'y2) In(s22%/5122) }
1 2
(4.10.4)
Ky = fc dx1' dy1' b'a(x1',y1") In(s21%/s11%) - fc dx2' dy2' b'a(x2',y2') In(s222/s12%) (4.10.9)'
1 2

W(z Ug
Le :iJ(le = i K // no change (4.10.8)

Section 4.11 involving non-magnetic currents is unaltered. We then enter Section 4.12. The derivation of
the transmission line equations (4.12.15) is unaffected by the above modifications; the only change is that
the b'; appear in the integral Ky, in place of the b;. The derivation of the fact that K = Ky, ending in
(4.12.20) is also unchanged! This at first seems strange since K has not changed, but we have apparently
altered Ky, by the replacements by — b's. But Ky, is not an evaluation -- it is an integral equation relating
Ky to the b';. In the self-consistent solution, the new functions (distributions) b'; adjust themselves so that
K1 does not change. Ky cannot change because (4.12.20) says it must remain equal to K which is
determined by the electrostatic side of the problem. It is perhaps helpful to look at (4.10.8) which says

Le = Bd K1 . We know that if the dielectric pg value does not change, the external inductance Le of the
47

transmission line cannot change so Ky, stays fixed. Changing p; and/or pp away from the value pg will of
course change the internal inductances of the conductors, and this is duly noted below in terms of surface
impedances. As | is increased, the B field inside conductor C; increases (H stays the same) so the stored
B field increases, and L; increases.

Finally, if we look at the example associated with Fig 4.14, we still find explicitly that Ky= K because
the calculation leading to (4.12.23) is unchanged when b; are replaced with b'i, since the b'; are still
normalized to unity as shown in (4.13.7).

The happy bottom line is that all of summary box (4.12.24) is unchanged except by — b's in the Ky,
integral. The constant K can still be evaluated using the "capacitor problem" of Section 5.5 below and it is
unaffected by conductors having p; # pg.

Having said this, let us now consider what happens to an operating transmission line which starts off with
U1 = U2 = U4 = Ko and we then gradually turn a magic "permeability knob" so that p; gradually increases
from o to some value p3 > pg. That is to say, we gradually cause conductor C; to become magnetic. The
constant K (and therefore Ky, = K) does not change at all. This K is determined by the potential ¢ part of
the problem in Section 4.4 and does not even know about the magnetic modification. Thus, looking at
(4.12.24), C', C, G and L¢ do not change. In particular, Le does not change because we have not altered

g of the dielectric. The following two items shown in box (4.12.24) do change :

R=Re(Zs1 +Zs2) L=Le +(l/0) Im(Zs1 + Zs2)

where Zg; is the surface impedance of conductor C;. The non-Le term in L can be interpreted as the
internal inductance of the conductors. R and L change because Zsi1 changes if we change pg. This is so

because Zg; is always a function of the skin depth 61, and 61 = \/2/((ou161) =9(p1) from (2.2.20). In the

180



Chapter 4: Transmission Line Equations

special case that C; is a round wire of radius a; with an axially symmetric current distribution (such as
the center wire of a coaxial cable), we showed in (2.4.11) that the surface impedance is given by

Hops  berg[\[2(a1/81)] + j beio[\[2(a1/81)]
2ma1(\[2/81) bero[\[2(a1/81)] + j beio'[\[2(a1/61)]

Z1s(®) = (2.4.11)

so certainly this Zg(w) is a function of p; both due to the leading constant and through the five
occurrences of 61. Both the real and imaginary parts of Z;s(®) will change as p; changes, so the
transmission line parameters R and L both change. In the high frequency limit ,

1 .
Z1s(0) = cl(Tal)Sl (1+)) 01 << 16a, (2.4.16)

so now the variation with p; is through the single 8; factor shown. Again, both real and imaginary parts
of Z1s(w) vary with py.

Since R and L change as noted above, the transmission line characteristic impedance will also change,

_ . [RtjeoL [z
Zo =4 /G-I—jcoC _\/; , (K.12) or (4.12.18)

This means, for example, if we drive a semi-infinite transmission line with some fixed voltage V(z), the
driving current i(z) will vary in amplitude and phase as we turn our "permeability knob" for conductor Cj.
This is simply because i(z) = V(z)/Zo. In Chapter 5 we shall encounter the wave number k where

k =-j\zy = -j V(RHjoL)(G+oC) (K.7) or (5.3.6)

and so this parameter will vary as well. Since losses are associated with the imaginary part of k, the
transmission line loss will also be affected by turning this "permeability knob".

So the good news is that the theory of Chapter 4 is easily extended to allow for magnetic conductors and
or dielectric. Once again, the summary box (4.12.24) is unchanged when p; = p2 = pqg is broken except
for the appearance of b'; in the Ky, integral, and except for the fact that Zs; and Zs» change as noted
above, causing changes in R, L and Z. At very high frequency, one will have Zg =+/(Le/C) and in this
case Zg is not altered, see (4.12.26). As noted, k to be introduced below will also be altered, but not at

high frequency where k = -j \/(joL)(joC) = o\|LC =m\(LeC = @/vg.
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Chapter 5: The Transverse Problem

In this Chapter we define a certain "transverse" potential theory problem and then give a prescription for
obtaining K and thus the transmission line parameters C, G and Le. Basically this amounts to computing
the capacitance of a section of transmission line using standard (if obscure) electrostatic methods.
Subsidiary topics involve a certain dipole scaling condition for infinite dielectrics, the equation of energy
conservation for a transmission line, and an interpretation of the terms lossless, low-loss and lossy.

5.1 Separation of ¢

Let @ = p12(x) of Section 4.2. Then in the transmission line limit we found in (4.3.10) that,
¢(x 4m§dq2 ¥ 1 X1 dyr a(X1.y1) gy Cs X2 dyz2  02(X2L.y2) R s - ..
Rewrite the above equation as,

1
o(X,y,2) = nty q(z) ee(x.y) (5.1.1)

(pt(X y) = J‘ ” dZ'{ f Xm' dy1’ (X]_(Xl' y1') L— J‘ dX2' dY2' (lz(Xz' yz') L } (5 1 2)
s o0 Cl s Rl C2 s R2 .

where R; = |x-X1'|, Rz =|x-X2'|, and x is a point in the dielectric. We thus identify ¢ as a dimensionless
"transverse potential" associated with the full potential ¢.

Recall that x; and x» are points on the surfaces of conductors C; and C at the same z. Evaluate (5.1.1) at
X, then at x2 and then subtract to get the right equation below,

1
V(z) = o(x1) - p(x2) = Intq 4z [Pe(X1,y1) - Pe(x2,y2)] .

The left side is just V(z) according to (4.4.1). Recalling now from (4.4.7) that

V) =4 3z K @47)

one concludes that

0e(X1,y1) - Pe(X2,y2) =K. (5.1.3)

The Helmholtz equation for ¢ is given by (1.5.3) for a region including dielectric and conductors,

(V2 + Ba®)o(x.y,2) = - (1/ga) p(xy,2) (15.3) (5.1.4)
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where p(X,y,z) exists on the boundary of the dielectric region (ie, on the conductor surfaces). Inside the
dielectric there is no p so we then have

(V2 + de)(p(x,y,z) =0. // dielectric region (5.1.5)
Inserting (5.1.1) into (5.1.5) yields,
(V2 + Be?) Gz 4(2) 0c(xy) =0
d 4n§d q Pe(X,y
or

1
(Vi + 8,7 + Ba®) Tnig 97 0e(xy) =0 /| Vi =Vap? = V? - 3,°

or
q@)Vi2ee(xy) + 9e(xy) 2°q(z) +Ba® ¢e(x.y) q(z) = 0.

Divide through by ¢«(x,y) q(z) to get

V2 oe(x,y) .\ 02> 4(2)
Pe(X,y) q(2)

+ Ba® =0
or

Viloe(xy) N 32> q(2)
Pe(X,y) q(z)

- de (5.1.6)

which has the general form,
[h(xy)] + g(z) =-Ba® .

The only way this can be true for all x,y,z in a region is if g(z) = some constant, which call - k,,,z. Then,

2 2
5zq(;1§2) = -k’ W:‘ Ba® +ko” . (5.1.7)

We can rewrite these equations as
[Ve? + (Ba® - ko*)] 9e(x.y) = 0 (5.1.8)
[ 02 +ke?]1q(2) =0 . (5.1.9)
According to Fact (3.8.8) and (5.1.1), for a particular z value, we expect @+(X,y) to have some constant
value K3 on the entire perimeter of a cross section of conductor C;, and some other constant value K, on

the entire perimeter of a cross section of conductor C,, These facts act as boundary conditions for (5.1.7),

9e(C1) =Ky 9e(C2) =Kz K; -K2=K (5.1.10)
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so that (5.1.3) is realized.
Equation (5.1.9) has the following solution

q(z) = q(0) e I<¢* =>  q(z) = q(0) eI (¥ 7Fe?) (5.1.11)
and we find that q(z) has the form of a wave traveling down the transmission line with wavenumber k.

The reader of Chapter 2 or of Appendix D will recognize this as the form assumed for the electric field in
(2.1.1) or (D.1.1) where it was assumed as an ansatz without much a priori justification. For example,

E(1,0,zt) = &3 “**=) g(r,0) . (D.1.1)

When the dust settles below, for a low-loss transmission line we shall in fact end up with ky, = k so that
(D.1.1) has the same traveling wave form as (5.1.11).

5.2 Separation of A,

Let Az = Az12(x) of Section 4.8. Then in the transmission line limit we found in (4.9.1) that
— E T ® 1 ] 1 ] ) L 1 1 ] ) L
AL(x) =7 i(2) f_oo dz{ [ o, 6y baxalya) R ] o, B2 dy2'baely2) R ) (49D)

Rewrite the above equation as,
Ha .
AZ(XaYaZ) = E I(Z) Azt(X7Y) (521)

£ 1 1
Azt(X,y) = f—oo dZ'{ fc1 dxyq' dy1' bl(xl',yl’) R_l_ '[Cz dxy' d}/2' bz(sz,yz') R_2 } (5.2.2)

where R1 = |x-x1'|, R2 = [x-X2'|, and x is a point in the dielectric. We thus identify A+ as a dimensionless
"transverse vector potential" associated with the full vector potential A,.

Recall that x; and x» are points on the surfaces of conductors C; and C at the same z. Evaluate (5.2.1) at
X, then at x2 and then subtract to get the right equation below,

W(2) = Ax(x2) - Asx2) = g5 i2) [Aze(x1y1) - Aze(xy2)] -

The left side is just W(z) according to (4.10.1). Recalling now

W(z Ug Ud .
Le :iJ(ZSl = an Ko => W(z) = an i(z) Ky, (4.10.8)

we conclude that
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Azt(X1,¥1) - Aze(x2,y2) =K.
But (4.12.20) says Ky, = K, so write this last as

Aze(X1t) - Aze(x2e) = K. (5.2.3)
The Helmbholtz equation for A, is given by (1.5.4) for a region including dielectric and conductors,

(V2 + Ba®)Az(x.y.2) = - Tamz" palie - (1.5.4) (5:2.4)

The J; are currents inside the conductors. Although there is small conduction current in the dielectric, it
has been absorbed into de as shown in (1.3.21) in the time domain with the use of the King gauge. If we
take our region of interest to be the dielectric alone, we then have

(V2 + de)Az(x,y,z) =0 . // dielectric region (5.2.5)
Inserting (5.2.1) into (5.2.5) yields,
2 2, Ha .
(VE+Ba") 4 1(2) Aze(x,y) =0
or

Mg .
(V2 +02% + Ba®) 4 i(2) Age(x,y) =0

or
(2)Ve2Aze(%y) + Aze(%,Y)02%1(2) + Ba’® Aze(x,y) i(z) =0.

Now divide through by A,+(X,y) i(z) to get

Vet Asel(xy) - 0:7i2)
T Azxy) im P

=0 (5.2.6)

which has the general form,
[h(xy)] + g(2) =-Ba” -

The only way this can be true for all x,y,z in a region is if g(z) = some constant, which call ka®. Then,

0.2 i Vi Age(x,
i(z) 2 t £(X,y) :_de +kA2 ‘ (5.2.7)

iz "~k Aze(xy)

We can rewrite these equations as
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[ Ve? + (Ba® - ka?)] Aze(x,y) =0 (5.2.8)
[ 022 +ka%li(z)=0 . (5.2.9)

According to Fact (3.8.9) and (5.2.1), for a particular z value, we expect A,+(X,y) to have some constant
value W1 on the entire perimeter of a cross section of conductor C;, and some other constant value Wy
on the entire perimeter of a cross section of conductor C,, These facts act as boundary conditions for
(5.2.7). Since a potential has an arbitrary zero, we shall set

Aze(C1) =W, Aze(C2) =Wy Wi - W2 =K (5.2.10)
so that (5.2.3) is realized.
The second equation (5.2.9) has the following solution

i(z) = i(0) ¢ 3%az = i(zt) =i(0) &3 (®t7*az) (5.2.11)
and we find that i(z) has the form of a wave traveling down the transmission line with wavenumber ka.

Comparing (5.2.11) with (5.1.11), it would certainly seem odd if q(z) and i(z) had the form of traveling
waves with different wavenumbers kg, # ka. We will formally show in the next section that k, = ka.

5.3 Development of the Transverse Problem
(a) ky = ka and the transverse equations

The longitudinal equations from the previous two sections are these:

[02° +ke? 1q(z)=0 (5.1.9)

[0:° +ka® 1i(2)=0 . (5.2.9)
But,

00532) = G A2) 0elx) 5.11)

Ax(xy.2) = o i(2) Aze(xy) - (5.2.1)
Therefore,

[ 822 + ke 10(xy,2) =0
[ 022 +ka® 1 Az(x,y,2) =0 . (5.3.1)

Recall that x5 and xp are points on the surfaces of conductors C; and C,. If we write equations (5.3.1)
first at x; and then at x5 and then subtract, we get longitudinal equations for V(z) and W(z),
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[02% +ky” 1V(2)=0 11 V(2) = 9(x1) - 9(x2)
[ 022 +kaZ TW(z)=0 1/ W(z) = Az(x1) - Az(X2)
[ 022 +ka? 1i(z)=0 . // since W(z) = Le i(z) from (4.10.8) (5.3.2)

where we have used the definitions V(z) and W(z) from (4.4.1) and (4.10.1). For low frequencies, we
average (5.3.1) over the conductor perimeters and then V(z) and W(z) are as in (4.12.7).

Recall now the second order transmission line equations of (4.12.17),

d*V(z) d®i(z) :
iz W V(z)=0 Z W i(z)=0 . (4.12.17) (5.3.3)

Comparison of (5.3.2) with (5.3.3) shows that
ke’ = ka® = k® =-zy =- (R+oL)(G+aoC) (5.3.4)
which fulfills the expectation earlier that we should have kg, = ka. Recall the longitudinal behaviors,

q(z) = q(0) ¢~ I*e* =>  qz) = q(0) ¢ ") (5.1.11)
i(z) = i(0) e~ 3*a® = i(zt) =i(0) eI (*tFa=) (5.2.11)

We claim that the appropriate root for our +2 directed wave is given by

k =ko = ka=-j\[zy =

ik=4zy = [(R+joL)(G+jwC) =a+jb. //aandb are real and imag parts of jk (5.3.5)

For example, near ® = 0 we get jk = \/RG > 0 and then e %=~ exp( -\/RG z) which shows that the
wave decays as z increases to the right. The other rootk =+ J\/z_y would be appropriate for a wave going

in the -Z direction.

All quantities like q(z),i(z),V(z),W(z) have this longitudinal behavior for a wave traveling in the +z
direction,

F(z) = F(0) e 3% =F(0)e™2% ¢ b2 ik=a+jb=1/zy = \|(R+joL)(G+juC)

= F(0) exp[ Azy ]
= F(0) exp[ -\ (R+joL)(G+joC) z]

as Re(\/gf ) = Re[\/ (R+joL)(G+HjwoC) ] = - Im(k) // attenuation per distance of F(z)
b=1ImA/zy) = Im[\/(R+joL)(GHwC)] = Re(k). // phase of F(z) (5.3.6)

Now recall from box (4.12.24) that
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z=Zs+ije=Zs+ij—;K Zs=7Zs1 +7Zs2
y =joC'=jo 4n&a/K (5.3.7)
SO
K2 =2y =-[Zs +joge K]jo 4ncaK
= Zs jo 4nEa/K + 0 pata
=-jo Zs 4nEJ/K + Pa . // see (1.5.1a) (5.3.8)
Therefore,
j0 Zs 47
(Ba® -k =jo Zs 4nEq /K = J—% d jo Zs C'
= jo Zs(Ea/eq) C =jo (1/eq) [eq + 0d/jo] ZsC = [jo + og/eq] ZsC . (5.3.9)

The transverse equations (5.1.8) and (5.2.8) and boundary conditions (5.1.10) and (5.2.10) may now be
summarized:

[VeZ + (Ba®kD)] pe(xy) =0 0e(C1) =K1 ¢e(C2) =Kz Ki-Ko=K (5.3.10)
[VZ+ Bk Aze(xy) =0 Agze(C1) = Wi Age(C2) =Wz Wi-W2=K (5.3.11)
jo Zs 41ty

where (Ba®- k%) = <

For a lossless transmission line, Zs = 0 and then k = B4 = ©/v4q where vq4 is the dielectric light speed.
(b) The scaling boundary condition on @(x)

There exists another boundary condition on ¢+ in the case that the dielectric extends transversely to
infinity. Recall (5.1.2) for p(x,y) = 0(X),

0 1 1
Pe(x) = .[_Oo dz'{ fcl dx1'dy1' aa(x1'y1") Ry~ sz dxz' dy2' 02(x2',y2") R, } (5.1.2)
R12 = (X-xl’)2 + (y-yl')2 + (z-z')2 = 512 + (z-Z')2 s12 = (X-xl')2 + (y-yl')2 (4.2.1)
Ro2 = (x-x2)2 + (y-y2)2 + (z-2)? =822+ (z-2)? s22= (xx2")2 + (y-y2) .

If we take the point x transversely far away from the conductors, the following drawing shows the
distances R; and R, which appear in the above integration,
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Fig 5.1

During the transverse integration fC dx;' dyi', distance Ry does not vary much and can be replaced
1

with a distance from x to the "center" of conductor C; without changing the integral significantly. The
same can be said for Ro. We shall refer to these "center points" as x; and xo (this is a new and different
use for these variable names). In this case, we obtain

© 1 1
Pe(x) = f B dz' Ry f o dx1'dy1' o1(x1'y1") "R, f C2 dxz' dy2' o2(x2'y2") }

1
P s+ (z2)

© 1 1 © 1
_ f_oodz' (R RS f_oo dz (\/s12+ = =) (5.3.12)

where we have used the fact (4.1.3) that the transverse charge densities are normalized to unity. The dz'
integral was done in (4.4.5) and equals ln(szz/slz), so then

0e(x) = In(s2%/s1%)  // limiting form as point x = (x,y) moves far from the conductors

(5.3.13)
s1? = (xx1)? + (y-y1)?
527 = (x-x2)% + (y-y2)? .

Whatever the exact solution ¢¢(x) might be, in the limit discussed above one must obtain @¢(x) =
In(s2?/s1%). Of course as one continues to move x away to infinity, s1 ~ s and then @¢(x) = In(1) = 0.
Basically (5.3.13) is a boundary condition on the "scale" of the solution @¢(x). If someone were to
propose a possible solution g¢(x) = 2.6 In(s2%/s1?) for some conductor geometry, we could instantly rule
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out that solution since it violates the boundary condition (5.3.13). The scale of @t is restricted in this
manner because the charge distributions a4 appearing in (5.3.12) are normalized to unity.

By the exact same argument presented above, we have
Aze(x) = In(s2%/s1%)  // limiting form as point x = (x,y) moves far from the conductors (5.3.14)
We shall give an interpretation of these limiting forms in Section 5.4 (b) below.
(c) Energy Conservation in a Transmission Line
In (5.3.6) we have seen how the voltage or current in a transmission line has z dependence e”3** where
k=-j\zy . (5.3.6)
Now consider the following quantities:

uc= (172) C V(z)zdz = capacitative energy stored in dz
ur = (1/2) Li(z)?dz = inductive energy stored in dz (as in (C.3.5))

pc = Cdz V(z) 0+V(z) =rate of increase of the C stored energy
pr. = Ldz i(z) O+ i(z) = rate of increase of the L stored energy

pPr = i(z)szz = rate of energy burned in R
pe = V(Z)zGdZ = rate of energy burned in G /I'V(z) ig(z) = V(2) [ V(z) Gdz |

p(z) = energy/sec entering a little transmission line segment of length dz located at z
p(z+dz) = energy/sec leaving the segment at z + dz (5.3.15)

The power balance equation for the transmission line segment of length dz is then
p(z)-p(z+dz) = power flow decrease over dz =pc + pr. + pr + Pe
= Cdz V(z) eV(z) + Ldz i(z) 64 i(z) + i(2)*Rdz + V(2)?Gdz (5.3.16)
so that
- 02p(z) = CV(2) 6eV(2) + L i(z) 64 i(z) + i(z)*R+ V(2)°G
> - 8zp(2) = 8¢ [ (1/2)CV(2)* + (1/2)Li(2)? ] + i(z)?R+ V(2)2G
Since p(z) = V(z)i(z), one finds

- 02[V(zt) i(z,1)] = B¢ (112)CV(z,t)® + (1/2)Li(z,t)? ] + i(z,t)*R+ V(z,t)*G (5.3.17)
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where we now show both space and time arguments. One can regard the above as a statement of energy
conservation (per unit time) at location z on an infinite transmission line. For a lossless line, R = G = 0,
and it is for such a line that the above equation appears in Haus and Melcher as Sec 14.2 Eq. (19).

Verification check "trust, but verify" “doveryai, no proveryai"

Moving the time derivative back in one gets,
- 05[V(z,t) i(z,1)] = [ CV(z,t) 8eV(z,t) + L i(z,t) 8¢ i(z,t) ] + i(z,t)*R+ V(z,t)?G .
e—jkz

Since both V and i have the z dependence ~23kz g

, Vihas dependence e 0,
2ik [V(z,t) i(z,)] = [ CV(zt) 8eV(z,t) + Li(zt) ¢ i(zt) ] + i(z,t)*R+ V(z,t)*G .
Taking 0+ — jo and writing V(z,0) =V and i(z,w) = I, the above becomes in the ® domain,
2jk [VI] = jo[ CV2 + LI? ]+ I?R+ V3G
=12 (R +joL) + V3G +joC) =P z+ V?y.
Dividing both sides by VI gives
2ik=1/V)z+ (/) y .
But (4.12.18) says that V/I=Z¢ = \/%, so we find,
2ik=(V)z+ (VD) y = \ylz z + \2ly y =[zy +[zy =2A[zy
and we finally arrive at
-k =[zy
which matches the equation stated at the start of this subsection.
5.4 The Low-Loss Approximation
(a) Transverse Equations for a Low-Loss transmission line
For low loss, we take the conductor surface impedance Zs = 0. Recall from (5.3.8) that

k? =Bg? - jo Zs 4nE/K . (5.3.8)

Our definition of a "low-loss" transmission line is one for which k? ~ B4 and in this case the longitudinal
wave number k as shown in (5.1.11) and (5.2.11) is k = B4. So our low-loss condition is (using (1.5.1a)
for Ba®),
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| jo Zs AnEg/K| << |Bd’| Ba® = 0%ta &a
or
Zs| << (1/4m) | Ba*/(0Ea)] K = (1/41) o | Ba*/(0%Eq)| K = (1/47) opa K
SO
Zs| << (1/47) opa K . (5.4.1)

For a symmetric-environment round wire of radius a we found in (2.4.16) that for large o,
1 .
Zs = Sim)s (1) for § << 4a 82 = 2/ouo . (2.4.16)

For a transmission line of two round conductors either coaxial or widely spaced we can estimate

1 11 1 1 11 1

Zs=Zs1 *Zs2 = Gops U (57 73,) = sams ()3 2= 3,
so that (5.4.1) says [assuming 1L = pq |

1
o1 Zs = Grays \2 << (/4m)oopK = (1/4r) (2/6%)K
1 1
=> G A2 << (1/4m) 2/8%) K = 3 \2 << (11K
=> (8/a) << KA[2 (5.4.2)

We saw in the Example of Section 4.6 that K = 2 In(ay/a;) for a coaxial cable, (4.6.4). Even for a very

large radius ratio of 100 this would be K =2 In(100) = 9.2. For a more typical ratio of perhaps 5, K = 3.2.
Then our inequality above says roughly

1_ 1 1
(8/a) << 2 a - (o tay)

which is then our ball-park estimate for applicability of the "low-loss transmission line" condition at large
®. We showed in Section 2.5 (and Section 4.11) how Zs can be modified for some other geometry.
Basically this says we are in the low-loss limit if the skin depth is much smaller than the wire's transverse
dimensions. That is to say, a transmission line has "low loss" when ® is larger than some value. The E
and B fields in the dielectric wing along at v4 between the conductors, with little penetration into either
conductor, and thus little ohmic loss in those conductors.

On the other hand, for small ® we found in (2.4.12) that

Zs(0w) =Rge +jo _g—n = Rg +jolLg // low frequency limit (2.4.12)
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where Rge = 1/(cna2) for a round wire. If we use this as an estimate for Zs of each conductor in the case
of general conductors, then

A

Ze=Ze1 +Zs2 =Rac1 +Raca +2j0 4= =

{7 = RDC + 2J(D

and then (5.4.1) says
| Zs| =] Rpc + 2j®‘§; | << (1/4m) op K

or
(Rpe)® + (W4n)’w? << (w4n)’w? K?

Rpe << (W4m) o \[Kz—l .

For a given low frequency o, Rpc must be smaller than the above for the transmission line to be low-loss.

Low o Example 1: Belden 8281 coaxial cable is treated as a case study in Appendix R. There it is
shown that Rpc =.036 ohm/m and K = 3.7. The inequality above then requires that

® >> (4n/p) Rpe 1AJKZ1 =107 * 036/ 3.56 ~10° =  f>>16KHz
So in the low frequency range, as long as f'is not too low, one can treat 8281 cable as low-loss.

Low o Example 2: At the end of Section 4.5 we considered a power transmission line with two 1"
diameter conductors separated by 1 meter. It was found that K = 17.5 and that Rgqc = .02Q per thousand
feet for each conductor which is 0.66 x 107 ochms/m for each conductor. Thus we need

® >> (4n/p) Rpe 1AJKZ-1 =107 * 2% 0.66x 107%] /17.47=76 =  £>>12Hz

Such power lines are normally operated at 50 or 60Hz so are in the low loss regime.

If we assume this low-loss limit is in effect, then
Ba- k%= jo Zs 4nEg/K = 0
and our transverse equations (5.3.10) and (5.3.11) become 2D Laplace equations,

Vi2oexy)=0  ¢«(C1) =K1 ¢e(Ca) =Kz  Ki-Ka=K (5.4.3)
VelAze(xy) =0 Age(C1) =Wi1 Age(C2) =Wz  Wi-W2=K (5.4.4)

As commented earlier, the parallelism between ¢ and Az« should not be surprising in light of Section 1.3
(b) where it was noted that A and ¢ are components of the same relativistic 4-vector.
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(b) The scaling boundary condition (5.3.13) revisited
First, a quick review.

In 3D the potential (SI units) of a point charge q located at x; is ¢(x) = (q/4ne|x-x1|) = q/(4meRy).
In 2D the potential of a point charge q located at x; is ¢(x) = -(q/2ne) In|x-x1| = -(q/2me) Insy .

The 3D ¢(x) is the solution of —VZ((p) =(q/e) 5 (x-x1) as shown in (H.1.4) and as proven in Appendix H.
The quantity 1/4nR; is the 3D free-space propagator of the 3D Laplace equation. It is the Green's function
of the equation -VZg(x|x1) =8 (x-x1) .

The 2D ¢(x) is the solution of —VZZD((p) =(q/e) d (2) (x-x1) as shown in (I.1.4) and as proven in Appendix
I. The quantity -2wlns; is the 2D free-space propagator of the 2D Laplace equation. It is the Green's
function of the equation -VZ5pg(x|x1) = & ? (x-x).

With this brief review, we now examine a 2D cross section view of the transmission line of Fig 5.1 at a
scale that makes the two conductors appear very small and very close together, and at the same time we
imagine more elaborate cross section shapes. The dielectric is assumed non-conducting, so &g = €4. The
three points indicated by the three dots on the right all lie in the plane of paper; this is just a 2D drawing
and x = (x,y).

(far away)
_ X

q located at x;

-q located at x5

Fig 5.2

The dots on the left indicate the "center of charge" for each conductor and these dots appear also on the
right. The claim is that when x is very far away, the variation in s; as it moves over the perimeter of the
conductor C; cross section is so small that we can replace s; with a distance to the center of charge of C;
and similarly for Ra. Thus, on the right we end up with the 2D potential of two point charges which form
a 2D electric dipole. Using the results just quoted in the above review, we find that

o(x) =91(x) + Q2(x) = -(q/2neq)In|x-X1| -(-q/27mEq)In[x-X2| = -(q/2meq) Ins1+(q/2neg) Insz

= (q/2meq) In(sz/s1) = (q/4meg)In(sz?/s1?) .
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Recalling for &g = &4 that

1
P(X.Y,2) = 7o A2 0e(x.y) (5.1.1)

we find that
ee(x,y) = In(s2%/s1%) . // for r far away

Thus we have an alternate derivation and 2D dipole interpretation of our earlier "scaling boundary
condition" (5.3.13).

5.5 The Capacitor Problem: How to Find K

We have now boiled down the computation of transmission line parameters (in the transmission line limit
and in the low-loss limit) to the problem of computing the capacitance of a section of transmission line.
Here we assume the dielectric is non-conducting so & = € and we don't have to worry about the distinction

between charge densities qc and s as discussed in (4.11.6).

Solving the capacitor problem using @

A standard approach to a general 2D electrostatics capacitor problem is as follows. Start with
Vap2(x,y) = 0 ¢(C1) - (C2) =V =voltage between conductors (5.5.1)

where we now (arbitrarily) use notation V2D2 in place of Vtz.

Since the dielectric presumably fills the region between the conductors, the dielectric is the official
"region" of a Green's function problem. For a unit positive point charge placed at some location (x',y') in
the dielectric region we can then formally (!) solve this 2D Green's function problem,

- Vznzg(x,y|x’,y') = 3(x-x")o(y-y") g(x,y|x,y") =0 for (x,y) on both C; and Cy
g(x,y|x,y") =0 for (x,y) =0 (if appropriate) . (5.5.2)

Here g(x,y|x',y') is specific to our geometry; it is not the 2D free-space Green's function - In(1/R)/2n
shown in (I.1.4). The free-space solution has only the lower boundary condition stated above. We assume
now that this Green's function problem has been solved, either analytically, approximately, or
numerically, so that g(x,y|x',y") is known (example coming in Chapter 6).

In very general notation, if a region contains some sources ¢(xX) and if the potential ¢ is prescribed on the
entire closed boundary surrounding the region by a function f, then the solution to (5.5.1) is given in
Stakgold notation as (1.5.11) (which we derive in the lines following (1.5.11) for both Laplace and
Helmholtz equations),
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0(x)= J & dx' gxx) g(x) — [ o dSe () Peng(x[E) // Stakgold (6.81) . (15.11)

where o represents the closed boundary of the region of interest, dSg is an integration over this boundary,
and Ogng(x|C) is the derivative of the Green's function in a direction locally normal to the boundary
surface. In potential theory, this type of problem is known as "the Dirichlet Problem". In our case the
boundary consists of C1, Cz2 and the Great Circle at co. Stakgold deals in an arbitrary number of spatial

dimensions, but we have only 2 dimensions here, so dS¢ is a line integral around the boundary. A picture
is in order, showing a cross section of the transmission line,

" Great Circle ™
V=V; -V,
£ Vi=e(Cy) V.
A V2= 0(C2)
q ds'
n -q

_________________________________ ’ Fig 5.3

We know that on the great circle ¢ = 0, so there will be no contribution from that part of the Dirichlet
boundary. What we do not know are Vi and V, which are the constant potentials on C; and Ca. If it

happened that the picture had mirror symmetry in a plane separating the two conductors, we would know
that V1 = V/2 and V, = -V/2, but in the general case we don't know Vi and V, a priori. For the moment,
we leave them as to-be-determined quantities.

In our application of (1.5.11) there are no charges ¢(x) in the dielectric region. We put one there
temporarily to obtain the Green's function, but it is now gone. Thus (1.5.11) reads,

o(x.y) = — $er ds' f(C1) Bag(xyixy) — Pz ds' f(C2) Bnglxylx'y) - $ e ds' f(o0) dng(x.y[x'y)
=~ $e1ds' V1 ag(xylxy) — ez ds' Vo dng(xylx.y) — $ e ds' (0) ng(x.yIx"y")
= V1 $e1 ds' Bng(xylxy) — Va Pea ds' dng(x.ylx.y) }.

=V; Fi1(x,y) + V2F2(xy) (5.5.3)
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where the Fi(x,y) are determined by doing the line integrals for a given geometry. If y = y1(x) describes
a piece of the C; perimeter, then

ds' =~/dx + dy"? =+[1 + 0 ya(x) dx' (5.54)

which gives a candidate ds' for doing the line integral over that piece of the perimeter.
Once ¢(x,y) is known, one can compute the normal electric field E,, at the conductor surfaces,

En(X) = - On1¢(x) =-V1 [0n1F1(X)] - V2 [On1F2(x)] = V1 G11(x) + V2 G12(x) xon Cy
En(X) = - 0n2¢(X) =-V1 [0n2F1(X)] - V2 [On2F2(X)] = V1 G21(X) + V2 G22(X) . x on C
(5.5.5)

Since the conductors are different, the resulting four functions Gij will in general be different. For
example, we are taking normal derivatives of the F; at different points in space on different (1D) surfaces.

Fig 5.3 is meant to represent the 2D cross section of a 3D transmission line, and in the following the
symbol n refers to the true surface charge density in Cou/m?. We compute n using (1.1.47) assuming E =

0 inside the conductor,

n1(X,y) = €aEn(X,y) =€4V1 G11(X) + €4V2 G12(x) xonC;
n2(X,y) = €aBn(X,y) =€4V1 G21(x) +€4V2 G22(x) xon Cz (5.5.6)

where &4 is for the dielectric. One can then integrate over the boundaries of the conductors to get the total
charges q1 and gz residing on the conductors (per unit length),

Q1= fﬁm ds'ni(xy") = eqViHi1 +&aV2H22

qz2 = fﬁcz ds'n2(xy") = €4ViH21 +e4V2H22 (5.5.7)

where the H; 5 are now four constants which were computed in the above process. Since it turns out that
H12 = Hz;1 as shown below, one can ignore Hz1, G21(x), and On2F1(x) in the above set of calculations.

We now define some new constants c; 3 = egH; 5 and write the above as

g1 =c11V1 t+c12V2
q2=c21V1+c22Va . (5.5.8)

Comment: The coefficients c; 5 are dimensionally capacitance, but they are a little strange. If we start off
with the conductors holding charges qi1 and q'2 and then ground C, to the great circle (thin wire, Vo= 0),
and then measure V; relative to the great circle, we find that Vi = qi/c11 and q2 = ¢21 V1. So c11 is the
capacitance of C; in the presence of a grounded C; (which is not the same as the capacitance of C; in
isolation). And cz1 determines how much charge qz is "induced" onto C, by the presence of charged Cj.
Smythe (p 37) and Oughstun (p 23) refer to the c; 4 both as "coefficients of capacitance" and "coefficients
of induction". This should be distinguished from the notion of conductors C; and C, each having a "self-
capacitance" (each in isolation) and having a "mutual capacitance" ( to be called C below).

197



Chapter 5: The Transverse Problem

Writing the above pair of equations in matrix notation,

q c11 €12 \( V1
(QZ): (021 szj(Vz) or q=cV . (5.5.9)
The c; 5 are all known because they were computed above. Then invert to get
Vi) (s S12)(q1) ~
(V2) _(521 S22 qz2 or V=sq (5.5.10)

where matrix s = ¢ is called the "mutual elastance" matrix by Smythe (p 36), and the "coefficients of
potential" by Oughstun (p 21). Both authors deal with an arbitrary number of conductors.

The reader will not be surprised to learn that in general c;5 = c5;1 and s;5 = s43 so the matrices ¢ and
s are in fact symmetric matrices. Smythe shows this on pages 36-37 based on what he calls "Green's
Reciprocation Theorem" on page 34 (George Green once again!). This theorem can be a lifesaver in
certain electrostatic problems.

Now our problem as shown in Fig 5.3 is to compute the potential @ when C; has charge q and C; has

charge -q. We then finally arrive at the appropriate values of V1 and V2 for our problem, which we said
above were "to be determined”". Here they are:

Vl)_(su S12)(q)_ (sn 812)(1)
(VZ B S21 S22 -q -4 S21 S22 -1 (5511)
so that

V1 =q(s11-812)
V2 =q (s21- 522)

V=Vi -Va=q[s11t 822 - 2812] . // s12 = s21 as noted above (5.5.12)
Finally, here is the computed (inverse) capacitance of our transmission line section,

1/C=V/q =s11 +522-2812.
But we know how to invert a simple 2x2 matrix (T = transpose, cof = cofactor, det(c) =|c| )

s=c¢t= cof(cT)/det(c)

so that
S11 S C22 -C
s=( - 12) :( 22 12)/det(c). (5.5.13)
S21 S22 -C21 Ci11
Then
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c11t+ C22 t2¢
1/C =s11 + 522 - 2512 = (Caz + 11 +2¢c12)/det(c) = ——22——32

C11C22 - C12
SO
C11C22 - 0122
= o1t Can T 2010 (5.5.14)
Oughstun page 27 equation (27) verifies this result,
cl1C2 — Ci
C = (27)
C11 + G + 2C12
for the mutual capacitance of a two conductor system.
Once C is known, K can be found from (4.12.24),
c11tca2 +2¢
K = 4neq/C = dmeq ——2—32 (5.5.15)

C11C22 - C12

Thus, we have solved "The Capacitor Problem" to obtain K for the transmission line. The other line
parameters are then given as in (4.12.24),

Ha

G =4nog/K Le= K.

o
a

Statement of the capacitor problem in terms of Ot
To show that our capacitor problem is the same as (5.4.3), we first quote the capacitor problem (5.5.1),
Vo g(x,y) =0 ¢(C1) - 9(C2) =V . (55.1)

Then use (5.1.1) that ¢(x,y,z) = %%82 0t(x,y) to get

Vaotpe(sy) =0 9 o (- 22 gco=v
or
Var2ge(xy) =0 9¢ (C1) - pe(Cz) = V22
’ q(2)
or
Va2 oe(x,y) =0 0(C1) - p£(C2) =K

which is (5.4.3). In the last step we used (4.4.7) that V(z) = %%sl K. The potentials V1 and V3 are related

to constants K3 and K, by

VA VA
V1=%§[—g K1 sz%t—g K> (5.5.16)
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Solution of the capacitor problem using Ot

Here we just repeat the above analysis, showing how things differ. We leave out the words. The main

qz)

differences are that the V; are replaced by K;j and the factor 4y APpears on the lines where n; are

computed. As before, K1 and K3 are initially unknown, but we find them in the end:
9e(x.y) =~ Per ds' Ka Gag(ylxly) — Pz d' Kz Gag(xylxly)

= Ki F1(x,y) + KoFa(x,y)

z
En(X,y) = - On19 =- %{3 On10t(X,y) = %t—gl { K1 G11(x) + Ko G12(x) } xon Cy
z
En(X,y) = - 0On19 =- %;82 On20t(X,y) = Ejl%gl {K1 G21(x) + Ko G22(x) } x on C»,
n1(x,y) = €En(x,y) = 9£_2 - €K1 Gua(x) + QLZ . £K2 G12(x) x on C1
na(x,y) = eEn(x,y) %Ll €Kiy Gai1(x) + Qﬁ_l aKz G22(x) x on C»

g‘Z’ V4
qL = fﬁc1 ds'mi(xLy") = Aneq [eaK1H11 + eaKoH22] = e [c11V1+c12V2 ]

9‘ Z! V4
qz2 = fﬁcz ds'na(xLy") = Ameq [eaK1H21 + eaK2H22] = %{3 [c21V1 +c22V2 ]

di ) q(z) (c11 C12 Kl) _q(2)
(qz)_ 4718:1(021 022)(K2 or q_47I8dCK :
(Klj _47’[8d (811 512)(q1) K_47158d

K2 ) q(z) \s21 s22/\q2 of “q2) %4

(Kl) :ﬁ (511 812)( q(z) ) e (811 512)( 1 )
K2 q(z) \'s21 s22./\-q(z) TEd | §p1 22/ \ -1
K]_ = 47[8d (511- 812)

K2 = 4meq (s21- 522)

K=Kj - Ky =4neq [s11F S22 - 2512]
SO

c11t C22 +2¢
K = dneq ——22—=32 (5.5.17)
C11C22 - C12

which is the same as (5.5.15).
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For arbitrary conductor shapes, carrying out the Green's function program just outlined is quite difficult
and usually requires expanding the Green's function in some complete set of eigenfunctions and then
making various approximations. Perhaps conformal mapping is helpful in certain cases. Our main point is
that the capacitor problem is a well-posed problem and has a solution value K. Numerical evaluations are
always possible as noted earlier.

If the conductors are round, the problem can be solved exactly as we shall show in Chapter 6.
5.6 What happens if low-loss is not assumed?

We have seen how one can analyze a transmission line in the low-loss regime by studying the associated
capacitor problem. The reader is reminded that the term low-loss does not mean no-loss! A low-loss
transmission line does have losses, meaning it has attenuation. This attenuation is associated with the
imaginary part of k as shown in (5.3.6) and as examined in Appendix Q. A specific attenuation example is
presented in Appendix R for Belden 8281 cable, see Fig R.7. However, if losses are so great that the low-
loss regime does not apply (the transmission line is "lossy"), the situation becomes much more
complicated, and we address that case in a cursory manner below. Basically one cannot consider the
transverse Helmholtz equation as a Laplace equation, so one cannot solve things in the capacitor
electrostatics sense, and our rote formulas for K such as those derived in Chapter 6 (like K = 2 In (az/a;)
for a coaxial cable) are no longer correct. It turns out that in the high-loss regime K must be determined
by solving an unpleasant eigenvalue problem. One might argue that the high-loss regime is of little
practical interest since practical transmission lines are always designed to be low-loss transmission lines.

Let's go back to our equation before the low-loss assumption that Zs~ 0,

2 j(D Zs 47I<:d
[V + K ] oe(x,y) =0 0e(C1) =K/2 0e(C2) =-K/72 . (5.3.10)

j0 Zs 47
This is now a Helmholtz equation with Helmholtz pararnetelszTgd , whereas with Zs = 0 we had the

simpler Laplace Equation. Treating Zs as some given value # 0, one could go ahead and find the Green's
function for the above equation and it would be a function of K since K appears in the Helmholtz

. 1 .
parameter. Call this Helmholtz Green's function gg(x,y|x',y"). We still have ¢ = F&d q(z) ot being the full

potential from which the electric field is obtained as E,, = -On¢ [ recall that transverse A components are
zero so this is consistent with E = - grad ¢ - 0tA ]. The solution of the above PDE system then starts off

e(x.y) = — Pe1 ds' Ki Ongr(ylxy) — Pez ds' Ko Ongr(x.yIx'y")

= Kj Fi(x,y,K) + KoFa(x,y,K) . (5.6.1)

From this point on, every function and constant acquires and argument K: Gj;3(x,K), H;5(K) and then
ci3(K). We end up then with

201



Chapter 5: The Transverse Problem

c11(K) + c22(K) + 2¢12(K)
c11(K)e22(K) - [c12(K)]?

K =4ne (5.6.2)

The new feature is that K appears on both sides of the last equation. This probably-complicated equation
then has to be solved for K, and sometimes this is referred to as "an eigenvalue problem" for K. For
example, if Zg is very small but non-zero, one would expect the solution for K to be slightly different
from the value obtained with Zs = 0 and one could perhaps approach the problem using perturbation
theory where the Helmholtz parameter is a "smallness parameter".

Recall that
k% =4’ - jo Zs 4nEq /K (5.3.8)

where now K is the "eigenvalue" of our solution above. If Zs is very small but not zero, we end up then
with

k:Bd—A

where A is a small complex number. The longitudinal transmission line behavior of all z-dependent
functions like ¢, Az¢, q, V, W, E, B is then given by (5.1.11),

q(z,t) = q(z,t) = q(0) &3 k=) = §(0) eI (@t~ [Pa-Al=)

— q(O) ej (ot-[Bg-Re(4)]z) e—Im(A) z

The real part of A causes a shift in the wavenumber k so the wave no longer propagates with the normal
dielectric wavenumber Bq4. Since v = w/k, one finds that the wave is "slowed down" due to the drag effect
of the non-zero surface impedance of the conductors. The imaginary part of A then causes an exponential
decay of the wave magnitude due to ohmic losses at the conductor surface. In our Chapter 2 analysis of
the round wire we found that in general Zs is itself complex, so computation of A is a somewhat
complicated problem which we shall not attempt here (but see Appendix Q).

The problem of lossy transmission lines is usually approached using E and B fields, rather than potentials
¢ and A, and the analysis is then similar to the way waveguides in general are treated. Due to the skin
effect, the E and B fields penetrate a distance ~d into the conductor surfaces and this results in ohmic
losses and a "drag" on the propagating wave. In this approach, one ends up again with an eigenvalue
problem to solve, not directly for K but for some other related parameter like k.

In the 12-page Section 4.5 of his book (p 106), Matick studies a lossy-transmission line in the simplest
possible case which is a strip geometry whose gap S is small compared to the width, and whose metal
strips are much thicker than the skin depth 3. His parameter v is related to our parameter k by y = jk, and
his longitudinal direction is x instead of our z. He ends up with a transcendental "eigenvalue equation” (4-

66) for v, but if loss is very small, he can approximately solve for y with these results [ g = ® \/ Ud€d |
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Im(y) = Pa(1+8/2S) Re(y) = Ba (8/29) // Matick (4-75,76,77) p 115
which with y = jk we translate to

Im(k) = - Re(y) = - Ba (8/25)
Re(k) = Im(y) = Ba(1+0/2S)

k = Ba(1+8/2S) -j Pa (8/2S) = PBa [1 + (8/2S) +i(8/2S)]
SO
A = Ba[(8/28) +j(8/29)] .

Thus, for such a thick strip transmission line, the longitudinal dependence of all functions has this form,

q(Z,t) — ej (ot-[Bg-Re (A) 1Z) e—Im(A) z

_ o) (0t-[Ba+8/2512) -(8/29)z

which shows the exponential loss factor and an increased wavenumber +6/2S which corresponds to a
decreased wavelength A and a decreased wave velocity v = w/k = oA/2x = fA, the "drag effect".

Matick has an erratum in this section which is a bit confusing, so we repair it right here. His equation
(4-50) p 110 should read (in his notation)

2 azEx azEx A 62E:z azEZ A . 2 A A :
VEE=(32 + 32 )8 T (52 32 )2 = (jous - o”pe)(Exk + E.2) Matick (4-50)
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Chapter 6: Two Cylindrical Conductors
6.1 A candidate transverse potential @+

In Sections 5.3 (b) and 5.4 (b) we showed that the transverse potential of a 2-conductor balanced
transmission line must have this form when viewed from far away,

0e(x) = ln(szz/slz) // limiting form as point x = (x,y) moves far from the conductors

(5.3.13)
512 = (x-x1)® + (y-y1)? =[x - xqf?
s2° = (xx2)? + (y-y2)? =[x - x2f (6.1.1)

where the points x; and x; are the "center of charge" points for the C; and C, conductor cross sections.

Suppose now we take, as a candidate dimensionless transverse potential ¢, exactly the above limiting
expression. Our candidate @y is

oe(x) = In(s2%/s1?) . for all values of r, close and far (6.1.2)
where we specify the center of charge points to be x; = (d,0) and x5, = (-d,0).

Certainly this meets the limiting form boundary condition (5.3.13)! We know also that this potential is a
valid solution of the 2D Laplace equation, since In(s1) and In(sz) are each valid solutions. This fact was
shown at the start of Section 5.4 (b). Since -2nlns; is the 2D free-space propagator, it follows that

-2mlns; is a solution of szn((p) = (0 away from the point where s; = 0, and then so is Ins;. Then by
superposition, 2Ins; - 2Ins; is also a valid solution, and thus so is In(s2%/s1?). Thus, 0+ is a valid candidate
for a lossless transmission line since @+ satisfies the 2D Laplace equation according to (5.4.3),

V2 0e(%y) =0 9e(C1) =Ki 0:(C2) =Kz K;-K> =K. (5.4.3)

The question then becomes: what are the surfaces C; in 2D space on which this candidate @ is a
constant? Such surfaces can then serve as possible conductor cross sections for a transmission line.

6.2 Ancient Greece circa 230 BC
Apollonius of Perga (262BC-190BC) [ like Joe of Chicago | was a pretty smart guy as wiki explains. He
did astronomy and therefore he did geometry. Besides giving conic sections their current names and

writing eight books about them, he learned about what are now called the Apollonian Circles. These
circles form the "level surfaces" for 2D bipolar (orthogonal) coordinates as shown in this picture,
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20—

X1

-

_l/

http://en.wikipedia.org/wiki/Apollonian_circles

Fig 6.1

When this picture is rotated around its vertical axis, the blue level circles become toroids and one then
arrives at 3D toroidal coordinates, but that is another story. Our interest is in the 2D blue circles.

It turns out, as the reader may suspect, that the blue circles have the following simple property,
So/S1 = constant ,
which we shall prove in a moment. Calling this constant ¢ we get
sa/sy=¢ B => In(s2/s1) = -B . (6.2.1)

Thus, since @e(x) = In(s2%/s1%) = 2 In(s2/s1), the blue circles are candidate equipotential surfaces for our
potential @(x).

To show that sp/s; =e™® describes a circle, consider:
IX-Xa| / [x-X1| =¢~®
|X-X2|2 =¢ 2B |X-X1|2
(x-x2)* + (y-y2)® = *® [(xx0)® + (y-y2)* ] -

This equation has the following form
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A% +y®)+Bx+Cy+D=0 A=(1-e"2B)
or

2 2 _

x“+y“+tox+Py+y=0.

One can then "complete the squares” to obtain the equation of a circle of radius r centered at (X¢,yc) ,

(x-xe)* + (v -ye)® = 1*
where 2Xe=0  -2yc =B X2+ yc2 1= Y.
For the particular locations of x; and x, shown in Fig 6.1 one has
X1=-d Xzzd Y1:Y2:0
517 = (x+d)? +y? 52 = (x-d)? + y?
SO
Safsy=e B => sifsp=e® = B2 =517 => (B2)sx2= (eB2) s =
(€B2) [x2 - 2dx + d% + y?] = (7B/2) [x® + 2dx + d® + y?]
shB (x2+d%+y?) + chB(-2dx) = 0 // shB = (eB-¢"®)/2, chB = (¢®+e™®)/2
(x®+d2+y?) + cothB (-2dx) = 0
x? - 2d x cothB + y2 =-d?
x? - 2d x cothB + d?coth?B + y? = -d*+ d?coth?B // complete the square

(x- dcothB)2 + y2 = d2csch’B .

We conclude that our blue equipotential circles have this simple form

2

(x-X)2+y? =1 Xe = dcothB r=|d cschB| .

Using d = 5, here is a plot of these circles for 10 different B values:

(6.2.2)

(6.2.3)

(6.2.4)

(6.2.5)
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restart,; with(plots):with(plottools):

¥ = d¥*coth(B):
r := d*csch(B):
d := b5:
Bvals := [-3,-2,-1.5,-1,-.75,.75,1,1.5,2,3]:H := nops(Bvals):
for n from 1 to H do
B := Bvals[n];
c¢[n] := circle([xc,0],r);
od:
display(seq(c[n],n=1..H),color=blue,scaling = constrained,thickness=2);

Fig 6.2

Since xc = d cothB, the right side circles have B > 0 while the left side have B < 0. The value B = 0
corresponds to the vertical y axis, while B = +o0 correspond to the two focal points at d ==+ 5.

6.3 Back to the Future: Calculation of K

Let Cz to be a circle on the right side, so that B, > 0.
For C; select a second circle from either the left or the right, so By can have either sign.

If one selects C; from the left side, one has a two-wire transmission line(dielectric = gray),

Fig 6.3

If one selects C, from the right, one has an off-center coaxial transmission line,
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Fig 6.4

Fig 6.3 shows a transmission line cross section where the two conductors are round wires with unequal
radii a; and ap. Treated as a 2D capacitor, one's intuition at least suggests that the two focal points might
be the conductor "centers of charge". The gray dielectric is of course outside the two conductors and it is
possible to select a point in the dielectric that is "far away" from both conductors, so our limiting form
discussion applies and the points x1 and xz should be the centers of charge.

Figure 6.4 shows an off-center coaxial transmission line for which the dielectric is the region between the
two black circles. In this case, one cannot take a point in the dielectric that is "far away" from both
conductors, so the limiting form discussion does not apply. Here it appears that both conductors have the
same center of charge located at xo.

We shall now determine K and therefore the 2D capacitance C = 4ne/K for the above cases.

Let 61 = sign(B1). Then from (6.1.2) and (6.2.1),

0e(x) = In(s2%/51%) =2 In(s2/s1)

pe(C1) =2 In(sa/s1)|"t =-2B4
0e(C2) =2 In(sz/s1)|%? =-2B; . (6.3.1)

Recall from (5.1.3) that @+(C1) - 9+(C2) = K. Therefore,
K=2(B2-B1) =2(|B2|-01[Ba). (6.3.2)
Knowing K, one knows C, G and L, for the transmission line from box (4.12.24).

We must now do some slightly painful algebra. First, we know from (6.2.5) that

> IB1| = sh™*(d/az)
> [Ba|=sh™}(d/ay) . (6.3.3)

a; = d |cschBy]| => (d/a1) = sh(|B1|)
az = d |cschBy| => (d/az) = sh(|B2|)

The separation of the centers of the two round wires is b, where, again using (6.2.5),

b = [Xc2 - Xc1| =|d cothBj - dcothB1| =d |cothB; - cothB4| . (6.3.4)
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From (6.3.2) one has
ch(K/2) = ch [[Bz| -01/B1]]

= ch|B;| ch|B1| - 61 sh|B2| sh|Bj]|

=+/1+sh’B24[1+sh’B; - 1 sh|B,| sh|By]

=/ 1+(d/az)® \[1+(d/a1)® - 01 (d/az) (d/a1) . (6.3.5)
Meanwhile,
b= d|cothB; - cothB;| =|d [ chBy/shB; - chB1/shB1] | = |d [ ch|B2|/sh|B2| - 61ch|B1|/sh|B1]] |

=|d [ch|Bz| sh|B1| - 61 ch[B1]| sh|Bz| ] / sh|B1| sh|Bz]| |

=| d W1+(d/az)? (d/ay) - o1 \[1+(d/a1)? (d/az) ]/ (d/az) (d/ay) |
= | [’\' 1+(d/a2) (l/al) - 01 '\’ 1+(d/31) (l/az) ] / (1/&2) (1/&1) |
= | [az\[1+(d/a2)? - 61 a1 \[1+(d/a1)? 1] . (6.3.6)

Square this to get

b? = a”[1+(d/az)?] +a1®[1+(d/a1)?] - 2012182\ 1+ (d/az)® A[ 1+ (d/a1)®
SO

2 crazan| 1+ (d/az)” A1+ (d/a1)® = az’[1+(d/az)?] + ar’[1+(d/a1)?] - b
=a?+d?+a 2 +d?-b? = ai?+a,® +2d%-b2.

The purpose of doing all this work is to obtain the following expression for the radical product,

N1+ (daz)? A1+ (d/ag)® = (ar® +a2” +2d% - b?) / (2 o12122 ) . (6.3.7)

Install this into expression (6.3.5) above for ch(K/2) to get

ch(K/2) =[1+(d/az)? A/ 1+(d/a1)® - o1 (d/az) (d/a1)
= (a1% + ax? +2d? - b%) / (2 612122 ) - 2d%/ (261a2a1)

= (a1% + a2® - b?) / (20122a1) = o1 (1/2) (a1% + a2% - b?)/(az2z)
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=01 (12) [ (as/az) + (afa1) - (b*/azaz) ] (6.3.8)
and the focal distance d has vanished from the ch(K/2) expression. Therefore
K=2ch™ {061 (1/2) [ (ar/az) + (az/a1) - (b*/azaz) ] } . (6.3.9)
Notice that the result is symmetric under a; < az .

We now distinguish our two cases of interest. For the unequal twin-lead type transmission line of Fig 6.3
we know that B; < 0 since the Cj circle is on the left, so o1 = sign(B1) =- 1 and then

K=2ch™ {(1/2) [ (b*/a1az) - (a1/az) - (az/a1)] } // Fig 6.3 (6.3.10)

which is an amazingly simple result. Recall from (4.4.16) that

Zo= (K Al€re1) 30Q (4.4.16)
so then
Zo =ch™?® {A2)[ (bz/alaz) - (a1/ag) - (as/a1)] } (1/’\/8re1 )60 Q. (6.3.11)

If the wires have diameters d; = 2a; and d> = 2a, this becomes

Zo =ch™ { (1/2) [ (4b%/d1dy) - (d1/d2) - (d2/d1)] } (1/\/8re1 ) 60 Q. (6.3.12)
For verification, we quote again from Reference RDE page 29-23,

N. Balanced 2-wire—unequal diameters
Al(%; at?
I o 1

Zy = (60/€"?) cosh™'N

N = }{(4D%/d,dy) — (d,/dy) — (dy/d))]

where our b is their D.

On the other hand, if we are interested in an off-center coaxial transmission line as in Fig 6.4, we select
C; from the right side of Fig 6.2 and then o1 = sign(B;) = +1 and we find
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K= 2ch™ {(172) [ (ar/az) + (az/a1) - (b*/a1az) ] } // Fig 6.4 (6.3.13)
Zo =ch™ { (1/2) [ (as/az) + (azfay) - (b¥/a1a2) } (1Afeze1 ) 60 Q (6.3.14)
Zo =ch™ { (1/2) [ (d1/d2) + (d2/dy) - (4b%/d1d2) } (1Aferer ) 60 Q (6.3.15)

For verification, we quote again from Reference RDE page 29-24,

[J. Eccentric line

|

D

|

Z, = (60/€"?) cosh™'U

U = 1 (Did) + (/D) — (4c2/dD)]

where we may take d = our d; and D = our dz and ¢ = our b = the center-line separation.

One more case of interest falls out from this analysis. Taking B; = 0 we have

Fig 6.5
which is a transmission line consisting of a round wire above an infinite flat plane. This is a tricky limit of

(6.3.10) where both a;— and b—oo, so we ignore (6.3.10) and work from scratch. Since B; = 0 one
finds from (6.3.2) that

K=2B, . (6.3.16)

But from (6.2.5),
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X2 = d coth B> = d chBy/shBs>

az = d/Sh(Bz) . (6.3.17)
Therefore
Xa2c/az = chBy => By =ch}(xzc/a2) = K=2ch }(xac/az) . (6.3.18)

Here x5 is the distance from the wire center line to the ground plane. Calling this h and the wire radius a,
we get the following extremely simple and exact result,

K = 2 ch™}(h/a) // wire radius a with center h over ground plane, exact
Zo= (K Alerer ) 30Q =ch (h/a) (1A/ere1 ) 60 Q (6.3.19)

where one must have h > a to keep the wire from touching the ground plane. Using the identity ch™'x =
In(x + \/xz-l ) for x > 1, one can write the above as

K=2In[ (h/a) +1 /(h/a)z—l ] // wire radius a with center h over ground plane, exact

Zo= In[ (Wa) +~[(Wa)%1] (1Aferer ) 60 Q . (6.3.20)

For h >> a this becomes ("thin wire")

K =2 In(2h/a) // wire radius a center h over ground plane, h>>a
Zo= In(2h/a) (1A/ere1 ) 60 Q . (6.3.21)

For verification, we found the following web offering (where log means In ),

The characteristic impedance of a wire over a ground plane:

1{— h hy*
u ]ﬂ;

- 2nve * ’(E] -1 21 \JE ﬂg(zh) (a<<h)

N

http://members3.jcom.home.ne.jp/zakii/tline_e/14_microstripline_z0.htm

which results are derived using an image method to handle the ground plane.
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For some odd reason, our usual RDE source on this subject only gives the result for h >> a . Taking d to
be the wire diameter,

Zo= In(4h/d) (1A[eze1 ) 60 Q
= In(10) log (4h/d) (1Afeze1 ) 60 Q

~ log (4h/d) (1A[ere1 ) 138.2 Q (6.3.22)

which then compare to RDE p 29-22 ,

G. Single wire, near ground

d -
|

Ford << h

Zy = (138/€'?) log,o(4h/d)

Reader Exercise: Given ¢(x) = 1n(522/s12), compute E = -V¢ , compute E, = E o fi as the normal
electric field at the surface of C,, compute n = g4E, as the charge density on Cz, then using that n, find

the "center of charge" <x> = chz ds x n(x) / fcz ds n(x) ] and see if <x> = d. Decide whether or not it

is worth while learning how to work in bipolar coordinates to carry out this exercise. [ The solution to
this exercise appears in the author's Bipolar Coordinates document, see References. See also Section 6.5
below. ]
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6.4 Summary of Line Parameter Results

Summary for Transmission Line with Two Round Conductors (6.4.1)
Identities: ch™x = In(x +/x%1),x>1 ch™'x = In(2x), x >> 1
1,1 b a b
ch 1[§(E+B)] =In b>a>0 (4.6.6)
40!

Line Properties: C =4neqa/K, G=4n04/K, Le = i K  &4,04,uq for dielectric  (4.12.24)

dielectric is gray

K=2ch™? {(72)[ (bz/alaz) - (a1/a2) - (ag/a1)] }

a; = radii b = center separation
Special case a; =ap = a: K=2ch™?[ (b2/2a2) -1] (twin-lead)
Special case b >> aj,a: K=4 ln(b/@ )
Special case b >> aj;=ay=a: K =4 In(b/a)

K=2ch™ {(112)[ (as/ag) + (azfa1) - (b*/a122) ] }
a; = radii b = center separation
K = 21In(az/a;) (centered coaxial)

K= 2 ch™Y(h/a)=2In[ (Wa) ++/(h/a)-1 ]
a = radius h = height of center over plane
Special case h >> a: K =2 In(2h/a) (thin wire)
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6.5. The Proximity Effect for a Transmission Line made of Two Round Wires

This effect is discussed qualitatively in Appendix P in terms of eddy currents, and we quote the following
Figure P.13,

right side
more

left side has
less current

wire #2

wire #1

Bext
Fig 6.6

The effect is that for ®>0 the current density J, is not uniform in the conductor cross sections but is larger
on the side of each conductor which faces the other conductor.

In this section we shall compute J, over the wire cross section and perimeter to get a quantitative result.

(a) The surface charge density and its moments

On either of the conductors shown above there is some surface charge density n(6) which has moments
called N, and 1, in Appendix D. Using the electro-quasi-static model for a transmission line, one can
analyze the transmission line as if it were an electrostatics capacitor problem: the two cylinders form a
capacitor (per unit length). If one assumes a potential V between the conductors, one can solve the
Laplace equation to get the potential ¢ in the dielectric between the conductors, which ¢ will be constant
on the surface of either conductor. From this one may compute the electric field in the dielectric, and from
the electric field just above the conductor surfaces one can compute n(0). This calculation is carried out in
our (downloadable) document Bipolar Coordinates and the Two-Cylinder Capacitor from which we
quote results below. Each cylinder of the transmission line is characterized by a certain value of B as
shown in Fig 6.2. In Bipolar B is called & which is one of the bipolar coordinates (§,u). The angle 0 is
measured as indicated in this figure taken from Bipolar, which happens to show the two cylinders having
the same radius:

"N. ’-—_
X,
(X.y) 5 r NXY)
0 -d d 0
Xc Xe
— 7~ Bipolar (7.1)  Fig 6.7
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Notice that the two bipolar "focal points" are at x = +d, while the radii of the left and right cylinders we
shall call a; and az. In Bipolar these parameters d, a3, a, are called a, Ry, Ro.

Comment: It is shown in Bipolar Section 10 (d) that the "center of charge" for the surface charge
distribution n(0) is in fact the focal point for each conductor.

Here is the more general picture where the cylinders have different radii. The right cylinder has bipolar
coordinate & > 0 and the left has &; <0

&2>0
&1<0 + =
Vi ‘i Vo
conductor Cy q g — -q
¥ conductor C,
+1 ]

Bipolar (10.2) Fig 6.8

The angular surface charge densities on the conductors are found to be (Cou/m),

_q __Ish&]
M@= 7 ché;+cos
_ 9 _Ish&f :
n2(82.0) = - 5 chéz+cos0 Bipolar (10.28) (6.5.1)
where q is
\Y% .
q=2meq E-t Bipolar (10.15) (6.5.2)

and &4 is for the dielectric between the conductors. Here q is the charge per unit length in z on the left

conductor so has dimensions Cou/m. The surface charge density n; is normalized so fnl(e)dé) = q so the

dimensions of n; are Cou/m. The true charge density is n1(0) = n1(0)/a; Cou/m?.

The capacitance per unit length is then
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C=q/V = 21tz—:dL . dim(eq) = farad/m Bipolar (10.16) (6.5.3)
a E2-&1

This is in agreement with (6.3.2) which says K = 2(B2-B1) = 2(&2-&1) and (4.12.24) that C = 4neg/K .

Notice that for fixed q the charge distribution on each conductor is independent of the & value of the other
conductor. Thus, if the battery in Fig 6.8 is disconnected (to maintain a constant q), n1(&1,0) does not

change if &, is varied.

Using (D.1.5b) the moments of the surface charge distribution n1(&1,0) are computed in Bipolar Appendix
A and are found to be,

n= Np/No =(-1)® ¢” ™82l Bipolar (A.12) (6.5.4)
n

Using (D.1.5a) one then finds,

n1(£1,0) = (q/2m)[ 1 +2 § D)™ e™ 82! cos(mh) ] . Bipolar (A.13) (6.5.5)

m=1
and in Bipolar Appendix A it is verified that this series sums to the expression in (6.5.1).

For small &; (closely spaced) there are many significant partial waves in the sum. At 8 = 0 the partial
waves tend to cancel due to the alternating signs of the terms due to (-1)™, whereas at 0 = ©t the terms
reinforce. As expected, the charge density peaks on the side of the conductor facing the other conductor.
Here are plots of the charge distribution n1(&1,0) (6.5.1) for various values of &; and for fixed q (q/2n=1):

B.
5.
n;(£1.0).
d-
2.
) s
. __{F”_--//
e
077750 40 6D 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

thetadeg
Bipolar (10.40) Fig 6.9
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And here are some equations of interest ( also stated in Bipolar (11.3)),

a; = - d/sh&; // radius of left circle (6.3.3)
ag = d/sh&, // radius of right circle (6.3.3)
b =d (coth&; - coth&;) // distance between center lines (6.3.4) (6.5.6)

and the inverse equations,

d = (1/2b) \[b? - (az+a1)? 0% - (ag-a1)?
£ = -sh™! (d/ay)
E2= sh™'(d/a) . Bipolar (11.10) (6.5.7)

The first equation of the second set determines the bipolar focal distance d from the two cylinder radii a;
and ap and the distance b between their center lines. For a; = a, = a this says d =(1/2 )’\/bz—4a2 .

(b) The Proximity Effect
Appendix D computes the E fields inside a round wire of radius a in terms of the surface charge moments

Nm under the assumption that a wave el (otkz) 4o traveling down the wire. We first remind the reader of
the parameters involved. From (D.2.2),

p?=p?-k (D.2.2)
where

B=ed34 \[2/8) =(j-1)/ 6 =334 [opc (2.2.30)

k = -\zy = -j V(RHjoL)(GHoC) . (5.3.5)

(6.5.8)

Here B is the wavenumber in the conductor medium shown in (1.5.1c), while k is a low-loss effective
wavenumber for the transmission line wave having the form e? (“*™*2)  Although k is a free parameter in

Appendix D, it is forced equal to —j\/z_y in Chapter 5 where the Helmholtz equation is separated into

longitudinal and transverse parts. This identification k = —j\/z_y is established only for high frequencies
(= low-loss), but can be assumed approximately true at lower frequencies. This subject is discussed in
detail in Section D.11 (a), and the high and low ® limits of k are obtained in Appendix Q.

Now, since n(0) is real and an even function of 6 for our two-cylinder transmission line, M-, = Nm and
from (D.10.4a) the longitudinal electric field E,(r,0) is shown to be (fy, a few lines below),

Ex(r,0) = (1/4) B (wa) (B/K) [ fo(r) +2 Zm=1 fum(r) Nm cos(mO) ] . (D.10.4a)
where B = (Eg/eq) CV Rge =[ 1+ (04/eq)/jo | CV (l/cmaz) . (6.5.9)
Using (6.5.4) for the ny, and multiplying overall by ¢ to get J, = 6E,, one finds

12(1,0) = (1/4) 6 B (wa) (B/K) [ fo(r) +2 Zm=t™ (D™ e™ 32! £(r) cos(mB) | . (6.5.10)
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The leading factors we combine into a function F(®) so that,

12(1,0) = F(®) [ for) +2 Zm=t” (D)™™ 52! £(r) cos(mb) ] (6.5.11)
where
F(0) = (1/4) 6 B (wa) (P'k) B2 =p? - k? B=eI34 (\[2/5)
Jn(X) Jn(X)

0= o 60 ~ Ta (0 Xx=Br Xa=Pa . (6.5.12)

J2(1,0) is the longitudinal current density in the left round conductor (the one with &; < 0) and just the fact

that it is not constant in 6 and r shows that we have a proximity effect as illustrated in Fig 6.6 above. We
refer to this current density J, as being "asymmetric" as opposed to "uniform".

For large ® we know (see below (D.2.2)) that k= g0 and | k/f | << 1so p'= B = eI3n/4 (\/E /6). In the
following plots, we shall assume this large ® regime, and shall set F(w) = 1 to produce normalized plots.

(c) Plots of the Proximity and Skin Effects

First, it is helpful to have a plot showing the conductors for various values of £ so one can get a feel for
how "fat" the cylinders are relative to their separation distance (same as Fig 6.2),

75 =75

Bipolar (2.5) Fig 6.10
In Maple code we first enter all the expressions of interest:

J,=(6.5.11) B= (6.58) fu=(65.12) mu=(654) x=Pr xa=pa
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restart; alias({(J=Besseld,I=I, j=sqrt(-1));

J’ulr-
Jz = F*( £{0) + 2*S5umf{etai{m)*fi{m)*cos({m*theta) m=1..H) )
o
Jz=F {042 Z i) flm) cosm &)
m=1
beta := exp(j*3*Pi/fa) * sqrt(?) / delta;
1 1
[-Lelif) 2
p= -
f:i=m ->J{m,x)/T(m+1,xa) - Ji{m,x)/T{m-1,xa);
Jiem, 2 Jiem, %)
J=m— -
Jim+ 1, xa) Im—-1, xa)
eta := m -> (-1)"m*exp{-m*abs(xil));
- 1
m :=m—)(—1)me( m‘ﬁ_, |:]
x := beta*r: xa := beta%*a:

Next, specific parameters are entered (xil =&; =-1 and 6/a=1/10),

H := 10: # number of terms in sum
F := 1: #f normalize plot

xil = -1.00: # label for left cylinder
a = 10: #f wire radius

delta := 1: #f skin depth

The first plot is of |J.(r,0)| where the axes are r and 0 :

plot3d{abs(evalf((J=z))),r = 0..a,theta = 0..2*%Pi, axes = boxed):

a EE 1]
123 42

4 B¢
theta 5 B10 8

Fig 6.11

This shows the general peaking of |J.(r,0)| at 6 = = (see Fig 6.7) , but the plot we really want to see is
|Jz(1,0)| displayed over the cross section of the round wire:
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r = sqrt(X"2+Y"2}):
theta := arctan(¥Y,-X): # note that X = -r*cos(theta) for left wire
plot3d(abs(evalf(Jz)) , X = -a..a,Y = -sqrt(a”2-X"2)..sqrt(a"2-X"2), axes = boxed,

grid = [20,20]);

0

|Jz| Distribution in left round wire fora= 10,6 =1 and & =- 1.00 Fig 6.12
Observations:
e The skin effect for |J,| appropriate to 6/a = 1/10 is seen in the cross section. The "bottom" of the plot is
flat at value 0 and indicates no current in the central conductor region -- all current is in the sheath of
thickness =~ 1 just inside the wire radius a = 10.
e The distribution is strongly peaked on the side of the conductor facing the other conductor; this is the
proximity effect (currents in opposite directions), though some authors include the skin effect as part of
the proximity effect.

e Using the formula given in (P.10.7),

E(J.%)
R =Rac m’z , (P.10.7)

one can compute the effective wire resistance R > Rqc using (6.5.11) for J,. The high and low ® limits of
fm and J, = oE appearing in Appendix D.10 and D.11 simplify this task.

We now present a few such plots for different values of 6 and &;. First, for 8/a=1/10 and &; =-3 :

221



Chapter 6: Transmission Lines with Two Cylindrical Conductors

|Jz| Distribution in left round wire fora= 10,8 =1 and &; =- 3.00 Fig 6.13

Here, for two equal-radius round wires of &= -3 and &= 3, the wires are "far apart" (see Fig 6.10 above).
The proximity effect is still present as shown in the lower left picture (larger at x = 10 than at x = -10),
but the effect is small. On the other hand, the skin effect is still strongly in evidence, and again the entire
current is in a sheath just inside r = a = 10 of thickness about 6 = 1 unit.

Next is an example with 6/a=1/2 and &3 =-1 :

5

5 ]

4 4';

3 3

SEaes 2 2_
! ]

10 1 _:

|Jz| Distribution in left round wire fora= 10,8 =15 and &; =- 1.00 Fig 6.14

In the central drawing we are looking into the bowl of the distribution from above. Since 6/a = 1/2 now,
the skin effect is much less pronounced: J, is no longer 0 in the central region as shown on the right.
There is only a shallow "lip" around the bowl edge suggesting some skin effect. On the other hand, the
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proximity effect is still strong since for & = -1 and &, = 1 the wires are fairly close together as shown in
Fig 6.10. For such wires, using (6.5.6),

lesch&i| lesch(-1)| __esch(l) 1
cothéz-cothE;  coth(1)-coth(-1) 2 coth(1) ~ 2cosh(1)

alb=a;/b = = 0.324

==> b/a =3.08 and Db/(2a)=1.54

so the ratio of wire center separation to wire diameter is about 1.5 (which agrees with ruler measurements
made on Fig 6.10 above). The two conductors touch when this ratio drops to 1.0.

In the next plot, we have a = 10 and 6 = 1, but now we plot the value of |J| at r = a going around the
perimeter of the conductor for a set of different &; values:

r := a: N := 30: unassign('thetar’, 'xil"});
plot{[seq{abs{evalf(Jz)) ,xil = [-0.25,-0.5,-.75,-1,-1.5,-31)]1,theta =
0..2%Pi, color=red);

167
144
129

104

Fig 6.15

These plots of |J,| bear a strong resemblance to the surface charge density plots shown above in Fig 6.9
for the same set of &; values. It is shown in (D.10.15) that in the extreme skin effect regime one has

12(1,0) = - (jo) (B/Bao) e (1+3) (z-a) /3 () large ® (D.10.15) (6.5.13)

a
r

so we are not surprised to see that J(r,0) tracks n(0) in this manner. In the following section, we derive
the above tracking relationship directly from div E=0 .
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(d) The relationship between J.(a,0) and n(0) obtained from div E =0

Here, assuming the skin effect regime and making a few assumptions, we obtain (6.5.13) directly from the
div E = 0 equation and the two Appendix D boundary conditions, just to provide some intuition about the
linkage between J, and n(0).

The charge pumping boundary condition of Appendix D says (r = a means r = a-¢, and 64 = G = 0),
Er(r=a,0) = (jo/c) n(0) (D.2.24) (6.5.14)

so the pattern of n(0) is directly mapped to Ex(r=a,0) at the surface by charge conservation there. But we
are interested in E, since our current density of interest is J, = 6E,. The condition div E = 0 in cylindrical
coordinates reads,

Or (1 Ex(1,0,2)) + 0gEo(1,0,2) + 1 0,E,(1,0,2) =0 .

The second Appendix D boundary condition is (D.2.27) which follows from (3.7.0) that E¢(a,0) = 0 at the
surface, so OgEe(1,0) = 0 as well.. Then for r just below the surface one expects,

Or (r Ex(1,0,2)) + 1 02E,(1,0,2) =0 //nearr=a
Oz (r Ex(1,0)) - kr Ex(1,0) =0 // using 8, — -jk, see (D.1.16), then cancel e¥** factors
E.(1,0) = (1/jk) (1/r) O¢ (r E£(1,0)) . //nearr=a (6.5.15)

which then relates E, to E, near the surface. For the symmetric-environment round wire (2.2.29) showed
that

J
E,(r) = Ez(a)% . (2.2.29)

Taking the large argument limits of the two Bessel functions using (2.3.3) and (2.3.6), one finds that in
the skin effect regime,

Ea(1,0) ~ Ex(a,0)\ [ e=72)/8 ¢I(z-a)/e (6.5.16)

which has the same general form as the simple result (2.1.8) with x = a-r which is e™*/8 ¢73%/3 gnd is also

consistent with (2.3.7) for magnitude. If one blindly assumes this same equation applies for Ex(r,0) and
Ex(a,0), then

Ex(r.0) ~ Ex(a,0)\ [ e=®)/8 (J=a)/s (6.5.17)
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Then (6.5.15) says [ since now at large o (skin effect regime), k = Bqgo ],

a

Ez(a,0) = (1/jk) Ex(a,0)[ (1/r) Or (r\[

" e(r_a) /d ej (r-a) /5)] |r=a

= (1/jak) Ex(a,0) [1/2 + (1+)a/d ] (6.5.18)

where the derivative is done by Maple,

f := r*sqrt(a/r)*exp((r-a)/delta)*exp(j*(r-a)/delta);
(r—a] (j(r—a)]
a & &
f:=r/\/:e e
r
g = (1/r)*diff(f,r):
r = a;
r=a
g/
1 a aj
S
2 56 B
a

Using in (6.5.18) the charge pumping boundary condition (6.5.14) that E(a,0) = (jo/c) n(6), one obtains
E»(a,0) = (1/jak) {(jo/c) n(0)} [1/2 + (1+j)a/d ]
= (1/jak) {(jo/c) n(8)} (1+j)a/s ] // ignore 1/2 relative to a/8
= (1/jk) {(o/c) n()} (-1)/ 8]
= (1/ik) {(/c) n(0)} B ] /1 (6.5.8)
= (-jo/o) (B/k) n(6) . (6.5.19)

Putting this into (6.5.16) then gives
E.(1,0) = (-jo/o) (B/k) n(0) % () /3 (i(x-a)/s 11k = Pao (6.5.20)

which agrees with our earlier result (6.5.13) quoted from Appendix D. Although we just guessed at the
form (6.5.17), that form is verified in box (D.10.13). The bottom line here is that E, (and thus J,) "tracks"
n(0) for its 6 dependence and this fact is forced by div E = 0 and the two boundary conditions at r = a.
Notice that large o (skin effect regime) was assumed in this derivation.
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(e) The Proximity Effect At Low Frequencies

As discussed in Section D.11(a) (and Chapter 7) the Appendix D ansatz that the transmission line fields
has the simple z dependence ™% is incorrect at low frequencies. This is so because the physics-derived
transmission line equations (4.12.17) which imply this z dependence are themselves inaccurate at low
frequencies. Thus, although we might expect our transmission line theory to be approximately accurate at
low frequencies, we should be prepared for incorrect predictions. One such anomaly is noted in (D.11.15)
where the theory blindly extended down to very low frequencies (near and at DC) says,

J2(1,0) =éz [ 1+ > Nm (/2™ (m+1) cos(m0) ] (D.11.15)
m=1

and for the two-cylinder transmission line (6.5.4) gives

J2(1,0) =éz [ 1+ 3 D™ e™82! (/a)® (m+1) cos(m) ] . (6.5.21)
m=1

In the DC limit, and very close to it, we expect the longitudinal current J,= 6E, to be completely uniform
across the conductor cross section (non-conducting dielectric), and we should then have only the "1" term
shown above. Yet the above expression says J, is non-uniform since it is a function of r and 0. For closely
spaced conductors (small &;), the predicted non-uniformity is quite dramatic and gives plots similar to
those shown earlier.

We know that for the problem of two parallel cylindrical conductors (or any uniform parallel
conductors) which carry I and -1 (perhaps they are shorted together at one end) , J, is uniform at DC. We
know this because at = 0 there are no eddy currents induced by one wire into the other (or by one wire
into itself). The DC B field of wire #2 has no influence on the current density distribution J,(r,0) in wire
#1. It does induce a tiny Hall charge onto the surface of wire #1 and a corresponding transverse Hall E
field, since the B field of wire #2 temporarily deflects electrons in wire #1 (see Appendix N for various
Hall examples). This tiny deflection effect is mentioned in the text below Fig P.12 in Appendix P, but
there is no effect on the J, distribution. From a current density standpoint, J, in wire #1 doesn't even
know that wire #2 is present, so wire #2 could just as well be removed. The isolated wire #1 then if round
(Chapter 2) would certainly have a current distribution at DC that was independent of 0.

So we accept that our theory makes this incorrect prediction as w— 0 and we chalk it up to the
expected inaccuracy of the theory at low . This anomaly is somewhat softened when we remember that
our theory only applies to infinite transmission lines, or finite transmission lines terminated in the correct
Zo. As v—0, that correct Zg — o (non-conducting dielectric) and the current in the wire I— 0. In the
case of a conducting dielectric, we might expect a non-uniformity in J,. The theory prediction is (D.11.9)
in this case and the accuracy of this prediction is left as an unresolved Reader Exercise at the end of
Appendix D. The low o behavior of our theory is investigated more in Chapter 7.

In a proper treatment of the fixed-load finite-length two-cylinder transmission line problem, as ®—0
one would see the eddy currents gradually decrease, one would arrive at a DC current I # 0, and one
would have J, — uniform. A solution to this problem could be based on the eddy current methods
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outlined qualitatively in Appendix P and is no doubt available somewhere in the literature. This solution
would then show the proximity and skin effects gradually vanishing as w— 0, leaving a uniform J,.

(f) Active perimeter p and Z; for a two-cylinder transmission line

This active perimeter p was roughly illustrated for same-radius cylinders in Fig 2.16,

Fat twinlead Fig 2.16

First, recall these high-frequency results for such a transmission line,

Ez(a,0) = (-jo/c) (B/Bao) n(6) // E just below the surface (6.5.19)
h

n(0) = (-q/2m)(1/a) Ch;ﬁ //n=ns (6.5.1)

g2 1+2 5 (-1 ™2 cos(md) | (6.5.5)

m=1
where &, > 0 is for the right conductor in Fig. 6.7 and the fact that n = n/a,. For this right conductor,
(charge -q) these expressions take their maximum values when 6 = :

E2(a,0)max = Ez(am) = (50/c) (B/Bao) n(m) n(m) = (-q/2m)(1/a) C;Eifl . (6.5.22)
Meanwhile, the average values are

<E4(a,0)> = (-j/o) (B/Bao) <n(0)> with

<n(0)>= (-q2m)(1/a) . //(D.1.8) with q— -q (6.5.23)
Thus,

oo > o

Our active perimeter distance p is defined in (4.12.10) as [ using Zs(0) = E»(a,0)/ 1]

Zs P <Zs(0)> p _ <Eg(a,0)> _ ch&p-1
Z smax Z smax B Ezmax B Shiz

P 2na . /| P=2na (6.5.25)
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Using
sh&z = (d/a) (6.5.6)
b =2d coth&z = 2d ch&y/shé; /l a1 =az so &1 = &2 (6.5.6)
d= (1/2r\/b2-4a2 (6.5.7)
one finds that
ch&, = (b/2d) sh&, = (b/2d)(d/a) =b/2a . (6.5.26)
Therefore
_ chép-1 ra — (b/2a)-1 o — b-2a _ b-2a o — A/b-2a o — \/1-2a/b 5
P™ she, ™7 T d T bZaa? T TAfor2a T A[l2ab T
= 2ma. where a. = a (6.5.27)
Using E, from (6.5.23) we next compute the average Zs quantity defined in (4.12.9) :
Zs=<Zg(0)> =<E,(a,0)>/1 = (-jo/c) (B/Bao) (-q/2m)(1/a)/1 . (6.5.28)
But using (4.11.17) that [ = (-q) vq along with Bgo = ®/v4 and B = (j-1)/9, this becomes,
Zs =<Zs(0)> = -(jo/o) (G-1)/6 * (vd/w) (1/a) (-q/2w) (-1/qva)
=-(j/o) G-1)/o * (1/a) (127) = () (-1) (1/2nacd) = 2751106 (1+). (6.5.29)

This is the same high-o result found in (2.4.16) for the axially symmetric round wire situation. In the
closely-spaced transmission line, Zg(0) is very large near 0 = m, but is very small near 6 = 0, but the
average is the same as for a wide-spaced transmission line where each round wire is effectively in
isolation. This average Zs is what we use in (4.12.16) to evaluate the transmission line parameters. This

calculation already accounts for the "proximity effect" since that effect is built into the theory as shown in
the various plots of section (c) above. One can say that

Zsmax = Zs

o |

(1+j) i (6.5.30)

which perhaps is the meaning of King's equation (46) quoted below.
On page 30 of TLT King discusses the notion of an effective radius ae but his expression for ae is

Qe =a \, 1—(221/b)2

King (45)
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and it is not clear how his perimeter 2ma, is defined. King's expression for ae at least agrees with ours in
the two important cases b—oo (ae = a) and b—2a (ae = 0). He is quoting work from other people in this
section, and we leave the reader to ponder King's comments directly. His "internal impedance" z* is the
same as our "surface impedance" Zs. [We were unable to access King's two references shown below. |

30 TRANSMISRION-LINE THEORY [Chap. I

The internal impedance per unit length is modified when two parallel
conductors are close together by the so-called proximity effect. The
density of axial current is increased in adjacent parts of parallel con-
ductors with oppositely directed currents and is decreased at more remote
parts. This increases the effective internal impedance, since more cur-
rent is confined to a smaller volume. Accurate formulas for zi for one
eylindrical conductor in the presence of another with different radius are
not available. If the two eonductors are identical, an approximate high-
frequency formula involves an effective radius

a, = a v/1T — (2a/b)? (45)
in place of @ in the formula for zi for a cylindrical rotationally symmetri-
cal conductor.t Thus for each conductort®

R o feto
%7 Sra lerc[]_ — (2a/b)7 (46)

The internal impedance per unit length of a two-wire line is zf = 2zi.
For the single wire over the conducting plane, z¥ = z{ if losses in the
plane are neglected.

+

57. Sim, A. C.: New High-frequency Proximity Effect Formula, Wireless Engr.,
30: 203 (1953).

40. Carson, J. R.: Wave Propagation over Parallel Wires. The Proximity
Effect, Phil. Mag., ser. 6, 41: 607 (1921).
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(g) The Proximity Effect For Currents in the Same Direction

Our theory does not model this situation. If the currents in the two conductors are in the same direction,
we don't even have a transmission line. However, one could regard two such conductors as the central
conductors of a coaxial cable with a distant return sheath :

distant return sheath

currents in same
direction

+ +
+ +
+ +
+ +

Fig 6.16

We then have a transmission line, and it has an associated "capacitor problem" which one could solve to
determine the potential, the E field, and finally the surface charge n(6) on each central conductor. From
that one could compute the moments 1y, and from that the current distributions J,(r,0) in the two wires
using the methods given above. Even if the two central conductors touch, the problem is well defined and
non-singular (unlike our regular twin-lead transmission line problem). We know from Fig P.12 that the
currents will be largest near the surfaces most distant from the other conductor. Conceptually this can be
regarded as just the skin effect applied to the composite central conductor. Multiple central conductor
strands could be treated in principle in the same manner. This is the subject of the paper by Smith
mentioned in Appendix P.9.
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Chapter 7: The Low Frequency Limit of the Theory

By "the theory" we mean a combination of the developments of Chapters 1 through 6 on transmission
lines, and the development of Appendix D which describes the E fields inside a round wire. It would seem
to be a simple process to take the various results of this theory and evaluate expressions in the limit @— 0
(the DC limit). However, carrying out and interpreting this task is like trying to run lengthwise through a
Pyracantha hedge in one's birthday suit. The theory has many moving parts, and each attempted step
forward seems to result in a newfound pain. In this chapter we shall explore this low-frequency issue in as
systematic a fashion as possible. We shall show that our entire theory is invalid as ®—0, and shall
conjecture why that is the case.

7.1 A Review of Appendix D

Since the reader has likely not read the very long Appendix D, we summarize it here.

The appendix considers a round wire of radius a which is one conductor of an infinite transmission
line. The other conductor(s) may or may not be round in cross section.

A cylindrical coordinate system is set up in the round conductor with the conductor center line as the
z axis. The azimuthal angle 0 is replaced by an integer m in a complex Fourier Series transform, for
example f(0) = Zpe—o,” €3™ F(m). This has the benefit of allowing the replacement of dg in " space" by
jm in "m space": 9gf(0) = Tp=—o 7™ [jmF(m)].

Time dependence of everything is taken to be e3°*.

We then consider a set of four equations, two boundary conditions, and a special ansatz.

(a) The Four Equations

One of the four equations is div E = 0, which we presume is true inside our conducting round wire. We
ignore the miniscule deviation due to the radial Hall effect described in Appendix N.7 which causes a tiny
charge density p to exist inside the conductor. The other three equations are (Vz + Bz) E = 0 which is a
vector Helmholtz equation treated in cylindrical coordinates. This vector equation is of course three
separate equations, two of which cross-couple field components. Parameter 3 is the wavenumber inside
the conductor and for all practical purposes we know from (1.5.1d) that that B2 = - jopo where p and ¢
are the magnetic permeability and electrical conductivity of the conductor, which we often imagine to be
made of copper which has p = pp.

(b) The Two Boundary Conditions

The first boundary condition is charge conservation at the wire surface r = a. If the dielectric is a vacuum,
this boundary condition takes the form E,(r=a,0) = (jo/c) n(0) in 0-space, and Er(r=a,m) = (jo/c) Ny, in
m-space, where Ny, are the Fourier Series projections of the surface charge n(8). Location a really means
a-g, a point just below the surface. The idea is that the charge on the surface is fed by the radial current
just below the surface, so J(r=a-¢,0) = jo n(0), which would say Jy = 0¢n(0) in the time domain. One
might fairly wonder about the validity of this condition, imagining that n(6) could also be fed by surface
currents flowing in either the 8 or z direction. By surface currents, we do not mean the skin effect current
sheath which exists at large ; we refer instead to the current of the actual free surface charge on the
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conductor surface moving around, and we refer to such currents as Debye surface currents, since the
surface charge has a tiny thickness on the order of the Debye length (Appendix E). We have convinced
ourselves that such surface currents are not large enough compared to the bulk conductor currents to alter
the boundary condition, but it is not a slam dunk argument, and the reader is referred to our fretting in
Section D.9. In Section D.9 (d) this boundary condition is generalized for a conducting dielectric.

The second boundary condition is that the azimuthal tangential electric field Eg must vanish at the
round wire surface. This is written Eg(r=a,0) = 0 in 0-space and Eg(r=a,m) = 0 in m-space. The main
argument here is that up to quite a large frequency one has a quasi-electrostatic situation in this 0
dimension of the problem, and any surface Eg field that might appear would be instantly neutralized by an
adjustment of the free surface charges on the conductor surface. Again, the argument is not a slam dunk,
and the reader is referred to our further fretting in Section D.8.

(¢) The e 3** Ansatz

In addition to our four equations and two boundary conditions, we make a rather brutal assumption at the
start of Appendix D which is this: the z dependence of all three E field components is the same and is
given by e 3*% where k is some complex number. This is our "traveling wave ansatz" since it then implies
that the E field components in 6-space have the form E;(r,0,z,t) = ¢’ (ot-kz) E;i(r,0), and we just replace
0 by m for m-space. Here (as usual) we use the overloaded notation of Section 1.6 ().

We select e 3*% instead of ¢*7** to have a wave that travels in the +z direction for Re(k) > 0.

This then injects an unspecified constant k into the machinery of Appendix D. We imagine that in the
dielectric there exists a moving field pattern of strong E and B fields which slides down the transmission
line. In order to match fields at the conductor boundary, these external fields must also have the traveling
wave form e “**2) with the same constant k, a point we return to momentarily.

Within the context of the round wire and ignoring what is going on outside, any value of k is viable in
solving our set of 4 equations, 2 boundary conditions, and the ¢”3** ansatz. Since the four equations are
linear, new solutions can be formed by superposing solutions with different values of k.

In fact, the E, equation is just a scalar Helmholtz equation (V2 + [32)Ez =0 (since E; is a Cartesian
coordinate). This equation is "separable" and any solution must be writable as a linear combination of the
equation's atomic forms (harmonics). In this case those atoms are [ 3™ ][ J,,‘(\HSZ—k2 )] [e"3*% ]. We
then recognize m and k as the two "separation constants". Since the geometry requires all 6 dependence
to be periodic in 0 with period 2x, constant m must be an integer, and we identify this with our m-space
"m" already discussed. Similarly, we identify separation constant k with the k in our ansatz ¢”3%2. To
really be complete, we let m take all integral values and k take all real values. Yy, \/Bz—kz r) is rejected
since it blows up at r = 0 which is the center of the physical wire.

So in general, whatever E,(r,0.z) is inside the round wire, one must be able to write it this way

Ex(10.2) =Smeer” | dk A 7™ In(\[B7K2 1) e %7

where Amk are appropriate coefficients. In Appendix D, we take a particular value of k so we don't have

this general fdk integration appearing, but we must allow in a general sense that it could be required to

produce a viable solution for the transmission line.
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Given then this discussion of the atomic forms of the scalar E,; Helmholtz equation, our ansatz that
the z dependence is e 7** seems slightly less "brutal", and slightly more justifiable. The idea that a single
value of k might suffice for the problem solution (finding the E fields inside the conductor) is then based
on the idea that this internal k must be the same as the external k which arises in the transmission line
dielectric region. Either from the physics model of Chapters 4 and 5, or from the electrical engineering
network model of Appendix K, we have this familiar form for k

k=-j\zy = 4\R+oL)(G+wC)

and to get the internal/external boundary condition to match, this is the k we use for the k of the interior
solution. Note that the network model with its lumped components says nothing about E fields inside
conductors. It is a model for the action in the dielectric.

"Where does the above expression for k come from?", the reader might ask. In both the physics model
and the network model, one obtains certain "transmission line equations" of first and second order,

dV(z) d

dzZ =-271i(z) (_Zdz -zy)V(z)=0 z=R +joL transmission line equations
di(z) d

ilzz = -yV(2) (—zdz -zy)i(z)=0 y=G +joC (4.12.15), (4.12.17) , (4.12.16)

In Appendix K these appear as (K.5) and (K.6). Looking at the second order equations, one sees that both
V(z) and i(z) must have the form ¢ %% where k* = - zy, and this basically forces all E and B fields to
have this same form. This then dovetails perfectly with our e¢”3** ansatz and furthermore provides a
specific formula for k. It all seems so nice!

(d) The Appendix D E-field Solutions

Grinding through Appendix D, one obtains the following exact E and B field component expressions
which solve the above stated problem :

Summary of E and B fields inside a round wire (D.9.39)
Ex(r,m) = (1/4) Nm B (0/k) (aP') fa X =p'r Xa=p'a p2=p2-k*
Ex(r,m) = (j/4) N B (0a) gn
Eo(r,m) = (1/4) n B (02) hn B = (Ealsa) OV Rae
Bz(rm)= (j/4) (@) MuB (B'em) (Ea/ea) =1+ (G/jwC)
B(r,m) =- (1/4) (2) N B (1/K) ( 1™ 'm B fu+k? hy )
Be(r,m) = (j/4) (a) Nm B (1/k) ( k2 Sm - B'zfm [ (M/X) - Jn+1 (X)) T(X)] ) Nm = Nu/No
Jm(X) Jm(X) Jm+1(X) Jm—l(X) 1
n = Jm+1(Xa) Jm—1(Xa) ] Em = [ Jm+1(Xa) Jm—l(Xa) ] Rae = W
Jm(X) Jm(X) Jm+1(X) Jm—l(X)
fn = [ Jm+1(Xa) ) Jm—l(Xa) ] b = [ Jm+1(Xa) ) Jm—l(Xa) ] G20
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7.2 First Sign of Trouble: J, Asymmetry at DC

As a simple "check" on our theory, it seems reasonable to casually take ®—0 and make sure the obvious
DC results are replicated. As we now show, something is wrong with this limit.

Using E, from the above box, consider this ratio, where we have canceled all common factors,

E(r,m) (X, Xa) Im(X) Im(x) , o
E.(1,0) = Mm fo(x,Xa) ° fm(xXa) =1 Jnt1(Xa) ~ Jn-1(Xa) Ioox=fr. xa=pa. 7.2.1)

Let us assume that as ®—0, ' — B'g, some finite value. One then finds that

. E;(rm) fm(B'or, B'oa) (X)) In(x)
Lime—~0F 1.0) = ™ To(Blor, Bloa) tm(xXa) =[5 ) ™ () 1

(7.2.2)

This ratio does not vanish as w—0! It is some complicated function of B'o, m, r and a. The moments Ny
do not vanish for m # 0, see for example (6.5.4) for two round wires.

Suppose B'o is very small such that | B'pa | << 1. Then we can use these Section D.11 limits of the fy,
functions for small argument,

fu — (r/a)'™ (m|+1) (2/p'a) fo — 4/(aP') (D.11.6)
to find that

Im|
Limgy—o % = nmw | Bloa| <<1 (7.2.3)
where the fact that the ratio is non-zero is quite explicit and dramatic.

This ratio is the same even if f'o = 0.

If at DC we have E,(r,m) # 0, there must be some cos(m6) component in J, = oE, and therefore the
current density J, is not uniform over the round wire cross section. It happens that the current I — 0 for a
transmission line having conductance G = 0 (since Zo—x) , but we would expect that very close to ® =0
we should see J at least approaching uniformity on the cross section, but that is not happening.

Our conclusion is that, according to our theory, regardless of the value of B' = \/Bz—kz as ®—0, the above
ratio is non-zero. The implication is that E, and therefore the current distribution J, = 6E, is not uniform
over the round wire cross section at DC!

We know that this conclusion is incorrect and that in fact J is uniform across a wire cross section at DC.

We know this from eddy current arguments as in Appendix P, and from the proof which follows in the
next section. Therefore, something is wrong with our theory as w— 0, the first sign of trouble.
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Superposition does not help.

The above conclusion is unchanged even if we allow a superposition of k values for E, (and thereby don't

invoke any connection between k and k(w) = —j\/ (R+joL)(G+jwC) ). Such a superposition really makes
no sense since we really want to match interior and exterior boundary conditions and have k = k(w), but
we discuss it anyway just to show that, even if it could somehow make sense, it still results in an
asymmetric J, at ® = 0.

In order to find the nature of a possible k-superposed solution, we require it to satisfy these two boundary
conditions,

Er(r=a-£,0,2) = (jo/c) n(0,z,0) = (jo/c) n(0) c(z,m)
E*(r=a-£,0,2) =0 (7.2.4)

where the new feature is that c(z,®) describes how the surface charge density varies with z. For the single-

k solution we of course have c¢(z,®) = ¢”3*2. It is useful to define C(k,) as the Fourier Transform of
c(z,) with the convention of (1.6.8),

Clk,o) = (121) [ dz e3*% ¢(z,0) . (7.2.5)
We shall now skip a few details and just outline the development. We first assume that
Ep(rm,z) = J dk da(k,m) ¢ 3% Jn(B'r) (7.2.6)

which is the most general form noted above, and we then determine dp(k,0) using the Helmholtz
equations and div E = 0 and the two boundary conditions noted above. We find that dp(k,0) = Cpm, a
constant appearing in (D.2.4) which we also identify with Cpn = (1/2))(B'/k)Ky as in (D.2.9). We end up
with unknown constants ap and Ky, just as we do in (D.2.21). It turns out, however, that these a, and Ky,

have an extra factor of C(k,w) [ the Fourier Transform of ¢(z,) above] relative to the coefficients stated
in (D.2.28). The continuous superposition solution which solves this problem is then the following

Eo(rmz) = | dk Cl) e 352 E,(r,m; single-k) (7.2.7)

where E,(r,m; single-k) is what appears in (D.9.39) quoted above,

E.(r,m; single-k) = (1/4) Nm B (w/k) (ap') fn (D.2.33) (7.2.8)
where
In(X) In(X)
fm =1 Jms1(Xa) Jm—l(Xa)] , x=Ppr, xa=fa, p'=+pk".

We then find from the last two equations that
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EL(r.m.2) [ di C(k,0) 3% Ey(r,m; single-k) [ dic Ck,o) e () fu
E, = Mm . = Nm ) (7.2.9)
(r.0.2) Jdk C(k,) 7% Ey(r,0; single-k) [ dk Clk,m) e 3= (Bk) fo
where B' =+ Bz—k2 . Taking ®—0 causes p— 0 since B2 = juow, so B' — jk. In this limit,
E.(r,m,z) fdk' C(k',0) e % fo
Lime—op oy =Ma _ /I B'=jk' inside fy and fo (7.2.10)
Ez(r,O,Z) fdk' C(k',O) e-jk'z fO

where fy, and fo are complicated functions of ' = jk', r and a. Just looking at the z dependence and
ignoring all the rest, one sees that the numerator only vanishes if C(k',0) = 0, giving a limit of 0 / 0 which
is meaningless. Also, if C(k',0) = 0, it must be that ¢(z,0) = 0 and then n(0,z) = 0 and the transmission line
has no surface charge. This is impossible since at DC it is a capacitor driven by voltage V.

The point is that the superposition idea does not cause the ratio J,(r,m,z) / J»(r,0,z) to vanish as ®—0,
and therefore even with a superposition solution (were it even sensible) one cannot eliminate the
paradoxical result that J, is non-uniform across the round wire cross section at DC.

Taking C(k',0) = 6(k'-k) reproduces the single-k ratio appearing earlier in (7.2.2).

An interesting superposition is to try C(k',0) = A(k")é(k'-k) + B(k')o(k'+k) which is then a sum of
oppositely directed waves on the transmission line. One can construct a reflection scenario where the
transmission line voltage vanishes at some z = L where we assume the presence of a shorting bar. In this
reflection scenario, it is possible to have a finite current I in the transmission line, but the J, asymmetry
still persists as w—0, as it does for any superposed solution. But we know that for two parallel round
wires carrying a finite current I and -I at DC, the current density J, should be uniform over the cross
section.

7.3 A proof that J, must be uniform at DC

Most readers would agree that the current in any uniform wire is evenly spread out over the cross section
of the wire at DC. This seems a natural result, but still it is not totally obvious. For example, the electrons
in our transmission line's round wire experience the magnetic field of both the round wire and the other
conductor. This magnetic field causes an initial transverse deflection of the flowing conduction electrons
due to the Lorentz force acting on them. But this deflection ceases when tiny charges accumulate on the
wire surfaces which create a transverse electric field which then neutralizes the deflection. There is then
"no reason" for the current to be non-uniform. This DC Hall effect is described in much detail in
Appendix N.

Perhaps a better explanation is in terms of the eddy current analysis of Appendix P. In that Appendix, all

Jz asymmetry in a round wire (skin effect and proximity effect) is associated with eddy currents, and eddy
currents vanish at DC.

236



Chapter 7: The Low Frequency Limit of the Theory

Since we have found anomalous J, behavior of our Appendix D theory as @ — 0, we want to examine the
Appendix D method where we start off at @ = 0 instead of obtaining a result for ©®>0 and then taking the
limit ®— 0. It should be useful to see exactly what happens in this approach.

Since B2 = -jopo from (1.5.1d), the vector Helmholtz equation (VZ+B2)E = 0 becomes a vector Laplace
equation VE = 0. At ® = 0 we have

k(@)= -\ (R+joL)(GHwoC) —-j\RG =>  k=-j\|RG (7.3.1)
R +joL
Zo(®) = —J—G FioC —~/RIG = Zo=~/RIG . (7.3.2)

The current I is then finite,
1=V/Zo =V+G/R . (7.3.3)

At this point, we imagine that G is extremely small but non-zero (perhaps G = 10718 mho/m) , so the

current I is then very small but non-zero. Since k = -j \/ﬁ} ~ 0 (R is likely also small), we take 0, — -jk
~ 0 wherever it appears. Since k = k(w) = 0, the ansatz factor ¢”3%* ~ 1, and there is no z-dependence in
the problem. Yes, moving a great distance down the line there is a very slight exponential decay in all
fields due to Im(k) = - \/ﬁ} , but we shall just ignore this slight decay. Since 0, — 0 wherever it appears,
we will replace V2 by its 2D version V22p in the vector Laplace equation examined below.

The two Appendix D boundary conditions (D.2.24) and (D.2.27) in 0 space become, since ® = 0,

Ex(r=2,0)=0 no charge pumping at DC since n(0) is constant
Eo(r=2,0) =0 surface charge adjusts to make this be so (7.3.4)

and in m space,

Ex(r=a,m)=0
Eg(r=a,m) =0 . (7.3.5)

The entire Appendix D problem (at ®=0) can then be represented by this system of equations:

V220E(1,0) = 0 divop E(1,0) =0 Er(r=a2,0)=0 Eg(r=2,0)=0 (7.3.6)
which we restate in m space using 0g — jm,

VZpE(r,m)=0  divap E(r,m) =0 Er(r=a,m)=0 Eg(r=a,m)=0 . (7.3.7)

As our first step in solving this system, we confiscate the equation set (D.1.20) setting f = 0 and k =0 to
obtain these simplified results:
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The Three Laplace Equations and the div E = 0 equation (in partial waves) (D.1.20)
[V2E],=0:
[1?0:2 + 10y - m? | Ex(r,m) = 0 (D.1.15)
[V2E],=0:
[1?0:2 + 10x - (m?+1) ] Ex(r,m) - 2jm Ee(r,m) =0 (D.1.17)
[V2E]e=0:
[1?0:2 + 10x - (m?+1)] Eg(r,m) + 2jmEx(r,m)=0 (D.1.18)
divE=0:
Or [r Ex(r,m)] + jmEg(r,m) =0 (D.1.19)

The E. equation

Since E,(r,m) = E,(r,-m) according to the first equation in the box, we assume m > 0 for simplicity.
Since the first equation is the radial equation of the 2D Laplace equation, we know the solutions are
Apt™ Bgr™ for m > 0, and C+Dlnr for m = 0. Since E is finite at r = 0, we reject Inr and r™ for m>0.
Thus, for m > 0 one has E,(r,m) = A ™ where Ay are constants to be determined :

Ez(r,m) =Aznm ™ m>0
Eo(r.0) = Ago . m=0 (7.3.8)

Maple is happy to verify the claimed general solutions:

f = r"2%piff(Ez,r,r) + r*Diff{Ez,r) - m"2*Ez;
2 8 d 2
f=r|——Ffz|+r| "Bz |- Ez
2 ar
&
Ez := BA*r"m + B*r"{-m);
—m
Ez:=Arm+Br( )
value(f): simplifvy({%)
]
m := 0;
=1
Ez := C + D*1ln(r);
Ez=T4+Dlnlrm
value(f): simplifvy({%)
]
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The E, equation
For m = 0 this equation reads
[1%0.2 + 10z - 11 Ex(1,0) =0 .
This is the same as the E, equation for m = 1, so Ex(r,0) = Ao 1.

For m > 0 we solve the div E = 0 equation to get jmEg(r,m) = - Oy [r Ex(r,m)]. Just as in Appendix D, we
insert this into the E, equation to eliminate Eg with this result

[r?0e? +10x - (m?*+1) ] Ex(r,m) - 2jm Eq(r,m) =0

[r?0e? + 10x - (m*+1) ] Ex(r,m) - 2{- O [r Ex(r,m)]} =0
[r?0:% + r0; - (m®+1) ] Ex(r,m) + 2{ [1 + 1] Ex(r;m)} =0
[1®0:% + 310 - (m?-1) ] Ex(t;m) =0 .

Since this equation contains only m?, we know that Ex(r,-m) = Ex(r,m) so again assume m > (.
Maple gives the solution as

eq = r"2*Diff(Ez(r),r,r) + 3*r*Diff{Ez(r),r) - (m"2-1)*E=z(r);

2

o @ 2 2

og =r [—Ez(r)} +3r [_EZ(J“)] = (m” = 1) Ez(r)

o ar
&

dsolveleq) ;

Eairi= CI Lot + 02 Lot

Since m > 0, we reject r 1™ and conclude that

Ex(r,m) = Apn ™t m>0
Ex(r,0) =Ago 1 m=0 . (7.3.9)

The Eg_equation
For m = 0 the equation reads,
[120,° + 10y - (1)] Eo(r,0) = 0,
which is again the same as the E, equation for m = 1 and so has solution Eg(r,0) = Agg T.

For m > 0 we use the divE = 0 equation to find that
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imEBe(r,m) =- 0z [r Ex(tm)] = -0z [T Aem ™ 1 ] = -ApmOe[®] = -Apmm ™7 ?

or
jBo(r,m) = -Apm ™t .
Thus
Eo(r,m) =] Agm ™! m>0
Ee(I’,O) = Aeo Tr. m=0 (7310)

Alternatively, we could write the Eg equation as

[1?0:2 + 10, - (m?+1)] Ee(r,m) + 2jmE.(r,m)=0

or
[1?0;2 + 1y - (m?+1)] Eo(r,m) +2jm Az ™1 =0 m>0
[?0:2 +19: - (1) ]Ee(r,00=0 . m=0

The m = 0 equation is as above. Maple then verifies that Eg(r,m) = j Azm ™ * satisfies the m>0 equation,

f := r 2*Diff(Eth(r),r,r) + r*Diff(Eth(r),r) - (m"2+1)*Eth(r) +2%j*m*Arm*r"(m-1);
z 5 g 2 (m—1)
f=r —2Eth(r') +r a—Eth(r) —(m + D EWrm +2imArmr
ar "
Eth := r -> j*arm*r"(m-1)

(m—1)
Eth=r —=jArmnr
value(f): simplify(%);
0

and we end up with the same results as above,

Eo(r,m) =j Agm ™ * m>0
Eg(r,0) =Ago 1 m=0.

We now summarize our partial wave E field solutions at this point:

E.(r,m) = Agpt™ m>0
E(1,0) = Azo m=0
Ex(r,m) = Apn ™ * m>0
Ex(r,0) =Ago 1 m=0
Eo(r,m) =j Agm ™ " m>0
Ee(I’,O):Aeo r m=0. (7311)

Finally we apply the two boundary conditions Er(r=a,m) = 0 and E¢(r=a,m) = 0. They require that A, =
0 for m>0, and that Ayg = Ago = 0 for m = 0, giving these final field results:
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Ez(r,m) = Agpt™ m>0

Ez(r,O) =Az0 m=20

Ex(r,m)=0 m=>0

Eo(r,m)=0 m=>0 (7.3.12)
The current I must be the cross-section integral of J(1,0) = o E,(r,0) = cA,0, so

[ =06Ag0 * na’ =>  Ago=/(ma%c) =1R. (7.3.13)
The fields are then,

Eo(r,m) = Agpt™ m>0

E.(r,0) =1R m=0

Ez(r,m)=0 m>0

Ee(r,m)=0 >0 . (7.3.14)

We now arrive at an interesting fact: the vector Helmholtz equation (which became a vector Laplace
equation), the divE = 0 condition and the two boundary conditions are insufficient to determine the
coefficients A,m for m > 0. The system is underspecified! This situation did not arise in Appendix D as
presented for general o.

To nail down these coefficients -- which of course are critical to our proof that J, is uniform in this DC
problem -- we must call upon the Maxwell curl E equation (1.1.2) with ¢ — jo,

curl E=-joB =0 atw=0. (7.3.15)
We write this as

curl E(1,0,2) = £ [ 1" 06E, - 0,Eq] + 0 [02Ez - 0:E5] + 2 [ 1 *02(tEe) - 1 *06Ex ] (7.3.16)
or

curl E(r,m,z) = ¢ [r_ljrnEz-i- jkEe] + ) [kEy - 0:E.] + 2 [ r_lﬁr(rEe) - r_lijr ]. (7.3.17)
Setting k = 0 as above this becomes

curl E(r,m,z) = ¢ [r_ljrnEz(r,rn)] +9 [- 0cE,(r,m)] + 2 [r_lar(rEe(r,m)) - r_ljrnEr(r,m) 1.
But from (7.3.14) only E; is non-vanishing, so this simplifies to

curl E(r,m,z) = £ [ " 5mEg(r,m)] + 0 [ 0-E,(r,m)] (7.3.18)

so curl E = 0 requires
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r'lijz(r,m) =0
- OrEz(r,m)=0 . (7.3.19)

We evaluate these first for m =0,

0=0 E,(r,0) condition met
OrEz(1r,0)=0 condition met since E,(r,0) = IR = constant . (7.3.20)

For m > 0 the conditions say that

rYm Agnt™ =0
Or Agm™=0 or Apmmr™ =0 . (7.3.21)

Both conditions are satisfied only if Az, =0 for m > 0. We then arrive at a final field set:

Ez(r,m)=0 m>0
E.(r,0) =1R m=0
Ex(r,m)=0 m=>0
Eg(r,m)=0 m=>0 (7.3.22)
which then tells us that J; = 6E; is in fact uniform over the round wire cross section at DC.
7.4 Second Sign of Trouble: Infinite B fields as ®—0
Recall from (D.11.7) the E fields for small o,
E.(r,m) = (1/2) Nm B (0/k) (1/2)" (m+1) (D.11.7) (7.4.1)
Ex(tm) = (i/4) N B (@a) [(t/a)"™*" + (t/a)" "]
Eo(r,m) = (1/4) N B (wa) [(t/a)™* - (/)™ ] m>0
E.(r,0) = B (w/k) B = (Eg/ea) CV Rye
E(r,0) = (j/2) B (or)
Eo(r,0)= 0 m=0 G=0

Next, recall (D.4.7), which expresses the Maxwell equation B = (j/®) curl E in cylindrical coordinates,
B.(r,m) = (j/o) [cur] E; = (j/o) [rmE, + jkEo]
Bo(r,m) = (j/o) [curl E]e = (j/®)[-]KEy - OrE.]
B,(r,m) = (j/o) [curl E], = (j/®) [t 0:(tEe) - r }jmE,] . (D.4.7)

These are duly entered into Maple :
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Enter the Bi expressions
Br := (j/omeqa)*{{j*m/r)*Ez + j*k*Eth)

JjmEz
J + k& Htir
r

ol
Bth := {j/omeqga)*{(-j*k*Er - Diff{Ez,r});

o5

w
Bz := (j/omega)*(1/r)*( Diff(r*Eth,r) - j*m*Er);

d
K [[—r E.f}'e] —im Er]
r

wor

Br=

Bth =

iz =

i jmE
Before continuing, look at the first term above for B, which has the form ‘](5 JTZ . If we install E, from

(7.4.1), the (w/k) factor in E results in a 1/k factor in By. This is a preview of our upcoming problem.
Momentarily omitting the common factor ng, 8, enter the E fields for m > 0 from (7.4.1) above,

Enter the Ei expressions form = 0

Ez := (1/2)*{omega/k)*{r/a) " m*(m+1) ;
r
CD[—] (m+1)
1 a
fz==
2 k
Er := (j/fd)*{omega*a)*{ (r/a)"(m+l) + {(rfa)"{m-1));

1 [(r](m+l) [r](m—l)]
HEr=—jwmal||l— +|—
4 & a

Eth := (1/4)Y*{omega*a)*( (r/a)*{(m+l) - (rfa)*(m-1));
1 +1 -1
= [ 2] V(270
4 a a

Maple then computes the resulting B fields:

Br: simplify(%);

P

[—] (—2m = 2m— ke k% a%)
i

rk

fu | —

value(Bth): simplifvy(%)

rojm
j[—J (k2r2+k2a2—2m2—2m)
@

rk

l{i}m ]
A (m+1)

N Ny

value(Bz): simplify(%

I
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Using (t/a)™ /r = (r/a)™ (a/r)(1/a) = (r/a)™ *(1/a), the Maple results for m > 0 are,
B: = (1/4) (r/a)™ ! (1/ak)[ -2m(m+1) + k*(a®-r%)]
Be = (j/4) (r/2)® ! (1/ak) [ -2m(m+1) + k*(r?+a?)]
B, = (j/2) (t/a)™ (m+1)

We repeat the effort form =0 :

Enter the Ei expressions form =0

- Ez := {(omega/k):
@
Hz =—
k
- Er := (]j/2)*omega*r;
A L
r=—jmr
2J
Eth := 0;
Hih =1
to get
m := 0;
m=10
Br: simplify(%);
]
value(Bth): simplifwy(%)
]'k
—jkr
2J
value(Bz): simplify(x);
]

Thus, restoring the n, B factor, for small o the B fields inside the round wire are given by

B fields in round wire for small ® (7.4.2)

Bz(r,m) = (j/2) N B (r/a)" (m+1) m>0
B(r,m) = (1/4) N B (/a)™ * (1/ak)[ -2m(m+1) + k?(a®-1?)]
Bo(r,m) = (j/4) Nm B (t/a)™ * (1/ak) [ -2m(m+1) + k3(r%+a?)]

B(r,0) =0 m=0
B.(r,0) =0
Be(r,0) = (j/2) B kr B = (Ea/eq) CV Rae G>0
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These same B fields can be obtained by taking the small-x limit of the full B fields shown in (D.9.39) and
making use of (D.11.6).

So far we have no infinite B problem. Recall that in Appendix D, the parameter k is an arbitrary complex
number. But in order to take the "small ® limit" as we did in Section D.11, we have to assume at least that
k is "small” for small @, so that then p? = p2- k?® = -jopo - k? will be small, allowing a power series
expansion for the various Bessel functions (recall x = B'r). So as long as k is some small number (in
magnitude), we know that the E and B fields given in (7.4.1) and (7.4.2) represent a solution to the
Helmholtz equation for E, the div E = 0 equation, all four Maxwell equations, and in fact also the
Helmholtz equation for B, though we did not demonstrate this fact. The fields also satisfy the two
boundary conditions (D.2.26) and (D.2.27). By assuming small ® and small k and hence small ', we were
able to replace the Bessel functions with their leading expansion terms resulting in the various simple
polynomial terms in (7.4.1) and (7.4.2).

The trouble now arises if we further assume that our small k value of the last paragraph is identified with

the ®—0 value of k = -j\/gl = \/ (R+joL)(G+jwC) . This is the k value for the wave proceeding down
the dielectric of the transmission line, based on the transmission line equations (4.12.17).

G =0 Case

We first assume that G = 0 which in turn implies (a/eq) = 1 since og = 0. According to (Q.4.9), and
assuming that k = - \/ (R+tjoL)(G+jwC) , we see that as @ — 0,

k = \Rac2C/2 \Jo (1) =/Rae2C o 37/ asm—0 . (7.4.3)

We are now using Rgc as the resistance per length of our round wire conductor, while Rgcz is the

resistance of both transmission line conductors per length. Note that k — 0 as \/6 . The above B fields
(7.4.2) then become

Bz(r,m) = (j/2) Nm CV Rgc (r/2)" (m+1) m>0 (7.4.4)
Bx(r,m) = (1/4) m CV Rae (t/a)™* (1/a) [ -2m(m+1)] / [\[Rac2C Vo ¢ 374
Bo(r;m) = (j/4) Tim CV Rac (t/2)" * (1/a) [ -2m(m+1)]/ [\|Rac2C o ¢73%/4]

B,(r,0)=0 m=0
Bx(r,0)= 0
Be(r,0) = (j/2) CV Rae r [\[Rac2C Vo e 374 G=0

As ®—0, the three m = 0 B fields go to zero. This is as expected since the current vanishes:
1=CV (0/k) =CV 0/[\|Rac2C o ¢34 =CVifo /[\Rae2Ce ™4 >0 . (7.4.5)

However, as ®—0, the m > 0 B fields all diverge as 1/\/?0 !!' In the DC limit, there will still be some
asymmetric n(0) on the round wire surface just because this round wire is part of a long capacitor
connected to a battery of voltage V, so the 1y, coefficients do not vanish for m > 0. Looking at (7.4.1) we
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see that as ®—0, all the E field components vanish in all partial waves m, as we would expect since the
transmission line impedance goes to . It seems a bit unphysical for our round wire at DC to have no E
fields, no current, but some infinite internal B fields. One can show that curl B is finite in the ®—0 limit
(and div B = 0), but this is not much respite.

G >0 Case

We start again with (7.4.2), but now

(&g/ea) =1 + (G/joC) — (G/joC) as®—0

B — (G/jwC)CV Rge = (Gljw) V Rge . (7.4.6)

Moreover, according to (Q.4.6), and assuming that k = -j \/ (R+joL)(G+joC) , we see that

k —-j\Rac2G = k3 as®— 0 // a very small constant value (7.4.7)
Then (7.4.2) reads,
Bz(r,m) = (j/2) Nm (G/jw) V Rge (r/a)" (m+1) m>0 (7.4.8)

B(r,m) = (1/4) Nm (G/jo) V Rae (t/2)" (1/aky) [ -2m(m+1) + kg 2(a%-1%)]
Bo(r,m) = (j/4) Nm (G/jo) V Rae (/a)™ * (1/aky) [ 2m(m+1) + ki 2(r?+a?)]

B,(r,0)=0 m=0
Bx(r,0)= 0
Be(r,0) = (j/2) (G/joC) CV Rgg kar G>0

We find that for G > 0, all the non-zero B field components diverge as 1/@w as ®—0 !! This is even worse
than that G = 0 case where divergence was 1/\/c_o .

This then is our second sign of trouble: B fields are going infinite as ®w— 0. It seems clear that the
physical B field of a transmission line operating at DC should be finite since there are no infinite currents

anywhere. Thus, the theory of Appendix D combined with the idea that k = - \/ (RHjoL)(GHwC) is
invalid as ®— 0.

7.5 What is the cause of the Trouble as ®— 0 ?

There are likely several causes of "@ — 0 trouble", but here we discuss just one problem source.

In Appendix M it is argued that |A¢] < 107* |A;| from 0 to 500 GHz, where A¢ = A,& + AyY is the
transverse vector potential. This relative smallness of the transverse vector potential for a transmission
line does not seem to translate into the relative smallness of transverse derivatives of the potential at low
frequencies.

In Step 1 (3.7.5) it was shown indirectly that one can approximate div A as 0J,A, only when o is
large. In other words, (0xAxT0yAy) cannot be neglected relative to 0,A, when o is small. Since we have
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never studied the small transverse potentials, it is not clear just how small @ has to be for this neglect to
be unjustified, but one might vaguely assume for a round conductor of radius a that a = § = 4/2/(wpuo)
might provide a ballpark value below which (0xAx+0yAy) should not be neglected. Certainly then in the
limit ®— 0, one should not be neglecting (OxAxt0yAy) .

A more generic argument comparing (OxAxtOyAy) to (0zAz) is this. If we were to assume that A,
behaves as e”3** | we would then be comparing | OxAxtOyAy | with | k Az |. In a scale sense, we might
expect the scale of these transverse derivatives to be such that 0xAx ~ (1/Dx)Ax and OyAy ~ (1/Dy)Ay
where Dy and Dy are some ballpark transverse dimensions of the transmission line. Then our comparison
is between | (1/Dx)Axt (1/Dy)Ay | and | k Az|. In this same scale sense, we expect to have k ~ 1/A where
A is the wavelength of a wave going down the transmission line. The assumption made in neglecting the
transverse derivatives is then roughly this

| (Dx)Axt (IDg)Ay | << | (1WA, |.

Even though we have |Ax, Ay| << |A.| from Appendix M, as ® becomes smaller, we expect A to become
larger, so the right side of this inequality gets arbitrarily small as @ — 0 and A — oo, and at some value of
o the neglect of the left side is no longer justified.

In Chapter 4 it was assumed that | OxAx+0yAy | << | k Ag|. This assumption, which we quietly justified
there based on |A¢| < 107* |A,|, was made in going from (4.12.2) to (4.12.3). We then ended up with the
second-order transmission line equations of (4.12.17),

d*V(z) di(z) .
2w V(z)=0 Y i(z)=0 . (4.12.17)

The solutions to these equations indicate that V(z) and i(z) have e 3** dependence on z, with k = -j \/z_y .
This suggests at least indirectly that the E and B fields at the surface of and inside the conductors have
this same z dependence, which is the ansatz of (D.1.1) at the very start of Appendix D.

We see now that the above situation only applies if ® is not too small. If we maintain the transverse
derivatives (0xAxt+0OyAy) and carry through the analysis of Chapter 4, we arrive at these modified second-
order transmission line equations (see Appendix S, equation (S.29) ),

d*V(z) d%i(z) _
7 V@D =(ZL)T@) 5z -zyi@@)=(1/Le) % T(2) . (4.12.17) (S.29)

In Appendix S we implement an averaging procedure where V(z), T(z) and L. are certain double
averages over the perimeters of the two conductors, though the averaging can be ignored for widely
spaced conductors. The quantity T(z) is given by such a double average,

T(z) = <T(x1,X2)>c1,c2 (5.19)

where

T(x1,X2) = (OxAx12(X1) - OxAx12(X2)) + (OyAy12(X1) - OyAy12(X2)), // dim(T) = tesla (8.17)
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which involves those transverse vector potential derivatives evaluated at points on the boundaries. We
don't know how to compute the function T because we don't know the transverse potential functions, but
the argument above suggests that at low @ we cannot just set T(z) = 0 as was done in Chapter 4.

With T(z) # 0, the two second order transmission line equations are inhomogeneous, meaning they have

driving terms on the right side. It is true that ¢"3** are still homogeneous "adder solutions" to the two
equations in (S.29), but each equation also has a "particular" solution that cannot be ignored. For

example, we might have
V(Z) = Vparticular(z) +A e—ikz +B e+ikz

where A and B can be adjusted. Therefore, for small @, we do not simply have ¢”3* as the z dependence
of V(z), and we can deduce that this fact applies as well to the E and B fields in the dielectric and inside
the conductors. For example, V(z) is the line integral of E along a path in the z = constant plane between
the conductors (albeit averaged over the conductor boundaries). And i(z) will be related to the B field
inside the conductor as well as the E field.

Thus, at low o, the e”3** ansatz for E; inside the round conductor of Appendix D is unjustified. This is
the main point. Since the ansatz of Appendix D is unjustified at low o, it follows that the predictions of
Appendix D for small o are simply not valid. It is in this manner that we "explain away" our two low-®
anomalies: J, being non-uniform inside the round conductor at @ = 0, and B fields being infinite.

We must then also give up our simple traveling wave behavior for small ®, as given in (D.1.1)
E(r,0,zt) = &3 “*%2) E(10) . (D.1.1)

Once again, this led to all quantities in Appendix D having this same e? (°*"*%) dependence on z, and
matching at the conductor boundary then required that fields in the dielectric have this same e’ (otkz)
form. This in turn resulted in the potential V(z) having this same e 7** dependence. But we have just

argued above that for small , this z dependence of V(z) is unjustified since T(z) cannot be neglected.

There are various other hints of trouble at low ® floating around in Chapters 3 and 4, where we often had
to assume the strong or extreme skin effect limits, meaning large . A dramatic inconsistency at very low
o was shown in Figure 3.6a which is a plot of magnetic fields lines at DC for two round wires. Since the
B fields are clearly not tangent to the conductor surfaces, we know that A, is not constant on the these

surfaces, yet that was assumed true, as shown for example in (5.3.11).

Another possible source of our low-® anomalies goes way back to Chapter 1 where, in our derivation of
the King gauge potential wave equation (1.3.20) inside the conductors (like "region 2"), we dropped a
certain term based on 62 being large in a conductor. Dropping this term is the same as assuming that the
operating frequency f is larger than the amount shown in (1.3.38), which for the Belden 8281 cable
requires that f be larger than 15KHz. Although this is a small frequency compared to the usual RF usage
range of such a cable, it is considerably larger than "DC". We had to drop this 62 term in order to obtain

(1.3.20) which in the » domain becomes (1.5.4) (V2 + Ba?)A = - Z3n;J; where the sum is over currents in
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all conductors. This PDE then has King's Helmholtz integral solution (1.5.9) which forms the basis of the
W(z) portion of Chapter 4 starting in Section 4.7 which eventually led to the transmission line equations
(4.12.17). Thus, we really should be adding the condition (1.3.38) to our analysis if we wish to avoid still
more "correction terms” in the transmission line equations like the T(z) discussed above.

We reach the conclusion that the basic theory presented in Chapters 4 and 5 (and Appendix D for round
wires) is adequate at "high frequency" which means in the skin effect regime, though results might be
valid at significantly lower ®. On the other hand, the approximations of eddy current theory are valid at
"low frequency", as presented qualitatively in Appendix P. More analytic eddy current analyses do exist,
such as that of Rodrigues and Valli.

To find a complete analytic solution valid for all o for the infinite transmission line one must face up to a
full-bore boundary value problem for the two (or more) conductors, where all the conductor interior
problems and the overall dielectric exterior problem are treated simultaneously with Maxwell's Equations,
with fulfillment of boundary conditions on all E and B field components on all conductor surfaces. We
have not attempted such a solution in this document. Since the vector potential is not constant on
conductor surfaces at all o, it seems unlikely that the King potential approach of Chapter 4 would be
useful. Moreover, the simplification of being able to ignore the transverse vector potentials Ax and Ay
leading to only two working variables ¢ and A is no longer viable at low .

We close with some comments on the network model of Appendix K which uses differentially small
lumped electronics components to model a transmission line. The model treats the conductors as if each
were an alternating series of inductances and resistances with no mention of what might actually be going
on inside the conductor volumes. If one is interested in what goes on inside, this model is lacking. On the
other hand, the conductance and capacitance aspects of the model seem very reasonable.

It is shown in Section k (c¢) that this network model implies the transmission line equations with no T(z)
term on the right side, see (K.6). Since these transmission line equations are invalid for small ®, as just
shown above, we must conclude that the entire network model itself is invalid at small ®. An implication
is that the values of k and Zg for very small @ based on this model are not to be trusted. It does seem,
however, that the expression for Zg is still reasonable even at small ®, and approaches the correct DC
limit. But the whole notion of k, including its small ® limits, is based on the traveling wave idea which
we have seen is invalid at small ®.
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Appendix A: Gauge Invariance

Here we show why it is that, in choosing potentials ¢ and A, one is allowed to set the divergence of the
vector potential A equal to an arbitrary function. This freedom of setting div A is associcated with "gauge
invariance" as explained below. Our step-by-step approach here is somewhat unconventional and brings
in the notion of a Green's function and the particular solution of the Poisson Equation. Some
extracurricular topics are brought up which may or may not interest the reader. Each section builds on the
previous section. Before getting launched, here is some terminology:

Vch =0 The Laplace Equation ( V2 =The Laplacian, has a Laplace propagator)
Vch =f the inhomogeneous Laplace Equation = The Poisson Equation (Poisson's Equation)

(V2+$%)p =0 The Helmholtz Equation ( V2+p? = the Helmholtz operator, has a Helmholtz propagator)
(V2+[32)(p =f the inhomogeneous Helmholtz Equation = has no special name

A.0 The Poisson Equation and its Solution
Fact 0: The Poisson Equation —Vztp = p/gp with @(o0) = 0 has a unique solution as stated below. (A.0.0)

For electrostatics in an isotropic medium equations (1.1.3) and (1.1.6) indicate that div E = p/e while
(1.1.2) says that curl E = 0. Since curl grad f= 0 for any function f, if one lets E = - grad ¢, then

curl E =-curl grad 9 =0
ple = div E = - div grad ¢ = -VZ¢ = -V =ple,

an equation known as the Poisson Equation. The problem of electrostatics ("potential theory™) is then to
solve —Vztp = p/e for the potential ¢, and then E = - grad ¢ produces the resulting electric field. For a static
physical situation (nothing varies with time t), the electrostatic potential ¢ matches the scalar potential ¢
appearing in (1.3.1). Here p(x) refers to the electric charge density.

(a) Imagine some static charge distribution p(x) that is constrained to a localized region near the origin
within infinite space. The distribution p(x) includes all charges in this region. Here are some types of
charges which would be included in p(x):

e point charges which are "glued down" to certain points in space.

e linear continuous charge densities that are glued down along curved filaments in space or which are
stable on conducting filaments.

o surface charge densities that are either glued to certain surfaces, or which are stable because they lie
on the surfaces of pieces of conductor (like metal).

e 3D continuous charge densities that are glued down in 3D space so they cannot move, or which
manage to achieve a stable configuration as free charge (if that is possible!)

e surface polarization charge densities not already accounted for by the € in -Vz(p =ple.
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By including all these types of charge in p, we are able to avoid the complicating issue of "boundary
surfaces" in our discussion below, and our only boundary of interest is The Great Sphere which is a
sphere of infinite radius surrounding our localized region of interest.

From Coulomb's Law (in SI units, and in an isotropic medium of dielectric constant €) we know that the
electric potential ¢ of a point charge q located at point x' is ¢(x) = q/[4neR] where R = |x-x'| is the
distance between charge q at x' and an observation point x. Such a point charge is described by p(x) =
qo(x-x"). The general equation which relates ¢(x) to p(x) is the Poisson Equation,

-V2p(x) = p(x)/e @(0)=0 . (A.0.1)

By including the condition (o) = 0, we are really describing a Poisson "boundary value problem". We
add @() = 0 because we are assuming that p(x) is localized as just noted.

Both the PDE and the boundary condition are linear. Letting ¢ = api1+ fo2, and p = ap1+ Bp2,

V2 = V(agp1+ Bez) = aV2p1 + BV2e2 = a p1(x)/e + p2(x)/e = [ pa(x) +B p2(X))/e = ple
@(0) = 0p1(©) + Pe2(0) =0+ 0=0. // boundary condition is linear

Therefore, we may superpose the potentials of multiple charges to get the potential resulting from a
distribution of charges. Thus, we at once obtain this superposed version of Coulomb's Law,

p) (A.0.2)

_ 1 s,
P(x) = 4me Jld X [x-x|

Here d3x' p(x') = dq(x') is a differential chunk of charge located at x' contained in tiny volume d3x'. Thus,
(A.0.2) must be a solution of (A.0.1). If we allow the observation point x to move right on top of some
point charge in the distribution p, we will get @ = o0, so we generally avoid such observation points.

(b) We would like to explicitly show that (A.0.2) is a solution of (A.0.1) for a general distribution p. To
this end, we digress to consider the following equation and its solution,

1
x-x']

1
-Vzg(x,x') =0(x-x") with g(wo,x") =0 => g(x,x") = an (A.0.3)
The equation on the left is Poisson's Equation where p consists of a positive point charge of q = € units
sitting at position x'. Recall from above that p(x) = qd(x-x") for a point charge. Coulomb's Law gives the
solution shown on the right. Therefore it must be true that

1 1
[x-x'| [x-x'|

1
-v? iy } =8(xx")  or -V?{ } =47 §(xx") . (A.0.4)
This last equation is derived in Appendix H (see H.1.4), but we have already shown it is true, given
Coulomb's Law. We can now show that (A.0.2) is a solution of (A.0.1) for an arbitrary distribution p as
follows:
V2o(x) == [ &3 p(x) (-V2—= } == [dPx p(x') 47 5(x-xX") = p(x)/e QED
¢ 4ne P Ix-x'| dme P P ' :
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The assisting function g(x,x') has various names with respect to (A.0.3): the Green's Function or Green
function, the fundamental solution, the free-space propagator, or the kernel. It is nothing more than the
potential created by a point charge of € units located at x' and viewed from x. Some authors put a 47 in
front of the d in the left equation of (A.0.3) which causes the 1/(47) to be absent in the right equation of
(A.0.3).

(c) We have found the particular solution of (A.0.1) given by (A.0.2). There are many other PDE
solutions which can be obtained by adding to the solution (A.0.2) a solution of -V2u = 0. This last
equation, usually written V2u =0, is called the Laplace Equation, and it is the "homogeneous" form of the
Poisson Equation, that is, the right side of the Poisson Equation is set to 0. Solutions u are called
homogeneous solutions. One obvious solution is u = 2, so we could then add 2 to (A.0.2) and get a new
solution to (A.0.1). Since we have specified that our charge distribution p(x) is localized to some region
of space, we expect that as x— oo, we must have ¢ — 0, as (A.0.1) states. The solution (A.0.2) meets this
requirement, but if we add 2, then our boundary condition @(0)= 0 is not met, so we must rule out adding
a 2. We would also rule out 2x + 3, for example, or 7xy. Recall that VZ = g%+ 8y2+ 022

It turns out that the only solution of V2u = 0 which meets the requirement u—0 as x—oo in all
directions is the trivial function u(x) = 0. In 2D one intuitively sees this because a massless taut thin
rubber sheet (drum head) tied down to height u = 0 around a circular perimeter is going to be a flat rubber
sheet with u = 0 everywhere. The solutions to the 3D equation V2u = 0 are called harmonic functions, and
it is not hard to show that any harmonic function must take both is max and min values on the boundary,
which here is a 3D great sphere. Thus Upax = 0 and umin = 0, so the only possibility is that u(x) = 0
everywhere.

The implication of the previous paragraph is that (A.0.2) is the only possible solution of (A.0.1)
because the only homogeneous solution one is allowed to add to (A.0.2) is u = 0. One can suppose there
are two different solutions of —V2(p = p/e called ¢ and ¢' both of which go to 0 on the great sphere. Then
-Vz((p-(p') = 0 with (¢-¢") — 0 on the great sphere. But then (¢-¢') = 0 so ¢' = ¢ and there cannot then
exist two different physical solutions of (A.0.1).

(d) In the following discussions, we shall be less explicit about boundary conditions like ¢(o0) = 0, but
they are always implied because we shall always be considering only a local distribution of sources. One
convenient implication of such boundary conditions is that the "parts" of parts integrations often vanish,
since they involve functions evaluated on the Great Sphere (or Great Circle in 2D). To clarify this perhaps
obscure comment, here is a statement of two integral theorems where V is an n dimensional volume and S
is an n-1 dimensional surface enclosing that volume:

fv dV Vo = fs dS ¢ // "integral of a gradient theorem" (A.0.5)
.[v dV y(Vo) =- .[v dVv (Vy)e + fs ds (yo) // "parts integration" (A.0.6)
"the minus sign" "the parts"

The first theorem is just the divergence theorem (1.1.30) applied to F(x) = ¢(x) a where a is a constant
vector. It happens that VeF = 0;F; =0i[p ai] = (0i¢p) a; =V ea,so
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[ dV VeF = [ dSeF =  (Jyvdvve)ea =[s dSe[pa]=(]s dS¢)ea

By setting a = &, § and Z one concludes that fv dV Ve = fs ds o.

The second theorem is the first applied to the function ¢—y¢ and is the generalization of 1D parts

integration to n dimensional space. The "parts" is fs dS (vo) and if S is the Great Sphere, then this

integral involves y and ¢ evaluated on the Great Sphere, and usually one of these functions is 0 there. In
what follows, we shall often be swinging a derivative from one function to the other inside an integral,
and we ignore the parts for the reason just stated.

A.1 Existence of A such that B = curl A and divA =0

Fact 1: If div B = 0, there exists an A such that B = curl A and div A =0. (A.1.0)
The "gauge choice" div A = 0 is known as the Coulomb or Transverse Gauge. More on gauges later.
Proof: There are several parts to the proof:

(a) If A exists such that B = curl A, then it will certainly be true that div B = 0, since div curl A = 0 for
any vector field A. The problem is showing that A exists, and moreover, that an A exists with div A = 0.

(b) Consider the following differential equation (at this point A is some undefined vector field):

-V2A = curl B (A.1.1a)
or, in Cartesian coordinates,

-V?(A;) = [curl B; . (A.1.1b)
We may regard this as the Poisson equation (A.0.1) where ¢ — A; and p — € [curl B]; . We know that a

Poisson equation of the form (A.0.1) has a unique physical solution of the form (A.0.2), so the solution of
(A.1.1) is given by

1 I' B(x')
Ax) = o |3 =L (A.12)
4n Ix - x|

As with p in the previous section, we think of curl B as being localized in some region near the origin and
dropping off at large distances. Perhaps B is generated by some currents in this localized region.

We take (A.1.2) to be a candidate expression for the vector field A. If we can show that div A = 0 and
that B = curl A, then (A.1.2) is a viable expression for A ( "proof by construction").
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(¢) Take the divergence of both sides of (A.1.2) [ implied sum on i ]

1

tx-x'|

div A(x) = 0:A5(x) = ;—nfd3x' [curl' B(x")]; @ (A.1.3)

We can replace 0; by - 0'; acting on 1/]x - x'| . Then we can do parts integration and move ¢'; onto [curl'
B(x'")]; with a parts sign change. In doing so, we assume that at infinity we pick up no "parts" since curl B
is assumed to drop off sufficiently fast. We end up then with:

s ll B '
div A(x) = —fd:" o div:curl’ BGT) ";r g XL (A.1.4)

But div curl F = 0 for any vector field F , so the integrand and integral vanish. Thus, we conclude that
divA=0. (A.1.5)

(d) Next, take the curl of both sides of (A.1.2). Here is the i*® component [ implied sums on j and k, and
€14k 1S the totally antisymmetric permutation tensor used to express curl components ]

[curl A()]; = £i5k05A%(X) =+ €13k 20 fd x'[curl' B(x")]x 0 (A.1.6)

3 x|

As before, replace 04 by -0'y acting on (1/x - x'|). Then do parts to move 'y onto [curl' B(x")]x. As
before, there is no "parts contribution". The result can then be put back into full vector notation to give:

curl' curl' B(x")
[x - x|

curl A(x) = +5= fd3 ' (A.1.7)

Now use the vector identity curl curl B = grad div B - V2 B=- V2B, since div B = 0. This gives

1 (5 VZB(x")
curl A(x) = I d XW . (A.1.8)

The next step is to move the operator V'? onto the other integrand factor 1/jx - x'| by doing a double parts,
and again for each parts operation there is no parts contribution from the Great Sphere at infinity. We then
use the fact (A.0.4) that Vz(l/\x -x'|) =-4n o(x-x") to get

curl A(x) = —41—n [-4nB(x)] = B(x). (A.1.9)

Thus, assuming div B = 0, we have formally constructed in (A.1.2) a vector field A such that B = curl A
and div A = 0, and this was the claim of Fact 1 stated above.
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A.2 Existence of A' such that B=curl A' and div A'=f.

Fact 2: If div B = 0, there exists A' such that B = curl A' and div A' = f(x), where f(x) is an arbitrary
scalar field which "drops off" in some reasonable (sufficient) manner as |x| — . (A.2.0)

Proof: From Fact 1, we first find A such that B = curl A and div A = 0. We then define
A'=A +grad A dim(A) = volt-sec (A.2.1)

where A is some so-far arbitrary function (scalar field). As shown below (1.3.1), dim(A) = volt-sec/m,
and therefore dim(A) = volt-sec. It follows from (A.2.1) that

divA'=divA+VZA=V3A. (A.2.2)
We would like to have div A' = f, so we must find A such that
VA =T . dim(f) = volt-sec/m? (A.2.3)

But this is once again Poisson's Equation (A.0.1) with ¢ — A and p — -&f. Translating (A.0.2) we then
find that

A(x) = —ﬁ JENICO (A.2.4)

x-x'|
Meanwhile, from (A.2.1) we also conclude that, since curl grad g = 0 for any function g,
curl A'=curl A+ curl grad A=curlA=B. (A.2.5)

Thus, assuming div B = 0, we have formally constructed a vector field A' such that B = curl A’ and

div A' = f(x) where f(x) is any function we like that drops off sufficiently fast as |x|— oo, and this is the
claim of Fact 2. If f(x) drops off away from the origin, this is like the p(x) of Fact 0, and we find that A —
0 as x — o in any direction. Then since A = 0 on the Great Sphere, we know that there are no
homogenous solutions to VA = 0 which could be added to (A.2.4) and so A(x) is uniquely determined by
our selected function f(x). The function A(x) is called a gauge function for reasons given below.

A.3 Existence of ¢ such that E = -grad ¢
Fact 3: If curl E = 0, then there exists a ¢ such that E=-grad ¢ . (A.3.0)
Proof: This proof is almost identical to that of Fact 1, but a little simpler.

(a) If ¢ exists such that E = - grad ¢, then it will certainly be true that curl E = 0, since curl grad ¢ = 0 for
any function @. The problem is showing that ¢ exists.

(b) Consider the following differential equation (at this point ¢ is some undefined scalar field):
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VZp =-divE. (A3.1)

This is yet again Poisson's equation (A.0.1) for ¢, this time with p— ¢ div E, we solve it as in (A.0.2) to
get,

1 div' E(x'
o(x) =7~ Jd-”’x' ﬁ—% (A.3.2)

As usual, we assume that div E drops off in some sufficient manner away from the origin going to
infinity. Perhaps E is generated by a charge distribution in some region near the origin.

(c) Next, take the grad of both sides of (A.3.2). Here is the ith component:

1 o 1
dip(x) = Efd3x' div' E (x') 05 x| (A.3.3)

As usual, replace 05 by -0'y acting on (1/|x - x'[). Then do parts to move 0'y onto div' E(x") with a second
sign change, and also as usual there is no "parts contribution" from the Great Sphere. The result can then
be put back into full vector notation to give:

grad' div' E(x")
Ix - x'|

1
grad o(x) = +7- fd3x' (A.3.4)

Now use the vector identity grad div E = curl curl E + V? E = V2 E , since curl E= 0. This gives

_ 1 (3 YPEGY
grad @(x) = o d>x x- x| . (A.3.5)

As before, move the operator V'2 onto the other term 1/ [x - x'| by doing a double parts. We then use the
fact (A.0.4) that Vz(l/\x - x'|) = - 4m 3(x-x") to get

1
grad o(x) = i [-4nE(x) ] =-E(x) (A.3.6)

Thus, assuming curl E = 0, we have constructed a function ¢ in (A.3.2) such that E = - grad ¢, so ¢ must
exist, and this is the claim of Fact 3.

A.4 Existence of A' and ¢' such that B=curl A', E =-grad ¢' - 0:A', and div A' ={.

Fact 4: If div B = 0 and curl E = - 6B/0t , then there exist both A' and ¢' such that B = curl A' and
E = - grad ¢' - 0A'/0t , and the quantity div A' may be set to any function f. (A.4.0)
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Proof: We know from Fact 2 that A’ exists such that B = curl A" and such that div A' equals any arbitrary
function f. If we start with some arbitrary A and ¢, the successful A' from (A.2.1) is A'= A + grad A
where A is given by (A.2.4) as an integral over f. What is the corresponding ¢' ? Since the E field
corresponding to (A,) and (A',¢") must be the same, we must have -E = -E' or

grad ¢ + OtA = grad @'+ 0LA' .
Since A'= A + grad A, then O¢A' = OtA + grad Ot A, so the above reads

grad ¢ = grad ¢' + grad O¢ A

which is satisfied by ¢'= ¢ - OtA. Thus, the successful potential pair giving div A' = f is this:

A'=A +grad A
0 =0 - 0 // dim(A) = volt-sec (A.4.1)
where from (A.2.4),

1 f(x'
AX) = -7~ fd:sx'ﬁ (A.2.3)

The pair of equations (A.4.1) is called a gauge transformation and we have just seen in Facts 2 and 4
that a gauge transformation preserves both E and B. That E' = E was built into (A.4.1), and B' = B since
B' = curl A' = curl A + curl grad A = B + 0 = B. Each possible choice for f implies a gauge function A
from (A.2.3) which then creates the gauge transformation (A.4.1). There are an infinite set of f and
corresponding A functions, so there are an infinite number of gauge transformations which leave the E
and B fields invariant. We are free to choose a gauge such that div A' = f for any f we like.

A.5 Gauge Invariance
In electromagnetism, the situation of Fact 4 arises for

B = magnetic field
A = vector potential
E = electric field

¢ = scalar potential

Using the gauge transformation (A.4.1), one transforms from A,p to A',¢' without altering the physical
electromagnetic fields E and B. The electromagnetic fields are thus invariant under such a gauge
transformation, and one says that the classical theory of electromagnetism is gauge invariant.

The word "gauge" was first used by Hermann Weyl in the context of general relativity. Gauge invariant
there means that a certain "covariant derivative" transforms as a proper tensor object so that things have
the same form in different coordinate systems used to measure things. These different coordinate systems
were referred to as different "gauges" in the sense that a gauge is a marked-off measuring instrument used
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to measure something (like the marked-off x-axis of a coordinate system). In general relativity the metric
tensor gy, which defines the meaning of distance in the 4 dimensions of spacetime, is a function gpy(X)
of the local location in spacetime x. Weyl considered the effect of rescaling the metric tensor according to
Zuv(X) — MX)guv(X) where A(x) was an arbitrary "gauge function" (like our A(x) ). Nowadays, gauge
invariance is associated with any continuous degree(s) of freedom of a theory which don't affect physical
measurements derived from the theory, such as our gauge transformation (A.4.1). See Quigley.

A.6 The Lorenz Gauge and QED

This section is certainly off the transmission-lines beaten path, but the author thought the reader might
find it interesting. It is true that the nature of a transmission line results from photons "jumping back and
forth" between the conductors. Unlike elsewhere in this document, everything is not fully explained in the
following quick outline. A more detailed description of the tensor notation used below may be found in
the author's Tensor Analysis document and elsewhere.

In relativistic notation one uses 4-vectors which have one time component and three spatial
components such as x* = (ct,x,y,z) which denotes a point in "spacetime". The time component t is
multiplied by the speed of light ¢ so that all four components have the same units -- distance L. Often
people measure distance in light-seconds instead of meters so in such units ¢ = 1, but we shall display the
¢ to keep track of units. This x* is a "contravariant" (index up) 4-vector and the corresponding "covariant"

(index down) 4-vector is x, = (ct,-X,-y,-z). Thus, one has x° = x (= ct) but x* = -x;. We are assuming
here the "Bjorken-Drell metric" gn, = diag(l,-1,-1,-1). The gradient operator 0; "transforms as" the
spatial part of the covariant 4-vector 0,,, and one can write ot =-0; just as xt = x; fori= 1,2,3. This
four-vector gradient operator can be written 6, = (9o, 01) and " = (80, &%) = (9o, -01) where P =00=

1 10 . . - . 0 0
< Oc = ca The four components of é* all have dimension L™. The Laplacian is V? = 8;0; = ok o

1
(implied sum on i) while the corresponding object O = 0,0" = Ezﬁtz - V2 is the D'Alembertian which

appears in wave equations.
Consider then the gauge transformation (A.4.1) which in relativistic tensor notation is

At =AY+ 0;A =AY- 5A i=1,23
O =0 - %A =¢ - cPA . (A.6.1)

The components of a classical vector like A, normally written as Aj;, are in fact the contravariant

i . . 1 :
components A* in tensor notation. If we now define A® = <@ we can combine the two gauge

transformation equations into a single equation involving three 4-vectors (one of which is o¥A),
AP =AY - FA n=0,1,2,3. (A.6.2)

Suppose we want 6,A™ = 0 (implicit sum on p = 0,1,2,3). This would be a relativistic version of the
Coulomb gauge choice that 3;A* = div A = 0. If we could find a potential A™ with this property, that
would be very convenient for the following reason: In general a,b” (= a¥b, = a e b) is the same in all
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frames of reference related by Lorentz Transformations. If apA"1 = 0 in one frame, it is 0 in all frames,
and that makes computational life simple. For example, let S and S" be two frames of reference related by
a Lorentz transformation. Then the implication is that

0pAM(x")=0 = 0"y AM(x")=0 where 0y = 0/0x" and 0", = 0/0x""

frame S observer frame S" observer

So, is it possible to have d,A" = 0 ? Writing this out we get

. 1.1 1
0A°+ A =0 => Cac[9]+divVA'=0 = Z O +divA'=0
SO
, 1
div A'= -z Oep' (A.6.3)

But we showed in Fact 2 that given any A, we can find an E-B-fields-equivalent A' which has div A' =
any f(x) we want, so we just select f(x) = -(1/c?) 09'/ot. By selecting this f(x), we are selecting the
Lorenz Gauge. In this gauge (now dropping the prime on A), one has 6,A" = 0. Thus, the condition
defining the Lorenz Gauge is Lorentz covariant under all Lorentz transformations. The reason is that both
sides of G,A¥ = 0 "transform" as the same kind of tensor object, in this case a scalar object. One can
interpret 0,A¥ = 0 as 0eA = 0 where 0 is a 4-divergence operator. Thus, in the Lorenz gauge, the 4-
divergence of AF is always exactly 0 at every point in spacetime. [ Lorenz and Lorentz are two different
people, see the Comment below equation (1.3.6).]

In 3D if we said that div F = 8;F* = 0 defined something called a gauge condition, it would be clear
that F was not uniquely determined by that condition since many vector fields have zero divergence. Just
so, the Lorenz gauge condition 0,A* = 0 does not uniquely determine A" , it is just a condition on A". So
in fact there are many pairs (A,p) which satisfy the Lorenz gauge condition, so the term "the Lorenz
gauge" is a little misleading, though we shall use it anyway. It is a class of gauges.

In relativistic quantum field theory (aka quantum electrodynamics, or QED), the potential A" is
interpreted as the quantum field of a massless vector particle called the photon. The potentials ¢ and A are
thus promoted from being mere "helper functions" to having their own particle interpretation. In the
Lagrangian density for the photon-electron system an interaction term - J,A¥ appears,

L= . - J.AY Ja=cCoV vy v (A.6.4)

where J,, is the electric current, an operator built from the quantum field y of the electron. The number eq
is the so-called bare (unrenormalized) charge of the electron. According to (A.6.2), a gauge
transformation on A" creates a new term - J,, o"'A in the Lagrangian density. In Lagrangian dynamics, the

physics of QED is determined by S = fd4x L= fd3x f dt .£ which is called the action. If we insert the

gauge term -J,0"A into the action and do parts integration to move &* from A to J,, we end up with an

action change AS = fd4x (6"Jw)A. But at every point in spacetime, we know that &"J, = 0 (shown in a
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moment) so we find that AS = 0 which means the action S is invariant under any gauge transformation.
The reason o"J,, = 6,J" = 0 is because J* = (cp, J*) where p is charge density and J* is electric current, and

1 :
then the statement 0,J% = 0 says that Eﬁt(cp) + 0iJ* = 0 or div J = -dp/dt. This is the equation of

continuity (1.1.8) which says that if there is a current flowing out of a tiny volume of space, the charge
density in that volume must be correspondingly decreasing. In other words, charge is "conserved". We
can reverse our logic to conclude that the reason electric charge is conserved and cannot "leak away into
the vacuum" is due to the invariance of the QED action under gauge transformations (A.6.2). More
generally, symmetries (invariances) of the action always result in conserved quantities. Since 1949,
unusual names have been given to similar conversed quantities: isospin, strangeness, color, charm, etc.
The association of a conserved quantity with a differential symmetry of the action is known as Noether's
Theorem, in honor of Ms. Emmy Noether who first showed this connection in 1915.

A.7 Finding the gauge function A for the Lorentz Gauge: time-domain propagators

In Fact 4 (A.4.0) it was noted that if one already has a potential set (A,p), it is possible to find a new
potential set (A',¢") such that div A' = f for any reasonable f. The method of finding the new set (A',¢")
was to find the function A from f as shown in (A.2.4) and then use the gauge transformation implied by A
as shown in (A.4.1) to find the new potentials (A',¢").

In the discussion of the Lorenz Gauge, we thus imagine we have some (A,p) and we want then to find

: . 1 S .
a potential set (A',¢") such that div A'= - 2 O0¢@', which is the Lorenz Gauge (A.6.3). We are thus using f

=-Z Oc®' where @' is the partner to A'. One might fairly inquire what this function f actually is in terms

of the starting potentials (A,), since one does not a priori know what ¢' is. In other words, since we don't
a priori know what f(x) is, we cannot use (A.2.3) to find the right gauge function A to give the right new
potentials (A',¢'), so we seem to be in a circular conundrum when we try to fit this Lorentz gauge
situation into the framework of our accumulated Facts above.

Here is one way to find the right function A in terms of (A,p). We know from (A.2.3) and (A.4.1) that
2 1 . 1
VoA =1 =-Z O’ = -2 Oe[0-0eA] .

This can be written as follows, where the left side is the 3D wave equation operator acting on A,
(02 - AVHA = 00 . (A.7.1)

Since we know ¢ from (A,p), we can obtain A by solving this differential equation. The equation is
similar to the Poisson equation (A.0.1) when written this way in terms of the [ symbol introduced above,

AOA = 6o . // Stakgold (5.141) with u— A and q— O¢@ (A.7.2)

Here and below we include some supporting equation numbers from Stakgold Vol II. The formal solution
of (A.7.2) can be found by first defining a Green's Function as we did above in (A.0.3),
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20 g(x,t; X,t) = 8(x-x")3(t-t) // Stakgold (5.142) (A.7.3)

The solution Green's function (propagator) is given by

«—

c? g(x,t; x',t") = (1/4nR)4(t-t'-R/c) with R = [x-x/| // Stakgold (5.155) n=3 (A.7.4)

We have added an arrow that shows the direction of the propagator: it runs from time t' in the past to time
t in the future, in which case t > t'. The propagator vanishes for all t <t' since in that case t-t'-R/c <0 and
the § function can never get a hit. This g is an example of a "causal" Green's function and it describes an
expanding spherical wavefront seen at observation point x at time t propagating at velocity ¢ from a point
source at location x' and time t' in the past. Formally one can then express a solution to (A.7.2) in a form
similar to (A.0.2),

A = [ a3 [dt gxt xt) B p(xt) (A.7.5)

Application of ¢2[] to both sides of (A.7.5) with use of (A.7.3) reproduces (A.7.2) showing that (A.7.5) is
indeed the particular solution of (A.7.2). Inserting the propagator (A.7.4) we find that

1 Orp(Xx', t-R/c
A =3z fd&'% R=|x-x]| . (A.7.6)

Thus we have solved our conundrum in that we have A expressed in terms of ¢ from the set (A,¢p). The
solution (A.7.6) has the same form as the retarded solutions of Section 1.4. Once we have this A, we may
use (A.4.1) to find the set (A',9") given the set (A,).

Comments:

1. Whereas the Laplace equation with v2is "elliptic" in nature, the wave equation is "hyperbolic" since
the various second derivatives in L1 don't all have the same sign, resulting in a change in the nature of the
Green's function solution, the principle fact being that it is a causal function in terms of the time
coordinates. For details on the above discussion, see Stakgold Vol II p 61-63 (fundamental solutions) and
p 246-256 (Green's functions for the wave equation). Stakgold treats this subject with an arbitrary number
of spatial dimensions n. One finds, for example, that for n = 3 the propagator (A.7.4) is an expanding
infinitely thin spherical shell with no wake, whereas for n = 2 there is a wake behind the front as in his
(5.151) which says

g(r,t) = 0(t-r/v) 1A/ (Vt)z— 12 (A.7.7)

where v is wave velocity. It is difficult to create a clean unit impulse in water, but here is the rough idea:
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g = 1l/sqrt(v"2*t"2-r"2);, 4.59
1 i
g=—— 3.5
/ 232_ 2 39
v d 25
v :=1; t :=1 2
v=1 1.54
plot(g, r=0..t, thickness 3); 5 0o 04, 06 g i

http://physicsilluminati.blogspot.com/2012/10/wave-optics.html

2. The time-domain Green's functions quoted in (A.7.4) for n =3 and (A.7.7) for n = 2 are propagators for
the wave equation (A.7.3) in 3D and 2D. When these Green's functions are Fourier transformed to the
frequency @ domain, they become the 3D and 2D Helmholtz propagators discussed in Appendix H and I,
namely

gr(r,r'; ©) = e I*¥/47R = the Helmholtz 3D free-space propagator R=|r-r]| (H.1.7)

gr(r,r'; ) =(j/4) Ho (1) (kR) = the Helmholtz 2D free-space propagator k% = mzus (1.1.7)

262


http://physicsilluminati.blogspot.com/2012/10/wave-optics.html�
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Appendix B: Magnetization Surface Currents on a Conductor
Overview

When a conductor of magnetic permeability pp is embedded in a medium of w3 with g3 # pz, a "bound
current" (magnetization current) appears on the conductor surface.

Section B.1 shows how this surface current K is related to the H field at the surface.

Section B.2 shows how to compute H from the volume conduction current density J.

Section B.3 then outlines a general plan for computing surface current K for an arbitrary conductor.
Section B.4 computes H and the surface current for a round wire using symmetry.

Section B.5 repeats the calculation using the general method outlined in Section B.3.

Section B.6 presents what we call "the J, Theorem" which shows that adding the magnetization

surface current of Section B.3 to the conduction current of a transmission line conductor adjusts the
Helmholtz integral for A, so it gives the correct A, when the conductor and dielectric have different

permeabilities, 3 # a.

Section B.7 shows how this "J, Theorem" works for a round conductor. Plots are displayed for the
three quantities Az, Bg and He.

The conductors considered here are those of a transmission line in the "transmission line limit" in which it
is assumed that the wavelength along the line is much longer than the transverse dimensions of the line. In
this case, it is reasonable to use 2D wave equations whose solutions then involve use of the 2D Laplace
free-space propagator In(R/2x) as discussed in Appendix I.

B.1 Relationship between surface current K and the field H at a conductor boundary
First, consider this blowup of a piece of the boundary between a conductor (medium 2) and a dielectric

(medium 1). Both media extend uniformly in the z direction, so we are looking at a piece of the cross
section of a transmission line at a particular point on the surface of one of the conductors.

. y
dielectric 1 —— ¢
conductor 2 >- s
z X

Fig B.1
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We shall assume that the conduction current is positive in the z direction, so J = J,2 with I, > 0. Since
the lower medium is the conductor in the drawing, the B and H field at the boundary are in the -%
direction, that is to say, they point to the left due to the right hand rule relating J and B or H .

According to (1.1.44), the tangential component of the H field is continuous at a boundary provided
the boundary does not carry a free surface current, which is our situation here ( we ignore any Debye
surface currents, see text above (4.7.9) ). Therefore,

Hxz = Hx1 (1/p1)Bx1 = (1/p2)Bx2 . (B.1.1)

Assuming 2 > pp (which would be the case if 3 = po), the right equation implies [Bxz| > [Bxi| so the B
field is larger inside the conductor. But in our picture, both Bx2 and Byi are negative, so -Bx2 > - Bx1
which then says Bxz < Bx1 and finally (Bxz - Bx1) < 0. Also, Hxo = Hx1 < 0. For the red loop shown in
the figure one then has, as s— 0,

$ Beds = BesL - Byal =(Byz - Bxi)L <0. (B.1.2)
Now consider Stokes's theorem (1.1.31) and (1.1.24) which say ( in the ® domain),
$Beds = [scurlBedS =po s [jocE + Jo + Ju] » dS (B.1.3)

where dS = dS 2. Since E o dS involves only E, (parallel to surface), and since by (1.1.41) such E, is
continuous at the boundary, and since E, = 0 inside the conductor, the gjoE term makes no contribution,
giving then

$Beds = po J s [Jo+Ju]®dS . (B.1.4)

As the distance s is taken to 0 in the red math loop above, fs Je ¢ dS — 0 because the conduction

current is non-singular at the boundary. That is to say, fs JecodS — Jc o fs dS — 0. Since we shall

take this limit in the end, we can then ignore the J. term in (B.1.4) and write
fﬁ Beds = g fs Jm @ dS. intending to take s— 0 . (B.1.5)

Since J. flows in the +Z direction, the surface current Jp flows in the -Z direction (as shown below), so
write

Jn=K, d(y) 2 (B.1.6)

where K, < 0 is the magnitude of the magnetization surface current. Then
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[s Jneds =K, fode f_ssdya(y)% o3 =K, fOde —K,L . (B.1.7)

Thus from (B.1.2), (B.1.5) and (B.1.7) we find that

Ho Kz =Bxz - Bx1 . (B.1.8)
Compare this with (1.1.44) which says (as noted earlier, K;¥**® = 0 on the boundary)
0 =Hxz - Hx1. (1.1.44)

The H field does not "see" the magnetization surface current K, but the B field does see it.

The signs are consistent with K, <0 and (Bxz - Bx1) < 0 as noted above. Then from (B.1.1) we find
HoKz = Bx2 - Bx1 = (u2Hx2 - paHx1) = (n2-p1) Hx

and finally

_ bz
Ke=(0 - g ) Hee (B.1.9)

As noted earlier, Hyo < 0 so K, <0 is consistent with pp > pj.

We now rewrite this result in terms of a different picture: 2

Fig B.2

This shows the cross section of the entire conductor in gray, and J. is still directed toward the viewer. In

this picture a point on the surface is associated with a local coordinate system for which # = § is normal
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to the surface and § = -8 is tangent to the surface (so Hg = -Hyx). We are thinking of (r,0,z) as local

cylindrical coordinates at the point shown on the conductor surface, where # x 0 - 2, and the x,y,z
directions of the figure match those of the previous figure where as usual £ x § =2 . Then (B.1.9) says

R A Y
Kz——(Mo Mo)He amps/m (B.1.10)

where Hg > 0 and K, < 0.

In general, K is a function of position on the perimeter of the conductor cross section.

We can compute the total magnetization current I, (amps) by integrating K, around the perimeter of
the conductor:

_ H2 1 _
chzdS = _(uo_uo)chedS (

H2

ﬁ
Ho Mo )fﬁcHods

But by (1.1.37),
fcHods = Js [jocErI]odS= [s [joeEstl,]dS = [s1,dS =1

and therefore

_ 2 om
In = JcKqds (- a1 (B.1.11)

The ratio of the magnetization current to the conduction current is given by constant fy, ,

P Lt
fo = T/ T == (- ) (B.1.12)

and this result is independent of the shape of the conductor. Of course if pu; = pp, there is no
magnetization current and K, and I, are both zero.

Example: For a round wire of radius a carrying an axially symmetric current distribution, we know that
2naHeg = I so Hg = I/(27a) at the surface. Then

K, =- (% - % ) [ I/(2ma)] . // round wire of radius a and p,, dielectric ps (B.1.13)

The total surface magnetization current integrated around the round wire surface is then

_ o mom
In =2maKe =- (= - o) (B.1.14)
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in agreement with (B.1.11).
For example, if the dielectric has p1 = po and the conductor has p2 = 2po, then Ipag = - 1.
We return to this example in Section B.4 below.

Physical mechanism of the magnetization surface current. As a reminder, a surface magnetization current
arises at a boundary between media with different p values just the way surface polarization charge arises
at a boundary between media with different €. In the p case, here is a suggestive picture :
top view
surface current K

end view

o

/ \
H2
i NO) > B& v O):!
Ho

On the left we look at a round wire end on, while the right shows a top view where the front end of the
wire on the left has been tilted down. Here p3= po so there is only vacuum outside the wire. The B field

Fig B.3

lines up the little magnetic dipoles (or creates them) according to the right hand rule which we represent
schematically as little atoms with orbiting electrons. On the right, B comes out of paper and lines up the
magnetic moments CCW as shown there. On the left, B goes into paper so the moments are lined up
clockwise instead. In both cases, the resulting magnetization surface current is in the same direction, as
indicated by the arrows of the loops hanging outside the wire. The picture shows why it is that the surface
current is directed opposite to the current J which creates it, a sort of magnetization Lenz's Law. Note that
this surface current is "not seen" by H, but it is seen by B, as mentioned in (1.1.24). [ Atom arrows
represent current, electrons go in the opposite direction. ]

In the case that the outer medium has some p; > po, both media have surface currents at the
boundary, and then when p1 # i, there is a surface current imbalance resulting in a net surface current. If
it happens that p; < pp, then the directions shown above are correct, but if p > o, the surface current
runs in the opposite direction to that shown.

There is also a bulk volume magnetization current away from the surface, not shown above. Details
of the magnetization current Jy for a round wire are computed (DC) in Appendix G (G.3.4) where the
current density Jp, includes a surface delta function.
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B.2 Calculation of H from the current J in a conductor
(a) An expression for H in terms of J

First, we want to clarify the connection between H and J in terms of Maxwell's equations. Since J = oE,
we can write the curl H equation (1.1.1) in these three equivalent ways:

a culH= joweE+J = displacement current + conduction current (111) (B.2.1a)
b curlH= jo(¢oc)d E=e-jo/o =e+o/jo (B.2.1b)
¢ culH= jofE. (B.2.1¢)

Using the identity curl curl = grad div -v2 and noting that div H = p div B =0 from (1.1.4) we find
curl curl H=-V?H . (B.2.2)

Applying curl to the three forms above, then using (B.2.2) and doing some small algebra as shown below,
one obtains these three exactly equivalent equations for H :

a (V2 + KZ)H =-curl J K2 = mzsu // agrees with (1.5.26) (B.2.3a)
b V?H= -jo(¢/o) curlJ =-[1+jo(e/c) ] curl J E= e+ oljo (B.2.3b)
c (V2 +p?)H =0 B2 = w3Ep // agrees with (1.5.27) (B.2.3¢)

Forms a and ¢ make use of (1.1.2) which says curl E = -joB = -jouH .
Algebra:
a -V2H =curl (joeE + J) = joe(-jopH) + curl J = mzsuH +curl J =«?H + curl J

b -V2H =curl (jo(é/o) J) =jw(é/o) curl J
¢ -V2H =curl (jo& E) = (jo&)( -jopH) = 0®tn H = B*H

We showed below (2.2.2) that for f << 10*® Hz, we have we/o << 1 (copper). Assuming this inequality
for any practical ®, we know that & << o/m so & =o/jo and p? = ©*(c/jo)u = - jopc which agrees with
(1.5.1d). In this situation, since - jo(&/c) = -1, we can write (B.2.3b) above as

V2H = -curl J . // copper for f<< 108 Hz (B.2.4)
One might wonder how this last equation and (B.2.3a) can both be valid. The reason is that
K%/B?| = w%ew/ (- jopo) = |-we/o| =ve/s <<1 . (B.2.5)

Then using this fact and (B.2.3c) we find
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| k2H| <<|p?H| =|VZH| so | K2H| << |V H| (B.2.6)
so the k? term in (B.2.3a) makes no significant contribution.

Recalling (H.1.8),

-V2 f(x) = s(x) => f(x) = fd3x' [1/47nR] s(x') + homogeneous solutions
The Poisson Equation (H.1.8)

one can write the Helmholtz particular integral solution of (B.2.4) as
H(x) = fd3x' [1/4nR] curl’ J(x") (B.2.7)

where [1/4nR] is the Laplace free-space propagator.
(b) An alternative derivation using the vector potential A

Consider a conductor with p,g,0,E surrounded by a dielectric with pgy,e4,04,6q - Here are two equations for
the vector potential associated with the conductor current J. The first equation is for the King gauge,
while the second is for the Lorenz gauge:

(V2 +BDAKX) = - pnJ(x) (1.5.4) Ba?= w’ugta // King gauge (B.2.82)
(V2 +BoHAKX) = -pdx) . (1.5.28) Bo? = ®’ne  // Lorenz gauge (B.2.8b)

Recalling (H.1.9),

- (VAHP) f(x) = s(x) => f(x) = fd3x' [e"3*®/4nR] s(x") + homogeneous solutions

The Helmholtz Equation (H.1.9)

we may write down the Helmholtz particular integral solutions to (B.2.8),

Ax) = _[d3x’ [e"3PdR/47R] J(x") King gauge R = |x-x/| (B.2.9a)

A(X) = fd3x' [eIPOR/4nR] J(x") Lorenz gauge R = [x-X/| (B.2.9b)
where [e”7PO®/47R] is the usual 3D Helmholtz propagator.

We know that B = curl A and therefore, using P to stand for either B4 or o,

Hx) = (/) curl A) = [ d3x' curl ( [e™3P*¥/47R] J(x')) (B.2.10)
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Notice that J(x') is a constant in terms of the unprimed curl operator. A useful vector identity then is

Vx(@Q)=VoxQ+o(VxQ) =(Vo)xQ Q = constant vector .

Thus one may write
H) = | d3x Ve IP*®/47R] x J(x") .

Since R = |x-x'| we know V acting on any function of R is the same as -V' on that function, so
Hx) = - | d3% V'[e 3P®/4nR] x J(x")

or in components (implied sum on r and s) ,
Hy =- J X e300 0% [ IP=R/4TR] Jo(x') .

Doing parts integration and dropping the parts (see Section A.0 (d)), we get

H; =+ J‘d3X' [e_jpxR/4nR] €irs [0'r Js(X')]
or

H(x) = [ d® [e7P¥/4nR] curl J(x) . (B.2.11)
We can compare this result to (B.2.7) obtained assuming f << 10*® Hz,
H(x) = fd3x' [1/4nR] curl' J(x') . 3D R = |x-x/| (B.2.7)

We conclude that in either gauge, and for this frequency range with copper, the exponential factor ¢”3P=®

in (B.2.11) may be ignored. This basically says that the main contribution to the integral comes from the
region near R = 0.

At low o and in particular at DC with ® = 0, we may assume that J = J(x,y) with no z dependence. In this
case we can do the dz' integration in (B.2.7) as shown in (J.10) which converts [1/4nR] to [-In(s)/27 ].
Renaming s to be R in 2D, we obtain

H(xy) = J & [-In(R)2x] curl J(x'y') 2D R = [x-x| (B.2.12)

where now [-In(R)/2x] is the 2D Laplace free-space propagator of (I1.1.8). In fact, this 2D result follows
directly from (I.1.8) if we assume that H = H(x,y) so that V2H = V,p2 H.
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(c) Boundary conditions

Recall from (B.1.1) that the tangential component of H is continuous through the boundary between
conductor and dielectric, even if p; # pz. Consider then the transverse component of (B.2.7) at some point
on the conductor surface such as the point shown in Fig 3.3. We have (t = transverse)

He(x) = J d®x' [1/47R] ] [curl' J(x)]e R=[x-x| .

This particular integral is naturally continuous at the boundary between the media, and this agrees with
the fact that He(x) must have this property. Therefore, no homogeneous solutions of (B.2.4) VZH¢ = 0
need be added in, so (B.2.12) is the complete solution for He(x). This solution can then be used in
(B.1.10) to find the magnetization surface current.

(d) The Biot-Savart Law in 3D and 2D

Recall from above the 3D vector Helmholtz equation valid for f<< 108 Hz, and its solution

V2H =- curl J (B.2.4)

H(x) = J & [1/47R] curl' J(x') . R = [x-x| (B.2.7) (B.2.13)

We shall now reverse the steps done in the previous section, but this time with e 3*® =1 based on the

conclusion just drawn above. In components (B.2.7) reads,
1 . . :
Hi(x) = fd3x' [47t_R] i3k 0'3Jk(X') , R =x-x' = points to observation point x . (B.2.14)

Then move 04+ from Jx to (1/R) by parts integration (pick up minus sign) and throw out the parts for the
usual reasons (see Section A.0 (d)),

1 1
Hi(x)=- fd3x' i J'; (E) 15k Jr(X') . (B.2.15)
Then note that G’jR'l =_R? d'sR and

3R =0'5\Z(x'kxk)® = (1/2)(I/R) 2(x'3-x3) = R7* (x'3-x3) =-R7'Ry (B.2.16)

so that 6'jR_1 = +R_3Rj. Only the parts minus sign remains, so
3.1 1 l
Hi(x) = - | & [ 73] a3 Ry J(x) (B.2.17)
or reversing the cross product order,
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1
H) = [d* 3 JE) xR . R=x-x' (B.2.18)

This equation is basically the 3D Biot-Savart Law, see for example Panofsky and Philips p 125 (7.31).
For a short piece ds' of thin wire carrying current I, one writes J(x') d*x' = I ds' so the above becomes,

1 1
H(x) = Eﬁ ml ds'x R or dH(x) = ml ds'xR. (B.2.19)

We can apply the same process to obtain a 2D Biot-Savart Law as follows. Start with
V220 H(x,y) = - curl J J=1(xy)2 (B.2.4)

and its solution (B.2.5) obtained from (I.1.8)

1
H(x,y) = fdzx' [% In(1/R) ] curl' J(x") R = x-x| (B.2.5)
1 . . .
where P In(1/R) is the Laplace 2D free-space propagator. Then, inverting 1/R,

1
Hi(xy) =- Jd® [5-I(R) T esgnc &'3x(x). (B.2.20)
Doing the same parts integration gives
1
Hi(X,y) =+ _[dZX' [% 6':-, ln(R) ] €ijk Jk(X') (B221)

and now using result (B.2.16) from above,

d'5In(R)=R7'3R =R™* [-R™* R3] = -R"%R; (B.2.22)
we get
J‘ 2., L o2 b f 2, 1 '
Hi(X,y) =- d°x [ I R Rj ] €ijk Jk(X) =-Jd%x 27I_R2 €ijk Rj Jk(X) (B223)
or
]
Hiy) = [ d 35z Jx) xR R=x-x (B.2.24)

which is the 2D Biot-Savart Law. It provides a way to obtain H from J in a 2D problem. In such a
problem, we assume that J = J(x,y) with no z dependence.
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B.3 General Method for computing the surface current J, on a wire
Here are the steps for a wire of arbitrary cross sectional shape:

1. Compute H from J. Consider these sets of equations obtained above:

3D
1
H) = [ & o2 curl J(x) R = [x-x]| (B.2.7)
H®x) = fd3x' ﬁs Jx)xR . R=x-x' Biot-Savart (B.2.18)
1
A®) = p  dx g I R = [x-x] H=(1/) curl A (B.2.9)
2D
H(x,y) = fdzx’ L}lnzl;R curl' J(x',y") R =|x-x| (B.2.12)
1
H(x,y) = fdzx’ aRZ JXLY) xR R=x-x' Biot-Savart (B.2.24)
In(1/R
A(x,y) = u fde' ﬂzn_l J(xy") R = [x-X/| H=(1/p) curl A (B.3.1)

where the last line for A is the same 3D—2D reduction used for H. For either 3D or 2D, we thus provide
three different methods for computing H from J.

2. Evaluate this H field at xp, = (Xp,y») for all points xp, on the cross section boundary.

3. Compute the component of H which is tangential to the boundary in the cross sectional plane. Call this
component He.

4. The surface current density is then given by (B.1.10),

_ B2 M
Kz=- ( mo " o ) He amps/m (B.1.10)

B.4 Surface current on a round wire with uniform J

For a round wire of radius a with uniform J, (as would be the DC case © = 0), geometric symmetry makes
the calculation of H very easy. One need only apply Ampere's Law separately for a point r outside the
wire, and for another point r inside the wire. For the outside case one finds

2nr He(r) =1 => He(r) = I/(27r) r>a . (B.4.1)

And then for the inside case the "current enclosed" is determined by a simple area fraction.
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2nr He(r) = 1 (nr?/na®) =>  He(r) =11/(2na?) r<a . (B.4.2)
At the boundary the two expressions agree and we have
He =1/(2ma) . (B.4.3)

If this wire has magnetic permeability 1, and is embedded in an infinite medium of p;, then the surface
magnetization current induced on the wire is

H2 M o
Ko=- (== -~ )Hs =-(—=
z (Mo Mo) 8 (Mo

- % ) I/(2ma) amp/m (B.4.4)
K, =K,?2 (B.4.5)

and this surface current is in the direction opposite J if pp > ps. If pg = pp, the surface current vanishes.
This surface current could be expressed in volume density form as

Jn = K 8(r-a)2 amp/m2 . (B.4.6)
B.5 Computing Hg for a round wire using the General Method of B.3
For a wire of some general cross section, symmetry is not available to allow the simple solution for Hg
outlined in the previous section. We then have to use the more general method outlined in Section B.3

above. As a check on the viability of this general method, we shall carry out "step 1" of the method and
show how Hg may be computed from J using the 2D formula (B.2.12).

The conduction current density in a round wire with uniform J, is given by
J2(r) = JoO(a-r) (B.5.1)

where 0 is the Heaviside step function. Our first step is to compute curl J, and we do this in cylindrical
coordinates by just staring at the cylindrical-coordinates curl formula,

curl J= £ [17206)5 - 0zJo] + 0 [0n)x - Oplz] + 2 [ 1 202(tTe) - 1206 ] (B.5.2)
and finding the only non-zero piece which is this (uniform J;),

curl J = [-0:0.(r)] O . (B.5.3)
Inserting J,(r) from above we find

Or Jz(r) =Jo O0r0(a-r) =-Jo 0(r-a) (B.5.4)
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= curl J(r) = 0 Jo 3(r-a). (B.5.5)
so we have a "ring source of curl J". For use in our integral for H we then have
curl' J(r) = 8' Jo 8(r'-a) . (B.5.6)

For a current distribution which tapers off smoothly to 0 at the wire edge one would not have this singular
contribution, but for a wire with prescribed uniform current, it is present, and curl J vanishes everywhere
but on the boundary. The relevant picture is this:

251 e

H2 r I

Fig B.4
From (B.2.12) the H field at any point x = (x,y) is then given by
1 1
H(x,y) =- in fdzx’ In(R?) curl' J(x') = - i Idzx' ln(Rz) o' Jo O(1r'-a)
Joa kg 20 r'=a A
=- - do' In(R%)|* =2 @'
an J 40" In(R?)
or
Joa
H(0) =- 3 [ " d0'In[*+a® - 2ar cos(00) ] O . (B.5.7)
-T
The figure shows that
8" = coso' § - sind' & (B.5.8)
so then
Joa n 2 2 A : A
H(,0) =- I f d0'In [ r* + a“ - 2ar cos(0'-0) ] [cosO' ¥ - sinb' X] . (B.5.9)
-

Next, let x = 0'-0. Since the fde' has full range 2x, one can replace f "o = f " dx . Then
- -7
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Joa fid 2 2 A . A
H(r,0) =- A f dx In[ " +a® - 2ar cos(x) ] [cos(x+0) ¥ - sin(x+0) X] . (B.5.10)
-T
Now writing H = Hx % + Hy ¥ , decompose the above into two equations

Joa n 2 2 3
Hg(r,0) =+ an f dx In [ r° + a“ - 2ar cos(x) | sin(x+0)
-

J
Hy(r,0) = - 4%? f_: dx In [ r? + a? - 2ar cos(x) ] cos(x+0) (B.5.11)

or
JOa T 2 2 . .
Hy(1,0) =+ . f dx In [ r° +a“ - 2ar cos(X) ] [ sinxcosf+cosxsin® |
-T

Joa
Hy(r,0) = - :_n f:r dx In [ 2 +a? - 2ar cos(x) ] [cosxcosB - sinxsin® ] . (B.5.12)

. T . . . .
Since f dx is over an even range, throw out odd integrand terms, and then fold the negative range into
-t

the positive adding a factor of 2 to get

Joa

Her0) =+ sin0 2 [ "dxin [ +a2-2 = s>
x(1,0) = + sin m X In[1°+a®-2arcos(x) ]cosx = sin o Q
0)=- cos0 2 [Tdxin[r®+a2-2 ~ cosp 2 1
Hy(r,0) = - cos m Jy x In [ r* +a® - 2ar cos(x) | cosx = -cos . Q (B.5.13)
where
I 2., .2
Q= ‘[0 dx In [ r* +a® - 2ar cos(x) ] cosx . (B.5.14)
Before evaluating this integral, we see that
A A Joa A A Joa A A
H=Hx X +Hyy =-—nQ[cosey-sm9x] =-—nQG =He 0 . (B.5.15)
Thus we find that the resulting H is entirely in the 8 direction and
Joa
Heg = -%Q . (B.5.16)

We seek now to evaluate this integral Q,

Q= fon dx In [ r% + a® - 2ar cos(x) ] cosx
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) 0" dx In [ {a2}{ (t/a)® + 1 - 2(1/a) cos(x)} ] cosx

) ; dx { In (a2) + In[(1/a)2 + 1 - 2(r/a) cos(x)] } cosx

2 T T 2
In @) [ , dxcosx] + ] , dx In[(/a)” + 1 - 2(r/a) cos(x)] cosx
2 n 2 -
=In (a%)[0] + JIO dx In[a® + 1 - 20 cos(x)] cosx where o=r/a

= f: dx ln[oc2 +1 - 20 cos(x)] cosx . /I =Q (B.5.17)

This integral is the n=1 special case of the following integral from GR7 page 589 4.379.6,

Q. / In I:l — 2acosT + ﬁ.g] cos na dx
i)
1 247 ,
= - / In (1~ 2acosr a”) cosnz dr
2- ]
1‘- r =
=——a" 'a® < 1] BI(330)(11), BI (332)(5)
= " nan o > 1| GW (338)(13a)
Therefore we find
_ | -n(r/a) r<a
Q_{-n(a/r) r>a (B.5.18)
SO
Joa  [(aJo/2) (r/a) r<a
Ho =-5,Q = { (aJo/2) (a/r) r>a (B.5.19)

Now the total current in the wire is I = Joma® so (alo/2) = (I/2ma) and then

_J(2ma) (r/a) r<a |1 (12ma®) r<a
He _{ (I2ma) (a/r) r>a { 1(12nr) r>a (B.5.20)

Thus, we finally arrive at the same results for Hg as obtained in (B.4.2) and (B.4.1).
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B.6 Modification of King's Helmholtz integral solution when p; # p,
(a) General Discussion

In Section 4.7 we wrote the King gauge vector potential for transmission line conductor C in this manner,

1 e JBaR
A(x,0) = i o p2 Jzo(Xy', 7', ) R dx'dy'dz' . R=|x-x| 4.7.2)

where we have made a notational change to be consistent with previous sections of Appendix B. Here we
use Uz to refer to the permeability of the conductor, and 3 to be that of the dielectric (these are called p
and pg in Section 4). The above "Helmholtz integral" is only the "particular solution" of the Helmholtz
equation (V2 + B12)A,= -paJez. When py # pa, it turns out that one must add a homogeneous solution
Az Po™) [ that is, (V2 + B12) A, P°™) = 0] to the Helmholtz solution shown above in order to meet
boundary conditions. Appendix G.4 provides a very detailed study of just how this works for a round
conductor with a uniform current distribution.

To avoid this major complication, we limited the analysis of Chapter 4 to the case that pu; = p,. This
means, for example, that Chapters 4,5,6 are applicable for non-magnetic conductors in a non-magnetic
dielectric, in which case p3 = pa = po. The work presented below generalizing to pg # po is then
summarized in Section 4.13.

With the reader's permission, we replicate an abbreviated version of the comments below (4.7.6),
making a few small notational changes:

Comments regarding p

This is a subtle subject and is not discussed in King's transmission line theory book.

The solution A, of (4.7.2) is continuous at the conductor boundary whether or not p; = p,. The condition
on the normal slope of A, at the boundary is given by (1.1.46) since there is no free surface current on the
boundary (ignoring the tiny Debye surface charge current). Thus we have these boundary conditions :

Ag(xt) = Ag(x-)
(1/p1) OnAz(xt) = (1/p2) OnAz(x-) (4.7.9) (B.6.0)

where x+ is just outside the conductor surface and x- is just inside.

If u1 = po, there is no "magnetic boundary" at the surface, and (B.6.0) says OnAz1(X+) = OnAz1(X-),
so both the function A, and its normal derivative are continuous through the boundary -- nothing special
is happening there. Thus, the Helmholtz integral solution (4.7.2) provides the whole solution for A, in
both the dielectric and conductor since it meets both "boundary conditions" at this pseudo boundary.

If p1 # po, then there is a magnetic boundary between conductor and dielectric which we have to
worry about. In this case, (4.7.2) applied in both dielectric and conductor cannot possibly satisfy the
second boundary condition of (B.6.0) since, as already noted, the A, of (4.7.2) satisfies OnAz1(x+) =

OnAz1(xt+). Thus, in this case (4.7.2) is not the full solution for A,1. One must add a homogeneous
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Helmholtz equation solution to (4.7.2) in order to have a proper solution for A, that satisfies both
equations in (4.7.9).

It turns out that the correct total A, solution can be generated by adding a certain fictitious surface
current to poJ, in (4.7.2). Since such a surface current vanishes on both sides of the boundary between i1
and pp, the Helmholtz solution due just to this surface current is in fact a homogeneous solution to the
Helmholtz equation in both the conductor and dielectric regions, away from that boundary. It turns out
moreover that the correct fictitious surface current to add is in fact the magnetization surface current Jp

which is created at the boundary between p; # po. Adding this surface current is just a "trick” in order to
generate the correct homogeneous adder solution so that the resulting total A, satisfies both boundary
conditions in (B.6.0). Formally speaking, the J appearing in (1.5.3) and then J, in (4.7.2) should not
include such magnetization currents since this J is really the J in Maxwell's equation curl H= 06¢D + J,
and this J does not include magnetization currents -- it includes only normal conduction currents.

Here we wish to prove the claim that adding the surface magnetization current to the conduction current
does in fact make the boundary conditions work. After doing this proof, we will show in Section B.7 just
how this works out in the case of a round conductor.

We stress that only the surface part of J, gets added in. In general J, will also have a "bulk" component in
the dielectric and conductor. If we were to include this bulk component, we would not be adding a
homogeneous solution to the particular solution, and we would in fact be creating a non-solution! In
(G.3.4) we show the complete Jy, for a round wire carrying a uniform current, and it does have both bulk
and surface components.

(b) Statement and Proof of the J, Lemma

The J, Lemma. If Jp, represents the surface component of magnetization current density for a
transmission line conductor C of pz with conduction current density Je,, embedded in a dielectric
medium of pj, then if we write

1 e JBaR
Az(X) =70 JI c (M2 Jez(X') + o Jnz(X)] ——dV" . R=[x-xI| (B.6.1)

this Az(x) will satisfy the boundary conditions (B.6.0) shown above. Parameter Bq is for the dielectric,
and should be called 1, but we leave it as Bq as used in Chapter 4.

Comments.

1. In this Lemma, we are showing that the contribution to A(x) just from conductor C satisfies the
boundary condition (B.6.0) at the surface of conductor C if we add in the surface current term po Jnz(X')
as shown. What we really want to show is that the total A,(x) due to all the transmission line conductors
satisfies (B.6.0) at the surface of conductor C. This will be the content of the J, Theorem presented in
Section (c) below. Once this Theorem is proved, we know that "the other conductors" don't interfere with
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the J, Lemma and we can regard the boundary conditions on A,(x) given in (B.6.1) as applying also to
the full Az(x) which includes the contributions of all conductors.

2. Our proof below applies in the "transmission line limit" of Sections 4.3 and 4.9 which is essentially a
long wavelength and small Bgq limit. In this limit, we can replace our various Helmholtz propagators
below with Laplace propagators. Nevertheless, we maintain the Helmholtz forms in the hope that the
above theorem is valid for reasonably moderate By values. At large Bgq values (relative to transverse
dimension D so that 4D no longer << 1 as in (4.3.4)) our whole TEM transmission line framework
collapses, the transmission line limit is violated and the entire theory of Chapters 4 and 5 no longer
applies.

(1) Preliminaries

We first quote a key result from Stakgold concerning a boundary layer function a(§):

u(x) = [ o dS; a(®) Exfe)
u(s) = J o dS: a(®) E(sle) (B.6.2)

owu(x) = [ o dS: a(®) OE(x[E)

dvu(s) = [Bau(x)[* 5 = fc, dS: a(§) OVE(sE) T a(s)/2 // extra term ! (B.6.3)

This is a tricky subject and some words are certainly in order. In the Stakgold world, o is a surface of n-1
dimensions existing in an n dimensional space. E(x|§) is the free-space propagator in that n dimensional
space (the "fundamental solution"). The integrals shown above are over the surface o, and & represents the
n-1 dimensional coordinate of a point on the surface ¢, while dSg is a piece of "area" on the surface.
(Stakgold does not write vectors in bold font as we do in this document.) Function a(&) is defined on the
surface and is called a simple (monopole) boundary layer. Stakgold also deals with dipole layers (as in a
cell membrane), but we don't care about them right now.

The question at hand is this: What happens as a point x away from the surface approaches the surface
where it becomes point s? We are interested in the limit x — s. As shown in the first pair of equations
(B.6.2), nothing unusual happens for the function u(x) defined as shown by the integral. One then says
that u(x) is "continuous" at x = s. But something very unusual happens for the function dyu(x) where 0,
denotes a derivative locally normal to the surface at s. As x — s an "extra term" appears as shown above
having value +a(s)/2. If normal v points "out" from the surface then as one approaches from the outside
(call it the + side), the extra term is -a(s)/2, but if the approach is from the inside (- side), the extra term

changes sign. Here is a picture illustrating the geometry of the above equations: ( n is normal at & , v is
normal at s)
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Fig B.5

The reason the extra term appears has to do with the nature of the d& integration when & is very close to s
which is somewhat of a singular situation since R = [s-§| — 0. Stakgold treats surface layers in Section 6.4
of his Volume II, pages 110-120, and his treatment involves a lot of detail. The claims shown above
appear on pages 118 and 119, though the conclusions are a bit obscured in the detail. Stakgold works in
3D with E(x|§) = (1/4n|x-£|) = 1/4nR and often uses these quantities,

k(s,&) = cos(s ~ &, rAl)/ [4n|s—§|2] // cos(upper marked angle)

k(&,s) =cos(§ s, O)/ [41r|s—§|2] = 0OvE(sl) . // cos(lower marked angle)
Later in his Problem 6.18 through 6.20 Stakgold has the reader verify that the results are also valid in 2D
where surface ¢ is then just a curve. These are the results we shall use. Although he does not state it
outright, we think his results are probably valid for ¢ being a surface of any number of dimensions, but

our only interest will be the 2D case.

(2) Outline of Proof of the J,, Lemma

We break up (B.6.1) into these two terms, a "conduction term" and a "magnetization" term,

1 e JBaR
AP (%) =4~ fc [z Jez(X)] ——dV" . R=|x-x| (B.6.4)
1 e~ JBaR
A (x) =4~ fc (Mo Jmz(x)] ——dV" . R=[x-x'| (B.6.5)
Ax)=A, T x)+ A, ™ (x) . two terms (B.6.6)

As noted earlier, the first term is smooth at a point s on a conductor surface and satisfies the two boundary
conditions,

Az (st = A (s)
OnAz ) (s+) = 0aAL ) (5-) . (B.6.7)

s0 one can write A, ¢ (s) or OnA, (e) (s) without concern for whether s is s+ or s-. For this term, which is
the Helmholtz "particular" integral, we may then trivially write,
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1 (c) 1 () 1 1 (c)
- +) - — ) =4+ [—-— . .6.
oA AT () = [ 1A ) (B.63)

Since this is non-zero, the term A, ‘® on its own does not meet the required slope boundary condition
(B.6.0) at an interface between p1 and pa, and that is precisely why we need the A, ™ term. Our goal is
to show that

1 (m) 1 (m) 1 1 (c)
- o — P P S
™ OnAz " (s1) 12 OnAz " (s-) [ w2 1 0nAZ""'(5) (B.6.9)
so that when we add the two terms we will get
L OnAz(st) — L OnA =0 B.6.10
ny » z(st) p o» z(s-) (B.6.10)

as required by (1.1.46). The concludes our proof outline, and it remains then to demonstrate (B.6.9).

(3) Verification of (B.6.9)

We start with (B.6.5) where _[dV’ is over the entire transmission line conductor C,

| J_ e~JBaR
A (%)=~ CdV' [Ho Jmz(X)] —

= JICdV' [Mo Jmz(x") Esz(x|x") (B.6.11)
where
e JBaR 1
Es(x[x") = R — 2R & Ba—0 . (B.6.12)

We know from Chapter 4 that in the transmission line limit we can do the dz' integration in dV' and arrive
at a 2D-propagator expression for the above potential, where the integral is now over the cross section
area of the conductor C,

A, ™ (x) = f o dS' [1o Jmz(x")] E2(x[x") (B.6.13)
where

Ea(x[x") = (j/4) Ho ® (BaR) H-iln(Rz) as Pa—0 . (B.6.14)

This whole subject of transitioning from the 3D to 2D analysis is reviewed in Appendix J, and it occurs in
many places in this document.
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We are only using that portion of Jp, which is a surface current on the perimeter of C, so we rewrite the
above as

Az™x)= P ds' [1o Ka(x')] Ea(x|x) (B.6.15)

where K (x") is the magnetization surface current (amps/m) discussed in Section B.1. Stakgold's surface
integral over ¢ is now just a line integral around the perimeter of the conductor C cross section. Recall
from (B.1.10) that the magnetization surface current is given by,

__ 2
K, =- (HO "o ) He (B.1.10)

where Hg is the H field tangent to the cross section surface. Inserting this K, into (B.6.15) gives
A:™ () = $e ds' [(ua-p2) Ho(x)] Ea(xlx) . (B.6.16)

We now identify this with the first of Stakgold's equations (B.6.2) where [(u1-p2) He(x")] plays the role of
the boundary monolayer function a(§). We know we can take x—s with no surprises. If we now replace
Stakgold's normal direction v with our usual normal symbol n, we can write (B.6.3) as

0aAz ™ (x) = P ds' [(11-i2) Ho(x")] duEa(x/x) (B.6.17)

Az ™ (s2) = P ds' [(1-112) Ho(x)] FaEa(sx) T [(n1-112) He(s)]/2 . (B.6.18)

Now since we want to prove (B.6.9), we first evaluate its left hand side using (B.6.18) twice,

1 1
1 0aAz ™ (s1) — 1~ 0aA ™ (5)

1
= $e ds' [(ua-pz) Ho(x)] 2aB2(six) - [(a-p2) He())12 }

- i { $c ds' [(ua-z) Ho(x)] GaEa(six) + [(na-hz) Ho(s))2 } (B.6.19)

1 1 1 1
(hahz) [~ 7-] $c ds' Ho(x') OEa(s|x) — (s * g (Ha-iz) Ho(9)12 -

Our task of showing that (B.6.9) is true then boils down to showing that the last expression above is equal

11
to — [—l -— ] OnAz () (s) . That is to say, we have to show
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1 1 11 1 1
(ha-tiz) [ - 71 e ds Ho(x) aBa(sx) — [+ 1] (ua-pe) Ho($)2 = = [--7-1 8aAs ) (9) 2

(B.6.20)
A question mark indicates an equation that we want to show is true, but have not yet done so.

Canceling (u1-p2) factors, (B.6.20) becomes

L L (] ) ) L i — L (C) r)
[Ml "2 ] fﬁc ds' He(x") OnE2(s|x") — [ul + 12 ] He(s)/2 + T OnAz " "' (s) ? (B.6.21)

or

(z-tz) P ds' Ho(x') BuEa(s|x) — (1/2)(nz+ha) Hols) = dnAz (s ) . ? (B.6.22)

The integral in (B.6.22) can be replaced using (B.6.18) with the s+ choice,

Az ™ (s+) = P ds' [(11-12) Ho(x)] BaBa(sx') - (1/2)[(11-12) Ho(s) (B.6.18)+

SO

(1) P ds' Ho(x') GaBa(slx) = — GaAz ™ (s+) — (1/2) (na-bz) He(s) - (B.6.23)

Equation (B.6.22) then becomes,

— Oz ™ (s4) — (1/2)(n1-p2) Ho(s) — (1/2)(p2tp1) Ho(s) = dnAz‘S'(s) 2

or
— 9aA; ™ (s+) — u1 Ho(s) = 0aAz % (s) ?
or
—p1 He(s) = 0n [Az 9 (5) + A, ™ (s1) ] ?
or
— n1 He(s) = OnAz(st). ? // using (B.6.6) (B.6.24)

We now introduce a local cylindrical coordinate system in this manner relative to point s :
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Fig B.6

Notice that  is the normal vector at point s, s0 Or = On. Then first we determine Be,

B=curl A= [ 36A, - 0,A0] + 0 [02A - xAz] + 2 [ 17 202(tA) - 1 20eAx ]
= ? [r_laeAz] + 6 [' arAz]
= 0 [- 0:A,] .

Here we have set dgA, = 0 according to Fact 7 of (3.8.9) which says A, is constant on the cross section
surface (which implies the strong or extreme skin effect regime). The result is then,

Be(st) = - OnAz(st) . (B.6.25)
Since s+ is in the dielectric with p; we then have

Ho(s+) = (1/p1) Bo(s+) = - (1/p1) dzAq(s+) / He(s+) = He(s-) = He(s) says (1.1.42)
SO
-p1 He(s) = OrAz(st) = OnAz(st) . (B.6.26)

But this last equation matches our equation in question (B.6.24), so we can then go back and erase all the
question marks and we have then verified equation (B.6.9) and our proof is complete.

Comment: We noted that Stakgold's analysis is quite complicated. He uses the Laplace free-space
propagators such as Ey(x[x") = -(1/2m) ln(Rz), but we think his analysis also applies for the Helmholtz
propagators. The reason is that the Helmholtz complication does not really change the singular nature of
things near R = 0. This is most obvious when comparing e 7Pe® /47R to 1/4nR. If we are wrong about
this conjecture, we can regard the above theorem as proven only for small Bq which in fact defines the
transmission line limit.
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(c) Statement and Proof of the J, Theorem

The J, Theorem. A transmission line consists of two conductors called Co and Cs, since index 1 is
reserved for the dielectric. For example, the dielectric has permeability p; (but we write Bq in place of
B1). The total "particular" vector potential A(x) due to the conduction currents in these two conductors
is, according to (1.5.9),

1 5 e JBaR
A(x)PTE = an Ti=2 o Pides(x) T dV' . R = |x-x/| (1.5.9)

1

The theorem claims that (1) the correct adjusted total potential is given by

-3BaR
| e’
R~ o [Bdeal) + polny()] R aV" (B.6.27)

1

where Jni(x') represents the surface current at the surface of conductor C;, and (2) this correct total
potential satisfies the boundary conditions (B.6.0) at the surface of both conductors.

We claim the theorem is also true for a transmission line consisting of any number of conductors, but we
restrict our interest to two conductors. We shall show for (B.6.27) that (B.6.0) is valid at the surface of
conductor Cz and a similar argument then shows it is also valid at the surface of Cs.

In the theory of Chapters 4 and 5, the transverse components of A are ignored, and our real interest is the
z component of (B.6.27),

-jBaR
| e’
Az(X) =70 Tizp® J.C [MiTezs(X) + Holmzs(X)] ——dV' . (B.6.28)

1

To enhance clarity, we shall give each conductor its own custom integration variable. By adding primes,
we shadow the equation numbers from section (b) (2) above which proves the J, Lemma.

The expression above contains four terms which we now write out:
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-J BaR2

AP (x) = f [uz Jez2(X2")] dva' Rz =[x - x2'|

e~ JBaR3
AP (x)= f [us Jez3(x3")] T dV3' Rz =[x - x3'| (B.6.4)

-J BaR2

A, (x) = f [uo Jmz2(X2")] dva' Rz =[x - x2'|

e~ JBaR3
A" (x) = f [uo Jmz3(x3")] —{ 7 dV3' Rz =[x - x3'| (B.6.5)

Ax(x)= AP (x) + AP () + A, T () + A ™ (x) . (B.6.6)

Without loss of generality, we shall consider x — s where s is a point on the surface of conductor Ca.

The "conduction solutions" A, (%) (that is to say, the particular solutions) are naturally smooth at point s,
as described in the text surrounding (B.6.0). Thus, we know that

A (st) = A, (s0)
anAz (ci)(s+) _ anAz (Ci)(s_) ) i= 2, 3 (B.6.7)'

Since s = s+ = s- for these functions, we may trivially write

ui On[Az P (sH) + A, P (s1)] — i - 0alAs €2 (5) + A, %P (s-)]

[E —] OalAsz ‘°2’<s)+A 3 (). (B.6.8)

Since this is non-zero, the term [Az°?)(s+) + A, °®)(s+)] on its own does not meet the required slope
boundary condition (B.6.0) at an interface between p; and o, and that is precisely why we need the
Az ™ terms. Our goal is to show that

ﬁ OalAz ™2 (s4) + A, ™ (sH)] - i OalAz ™) (s-) + A, ™ (59)]

[E —]an[A 2 (s) + Az (s)]. (B.6.9)

so that when we add the four terms of (B.6.6)' we will get
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1 1
— +) — — 5 = 6.
L OnAs(sh) — - OnAs(s) = 0 (B.6.10)

as required by (1.1.46). The concludes our proof outline, and it remains then to demonstrate (B.6.9)'.

At this point, we skip over several equations of the Lemma proof since they are all generalized simply by
adding 2 or 3 subscripts in the right places. For example, the surface currents are given by,

M2 W1
Kzzz-(E'E)Hez on Ca

M
Kez=- (5 = o ) Hes onCs . (B.1.10)
We arrive then at (B.6.16)" as follows ( recall that E» is the 2D Helmholtz propagator ),

Az (x) = $ez dsz' [(na-ba) Hoa(x2)] Ez(xixz)

A2 ™ (x) = $es dss' [(na-s) Hos(x3)] Ea(xlxs) . (B.6.16)

We regard these as two representations of Stakgold's first equation (B.6.2). Nothing special happens in
these equations as x — s. Thus, we can say that in either case, A, ™ (s+) = A, ™ (s-). When this is
combined with the first line of (B.6.7)', we find by adding all four terms in (B.6.6)' that A,(s+) = A,(s-)

and we have thus shown that the first boundary condition of the pair (B.6.0) is satisfied.

A major difference appears at the next step (B.6.18)",

OnA, ™) (s£) = fﬁcz dsz' [(n1-p2) He2(x")] OnEa(sx2") F [(n1-p2) Hez(s)]/2

OnAz ™ (s£) = Py dss’ [(11-113) Hos(X)] FaBa(sxs) . (B.6.18)

The "extra Stakgold term" only appears when a point s lies on the surface being integrated over since it is
this integration which gives rise to the singular situation. Since our s lies on Cz and not on Cs, there is no
"extra term" in the last equation above.

Now since we want to prove (B.6.9)', we first evaluate its left hand side using each equation of (B.6.18)'
twice,
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1 1
1 0alAz "2 () + AL P ()] — - 0n[A: T (5) + A " ()]

= j{ e dso' [(M1-t12) Hoa(x2)] FaBa(sixz) - [(1a-12) Hoa(8)]/2 } //ian A, ) (s+)

t{ $er dso' [(M1-t12) Hoa(x2)] OnBa(sixz)) + [(1-t2) Hea(8))2 }  // -ian A, ") (s-)

1 1 -
+ E{ fﬁcs ds3' [(u1-p3) Hes(x3")] OnE2(s|x3') } //Ean A, ™) (s+)

1 1 -
- E{ fﬁcs ds3' [(u1-p3) Hes(x3")] OnE2(s|x3") } I - Eﬁn A" (s-)

1 1 1 1
= (H1-p2) [E'E] 45cz ds2' He2(x2') OnE2(s[x2") — [E+E] (na-p2) Hez(s)/2

#rens) [ -] $es dss' Hos(x)] Gnalsixs) (B.6.19)

where the last line was not present in (B.6.19). Our task of showing that (B.6.9)' is true then boils down to

1 1 .
showing that the last expression above is equal to - [E - E] On[Az (c2) (s) + A; (e3) (s)] . That is to say,
we have to show

1 1 1 1
(M1-p2) [E-E] fﬁcz ds2' He2(x2') OnEa(s[x2") — [EJFE] (n1-p2) Hez(s)/2

1 1
+ (m-m)[i-i] $es dss' Hoes(x3)] FaEa(sxs) = - [~=-—=18a[Az 2 (s) + A, D (s)] . ?

Hi M2
(B.6.20)
As before, a question mark indicates an equation that we want to show is true, but have not yet done so.
Cancelling (u1-p12) factors gives

1 1 1 1
[ E - E ] fﬁcz ds2' Hez(X2") OnE2(s|x2") — [ E + E 1 Hez(s)/2
1 1
- (M2-p3) Mapz §C3 ds3' Hes(X3")] OnEa(s[x3") = + HiM2 GalAz )+ A 9] ’
or (B.6.21)'

(M2-p1) fﬁcz ds2' He2(x2") OnEa(s[x2") — (p2tp1) Hea(s)/2

+ (u3-p1) 5ﬁc3 ds3' Hes(x3")] GnEa(s|x3") = Az 2 (s) + AP (s)] . 2 (B.6.22)

The integrals in (B.6.22)' can be replaced using (B.6.18)" with the s+ choice,

289



Appendix B: Magnetization Surface Currents on a Conductor

OaAz ™2 (s+) = $ep dsy' [(11-112) Hoa(x2)] GnEa(s|x2") - (1/2)[(1-112) Hea(s)

OnA, ™) (s) = fﬁcs ds3' [(n1-p3) Hes(x2")] OnE2(s[x3") (B.6.18)+

SO

(n2-t1) Pea dso’ Hoa(xa') BnEa(s|X2") = — OaAz ™2 (s+) - (1/2)[(1-t12) Hox(s)

(13-11) 5ﬁc3 ds3' Hes(x3')] 6aEa(sx3") =— Az ™ (s) . (B.6.23)'

Equation (B.6.22)' then becomes

— OnAz ™) (s+) - (1/2)[(1a-p2) Hoa(s) — (n2+u1) Hoa(s)/2

— Az ™ (5) = 0a[AZ P (5) + A, 2 (5)] ?
or
— 9aA; ™) (s+) — p1 Hea(s)
— a2 ™ (5) = 0a[AZ P (5) + A, (5)] ?
or
- w1Ho2(s) = a[Az°®(5) + A% (s) + A, ™) (s+) + 3aA, ™ (5) ] ?
or
- u1He2(s) = OnAz(st) ? // using (B.6.6)". (B.6.24)'

But this last equation is true as shown in Fig B.6 (with C = C;) and (B.6.26), so we can then go back and
erase all the question marks and we have then verified equation (B.6.9)" and our proof is complete.

By then taking s to be a point on the surface of Csz, we would find - p3He3(s) = OnAz(st) for (B.6.24)" and
then Fig B.6 with C = C3 would verify this result as well.

B.7 Application of the J,, Lemma to a round wire with uniform J,

We shall here verify the J, Lemma for a round wire which we can regard as the central conductor of a
coaxial transmission line with distant shield return. We know from Comment 1 below (B.6.1) that the
potential of the shield is not going to interfere with the J, Lemma and that a verification of the boundary
conditions (B.6.0) for the potential of this Lemma applies as well to the combined potential of both

conductors.

Assuming the transmission line limit of small g, so ¢ IPaR ~ 1, we start then with (B.6.1),

1
ado- | AV 142 Tea(3) + o Tne)] g R=x-x (B.6.1)

but we go at once to the 2D solution [VZZDA(X) = - uado(x)] limit to get
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f , ( %) 1 In(R?)
-Ag(x) = dS' [uz2 Jez(X') + po Iz —— . // e In(1/R) = - “an (B.7.1)
The two currents are given by
Jez(x") = Joz = I/(na®) // uniform
. H2 M1
Jnz(x") =K, 8(r'-a) with K;=- (E - E )He . (B.1.10) (B.7.2)

(a) The A, ‘® term

The first term in (B.7.1) is then

I In(R?) I In(R
A9 (10) =22 fds' i =% Oar'dr'f do n(n)

“21 a 1 \ n ' 1 ] '
= 12aZ o r'dr f_n do' In(r'? +r%-2rr' cos(6-0') )

__pel
T 2m“a
pal

a
=242 o r' dr' Q(r',r) (B.7.3)

a T
o r' dr' IO dx ln(r'2 +r2 - 211’ COSX )

where we have defined the integral
I 2,2
Q(r'yr) = fo dx In [ +r°-211' cosx] . (B.7.4)

The round wire geometry is shown in this drawing, where R? shown above comes from the law of
cosines,

Hi
M2

Fig B.7
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The integral Q(r',r) may be evaluated using GR7 p 531 4.224,

_ x faZ — 12
9.7 f In(a+ beosx) de = xln m% [a = |b| = 0] GW (322)(15)

{ =
with a = r'2 +r% and b = -2rr' and a%-b? = (r'z-rz)2 so that =| 22 | . The condition a > |b| > 0 is

met since (rr')? >0 => r?+r'? > £2rr' which says a >+b soa > |b|. Thus,

’ n 2 2, 1 +r? )+ | r2-r? | nln[r?] r>r
Q') = fﬂ dx In [r'* +r°-2rr' cosx)| =7 In [ 5 =1 xln [rz] <t
_ In(r') r'>r
=2 { In(r) r<r (B.7.5)
We then have
o ) In(r) r'>r
AL (r.0) _27: " f dr' v Q(r'yr) = f dr'r { @ r<r
I
-5 f dr' r' { Inr' O('>r) + Inr O(r'<r) }
n_z[e(r<a) f dr'r' Inr' + Inr fomm(a’r) dr'r' ]
;l—z{ 0(r<a) (1/2){a’lna - r’Inr - (a®>-r?)/2} + (1/2)Inr [min(a,r)]* } (B.7.6)
where Maple says
int{x*In(x) ,x=r..a);
e Lz 1z 12
2a Ingea 4a 2r ]n(.r')+4r .
We then write out A, ¢ (r) in its two regions
A9 ) =22 (1) e ) =B gy (B.7.7)
z ma 2n o
(c) _ pal 2 2 2 2 2 _ bl 2 2 2
Az (r<a)=- a {(1/2){a’lna - rInr - (a“-r°)/2} + (1/2) r° Inr} = 2 {(a®-r)/2 - a®lna }
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(b) The A,™ term

From (B.7.1) and (B.7.2),

-Az ™ (x) = uof dS" e ()] = ( InR%)

= Jlear [Ta0 - (B2 He) ) 80na) InR?)
-4 He(a) (2 ) | ’; d0' In(a? +r2-2ra cos(0-0'))

= -5 Ho(a) (2 p1) fo" dx In(a2 +r2-2ra cos(x))
-3 Ho(@) (1z- 1) Q(an)

a In(a) a>r .
=5 He(a) (p2- p1) 27:{ 1ngr)) a<r // using (B.7.5)

I
= aHe(a) (u1- Mz){ IEE?)) 22 : (B.7.8)

From Ampere's law (1.1.37) we have (ignoring displacement current inside the conductor)

I
EﬁHOds = 2maHg(a) = fs JedS =1 = He(a):2_na

and so
m 1 In(a) a>r
A0 =30 ()| e G (B.1.9)
Then

1
Az ™ (r>a) = 5 (M2-pa) Inr

I
Az ™ (r<a) = 5 (1z-pa) Ina . (B.7.10)

(c) Adding the two terms and checking boundary conditions

Adding the results of (B.7.7) and (B.7.10) we obtain the total A, vector potential,

pol 1 pal
Ag(r>a) =- o Inr + 7 (p2- ) Inr = - o Inr

A,(r<a) = ll {(az—rz)/2 a%lna }+ 5o I (uz -u1) Ina
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p2l I
o 1 @r)/(22%) -Ina } + 30 (uz-py) Ina

1
"2z {H2 (P2°)/(2a%) +paIna }
Here then are the final results for the potential A, = A, (e) 4 A, (m),

|
Az(r>a) = palnr
I ?-a2
Az(r<a) = " {p1lna+ Moz b (B.7.11)

As a check, we calculate the B and H fields implied by these potentials
B=curl A= [ 96A; - 02A0] + 0 [02Ar - OxAL] + 2 [ 17 20x(tAg) - T *00Ax ]

= 6 [- 0rAz] = Be = -0:A,(1)
Then

1
Be(r>a) = 51 (1/1)

1 2r 1
Bo(r<a) = 51257 =75~ h2 (t/a?) (B.7.12)

so the H fields are then

He(r>a) = i (1/r)

I
He(r<a) = 75~ (r/a%) . (B.7.13)
This agrees with Ampere's Law applied in these two regions:

2nr He(r>a) =1 = He(r>a) = i (1/r)

2nr Ho(r<a) = I(nr?/na®) => He(r>a)=i(r/a2) . (B.7.14)

Next, we check the two boundary conditions required by (B.6.0) :

value atr = a:

2 2
Az(r>a)"=® — Ay(r<a) |72 _ L Ina - (L[ a_-g__ Ina]) =0 OK
z z 2n 12 2n M2 27 "M
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slope atr=a: [0rAz=-Bgsouse (B.7.12) ]

- I
arlAz(r>a) |r—a =- % M1 (l/a)

rma __ 1 I
OrAq(r<a) [72 = - 31 a(a/a”) =- 5 pa(1/2)

L r=a L r=a __ L L —
i OrAg(r>a) | " o OrAz(1<a) | = -5 (1/a) - [- o (17a)] = 0 OK

Thus we have shown for the round conductor with uniform J, that "the J, Lemma" works. By adding the

bogus surface current term, we generate the correct homogeneous solution which when added to the
Helmholtz integral provides the correct total solution which meets both boundary conditions.

(d) Plots of A, and B; and Hg

Maple provides plots of A, from (B.7.11), Bg from (B.7.12) and He from (B.7.13) for this round wire
situation. Parameters are set to [ = 1, a= 2, py =2 (dielectric), pp = 3 (wire).

restart ;alias{(I=I) ;

Az := -(I/2*%Pi)*piecewise(r>a,mul*log(r),r<=a,mul*log(a) + mu2*(r*2-a”2)/(2*a"2));
wl Iy a <
1
Az=-—IT 1p2(r2—c22)
2 wl nfe)+-—————— rEa
2 2
a
B := (I/2*Pi)*piecewise(r>a,mul/r,r<=a, mu2*r/(a"2));
pl
asr
r
=—IT
r
E%— FEa
2
e
H := (I/2*Pi)*piecewise(r>a,l/r,r<=a,r/(a"2));
1
— a
1 r
H=—In
2 r
- rea
2

I:=1: a :=2: mul := 2: mu2 := 3:
plot([A=z,B,H] ,r=0. .8, color=[black,red,blue])
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B Fig B.§

A, wanders down as ~ -In(r) for large r; Bg jumps down at r = a while Hg is continuous there.
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Appendix C: DC Properties of a Wire
C.1 The DC resistance of a wire

The resistance per unit length R of a differential piece of wire of length dz and area dA is derived as
follows (o = conductivity),

dV=Edz, J=cE, [=JdA =

Rdz = dV/I = Edz/JdA = (1/c) dz/dA = R=(1/c) /dA .

If current density J is constant across the wire cross section (which is the case at DC), we repeat the above
with dA — A where A is the total wire cross sectional area to find this resistance per unit length for the
wire,

R=1/(cA) =p/A . /I p = 1/c = resistivity (C.1.1)
For a round wire of radius a, A = naz, soR = 1/(cma2) = Rgc. Current density J is uniform at DC because
there are no eddy currents to make it non-uniform as described in Appendix P. We of course assume that
the wire is made of an isotropic and homogeneous substance where ¢ is the same in all directions at at all
points inside the wire.

C.2 The DC surface impedance of a wire

Imagine a fat wire carrying current I,

I—)-U E—»

F 1

dV = V(z+dz) - V(2)

If, at the surface of the wire, one puts voltmeter probes at longitudinal spacing dz, one measures some
potential difference which is dV = E;dz. When probed at the surface, the wire appears to have this
impedance,

(Zsdz)=dV/T .
The quantity Zs is the surface impedance per unit length and is thus given by

Zs =B, /1 (C.2.1)

where E, is the component of electric field at the surface in the direction of the wire. For a wire operating
at DC, the current density is uniform across the wire so J, = I/A and E, = J /o = I/(Ac). Thus,

Zs = 1/(Ac) = p/A //=R of (C.1.1) (C.2.2)

297



Appendix C: DC Properties of a Wire

where A 1is the cross sectional area. For a round wire of radius a, A = naz, SO
Zs = p/(na?). (C.2.3)

If the wire is a perfect conductor, p = 0 and Zs = 0. For DC, we have Zg = R, but for AC this is no longer
true due to the skin and proximity effects which make J, non-uniform over the conductor cross section.
Again, see Appendix P for a general discussion of both these effects, and Chapter 2 for skin effect.

C.3 The DC internal and external inductance of a round wire
We assume here that p; is the internal permeability of the wire, and e of the region external to the wire.

The energy density (joules/m3) stored in an electromagnetic field within a medium of negligible loss is
given by uen = (EeD + BeH)/2 [ Jackson p 259 Eq. (6.106) ] . We are interested only in the portion of
this energy density stored in the magnetic field, so u = (1/2) BeH. Since p and € are assumed to be scalars,

u=(1/2) pH? //(1.1.5) B=puH (C3.1)
For any inductor of inductance L carrying current I and having potential difference V, we know that

V=L dI/dt (C.3.2)

P=1V =1 (L dlI/dt)=d/dt [ (1/2)L I ]. (C.3.3)
Since the power fed into an ideal inductor goes into the magnetic field energy, P = dU/dt and so

U= (12)L12. (C.3.4)
For a straight wire, we now redefine symbol L to mean inductance per unit length, so then

U= (1/2)[Ldz] 1? . (C.3.5)
For either the internal or external region we have U = _[d‘v u =dz de u where d¥ is a volume

element and dS is a cross sectional area element. Thus from (C.3.1) and (C.3.5),
U=dz[dS (12) uH? = (1/2)[Ldz] 12 =  L=upJdsmn? . (C.3.6)

In particular [ elsewhere we have used p; = and pe = g |

Li =i [ in dS (Hi/D)? (C3.7)

Le = pte J outdS (Ho/I? . (C3.8)
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For the round wire at DC it is a simple matter to compute H; and He using Ampere's Law (1.1.37),

fﬁHOds = fs JeodS

1
2nrH; =I(m?/ma®)=>  Hi/l =7 (r/a%)

1
2nr He =1 = He/l = 7 (1) . (C.3.9)
We then compute the two inductances as follows:

o m2 —. (2 L I N S . a3, _ Hi
Li=ps [dS (Hum? =ps [ , T ] A0 W) =5 | ,

Le=ps JdS (HoM? =pe [ “rdr [ ™ do [ﬁu/r)]2 =22 [P Wndr = oo
a - a

Both results are interesting. L; is interesting because it is independent of the wire radius a. For the same
current, a smaller a results in a larger H and B field, which is then offset by the smaller volume (area).

L. is interesting because it is infinite! Even a tiny 1 cm piece of our infinitely long round wire stores an

infinite amount of energy in its magnetic field. We therefore limit the external region by some large
radius R and then we have

OB papo s Arx 1077 g
Li=8r = yo8n " 8r gt S0nH/m (C.3.10)

Ue
Le= o In(R/a) . (C3.11)
Thus for a non-magnetic round wire in air the internal inductance is exactly 50 nH/m.
A "practical wire" is more like a loop of wire than an infinitely long wire. It is difficult to conjure up an
experiment to test (C.3.11) even for a very long straight piece of wire without having some return path for
the current to return to the driving "battery". For wire and dielectric both having g, Jackson shows
(p 216-218) that the inductance per unit length of a loop of projected area A of radius-a wire is given by

Le + Ls = (no/4n) [ In(EA/a%) + 1/2], where & is a near-unity factor which accounts for messy details of
the calculation. The 1/2 term accounts for the internal inductance L; = po/8m as in (C.3.10).

For a circular loop of radius R, one has A = nR? and, if R >> a, & = 64/(ne*) = .373. So,
In(EA/a®) = In(64 nR?/ne*a?) = 2 In(8R/ae?) = 2 In(8R/a) + 2 In(e"?) = 2 In(8R/a) - 4
and then the total inductance per unit length is

Le +Ls = (ho/4m) [2 In(8R/a) - 4 + 1/2] = (po/2m) [ In(8R/a) - 2 + 1/4] = (no/2n) [ In(8R/a) -7/4] .
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The total inductance of such a loop is then
L =2nR(uo/27) [ In(8R/a) -7/4] = poR [ In(8R/a) -7/4] (C.3.12)

in agreement with Jackson Problem 5.32 p 234. If one omits the internal inductance, the last factor is -2
instead of -7/4, and this result is seen in some sources. The point is that this is a finite result, even though
the (dipole) magnetic field of such a loop extends to infinity. A loop of N turns gets an extra factor N2
because in effect current I — NI in (C.3.5), so the total field energy increases by factor N2.

Suppose there were two parallel wires with currents flowing in opposite directions. In this case, we could
compute the magnetic field H at any point in space as the vector sum of the fields of the two wires, then
we could integrate H? over all space to get the total energy U and from that the external inductance Le. In
this case, the In(R) divergence does not appear. In effect, the divergence cancels between the two wires,
similar to the way opposite short segments of the circular wire cancel to give the finite result quoted
above.

We really only care about the internal inductance L; of a wire in our transmission line analysis because
the external inductance L. is already accounted for by the techniques of Chapter 4. That is, Le is
computed by considering the magnetic potential A, ( or W ) between the wires, see (4.10.8).
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C.4 The DC internal inductance of a wire of rectangular cross section

The inductance expressions above apply to any cross sectional shape,
Li=ps | in dS (Hi/D)? (C.3.7)

Le = tte [ outdS (He/D)2 (C3.8)

so the only problem is how to compute H for a non-round wire. That problem is solved in Appendix B
where it is shown that

H(xy) = -ﬁ J dx In(R?) curl' J(x',y")) R =|x-x| . (B.2.12) (C4.1)

Consider a wire of rectangular cross section 2a x 2b (uniform J,) as an example.

d
< 2a >
L 2b
e X
b v
-a a
Fig C.1
The uniform current density is given by
J2(x) = (I/4ab)6(-a<x<a) 0(-b<y <b)
= (I/4ab) B(x < a)B(x>-a) O(y <b)6(y>-b) /1 B(s=>r) means 0(s-r) Heaviside
= (I/4ab) B(a- x)0(x + a) O6(b- y)B(y +b) . (C4.2)
Calculate curl J to be used in (C.4.1) :
curl J =R (8yJz - 02Jy) + 9 (O2)x - Oxlz) + 2 (Oxly - Oylx)
= X (Oy)z) +§ (- 0xJ2) (C.4.3)
Oxlz = (I/4ab) Ox[0(a- x)0(x + a)] B(b- y)0(y +b)
= (I/4ab) [0(a-x)d(x+a) - 6(x-a) O(x+a)] 6(b- y)b(y +b) /] 0xB(a-x) = - 6(x-a)

dyJz = (I/4ab) B(a- x)0(x + a) B,[0(b- y)(y +b)]
= (I/4ab) O(a- x)0(x + a) [0(b- y)3(y+b) - 3(y-b) O(y +b)]
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so then

[curl J]x = (I/4ab) B(a- x)0(x + a) [0(b- y)d(y+b) - 5(y-b) O(y +b)]
[curl J]y =- (I/4ab) [0(a-x)d(x+a) - d(x-a) O(x+a)] 6(b- y)O(y +b) . (C4.4)

Notice that we can obtain [curl J]y from [curl J]x by doing a<>b, x>y and adding a minus sign.
Finally calculate Hy from (C.4.1).

1
Hx(x,y) =- n fdzx' In(R?) [curl' J(x')]x R = [x-x/|

| a ©
Tomab J L& J 7 dy In[ex)® + (5-y)%1 806 - y)3(y'+D) - B(y+b)3(y™- b) 1}

1 a b
= Tomp | & [ dy In[ex)? + (yy)?) 80y +b)

1671tab I Z dx' J : dy' In [ (x-x)*+ (y-¥)*] 8(y'- b)

J’_

I a 1 a
= Tomap |, @I L60+ 00 +7gep [ dxInL (00 + (5071

- 16715ab (-la+l2) Li(b) = f_z dx'In [ (x'-x)% + (y+b)2]
o0)= [ " dx' n[ (07 + (v6)7] =Ta(b) (C45)
= I F(X7Yaa=b) F=-1;+1, .

16mab

As an aid to Maple's grouping of elements, let X" = x'-x, then take x"— x' to get
Lb)= [ *7dx'In[x2+c?] where c=y+b.
-a-x

Maple then evaluates I; and I» as follows (hoop jumping to get results in desired order),
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[> Ila := int({Iln{xp™2 +c™2),xp=-a-x..a-x):
[> T1b := collect(Tla,ln): ¢ := y+b: # get logs together
[> el := 2%a*x = (atx)"2-a"2-x"2:
[> e2 := -2%3%x = (a-x)"2-a"2-x"2: # for substitution
[> Ilc := subs(el,e?, Ilb):
[> I1ld := unapply(Ilc,b): # make function of b
[z I1 := Ild({b):
2 2 2 2
f=la-xhi{a—x1"+p+&) 1+ {a+x)hila+x)" +{»+E)7)

S s [a+x] S e (—a+x] .
+2(y+ tan| —— | — 2 (¥ + t -

_ iy )arn:any+b (v + &) arctan b @
[ T2 := T1d{-b):

2= (a+x)]n((a+x)2+(_y—b)2}+(a—x}]n((a—x)2+(y—b)2)

a+x -+
+2(y—b)arctan[—J—2(y—b)arctan[ J—-ﬂla
y—£h y—k

In Maple, unapply(f,x) causes expression f to be a function of x which can then be called as f(x). Collect
just orders terms in a certain way, while subs forces Maple to be a little smarter about expressions. The
next step is to create function F(x,y,a,b) which is just -I1+ I, as shown above

[}- Fa := collect(I2-I1,arctan): #f gather arctans
[> F := unapply(Fa,x,y¥,a,b): #f make F{x,v,a,b)
[> Fi(x,v,a,b); # call the newly made function

-+ X @+ x
2yv+2h t +i(-2y—25 t
(2 ) are an[y+f:' ] (-2 ) are an[y+f:']

a+x —a+x
+{2dy— 2 &) arctan b +{—2y+ 2 &) arctan b

+(a+x)]n((a+x]2+(y—b)2)+(a—x)]n((a—x)2+(y—b)2)

—(cz+xj]n((cx+xj2+{y+bj2)—(cz—x)]n((cx—x)2+{y+b)2j

Reading from the above and putting x,y last in each parentheses, the four arctangents can be written

n _1atx _1a-X _1,atX 1., a-X
(112) FOoy,ab)*2% = -(b-y) [- tan™ 2] +(b-y)tan™ 0 - (bhy)tan™ () +(y+b)[-tan™ ()]
_ -1aftXx -18X -1 @tX -1 X
= (b-y) [ tan by + tan by ] -(bty)[tan (b Ty )+ tan (b Ty )1 .

Next, the four log terms can be combined to give

(a-x)” +(b-y)? (a+x)? +(b-y)?
@xZ bty TR @) In Ferarrnry? 1

(1/2) F(x,y,a,b)'™ = (1/2) (a-x) In [

Combining and reordering these terms, we get
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1%)2 +(bov)? )2 +(bov)2
(12) F(xy.ab) = (1/2) (a+x) ln[%zﬁz] + (12) (ax) ln[%zﬁz]
+ (b-y) [tan_lg-f; + tan_l?;%; 1 -(bty) [ tan_l(;l_T);)Jr tan_l(;JrT;)] . (C.4.6)

This expression agrees with Holloway and Kuester's W if one replaces a = w/2 and b = t/2. With such
replacements, we would have

1 I 1
Hx(x,y) = T6nab F(x,y,a,b) prr— F(x,y, w/2,t/2) = py— [ (1/2) F(x,y, w/2,t/2) ] b y— W1

(C4.72)
so our Hy then agrees with their equations (9) and (11).

Now based on the comment below (C.4.4) above, we may conclude for Hy that

1
Hy(x,y) =- i Jldzx' ln(Rz) [curl' J(x")]y = Hx(x,y) if we swap a<>b, x>y and add a minus

1
=- mF(y,x,b,a) . (C.4.7b)

Just for the record,

> F(y,x,b,a);

+ b b—
Y ]+(2x—2a}arctan[ yJ
—a+x &+ x

& b—y
+i{—-2x—2a)arctan
x a+x

+ b =) (B =)+ (ma+ 20+ (B I+ 52+ (—a+ 1))

(2x—2a) arctan[

y+
+i{-2x—-2a) arc:tan(
a+

S (- ) @+ - By Il(a+ 1) + (B

We can now make a "field plot" showing the H field (direction and magnitude) in the cross section plane
of our rectangular conductor, where we stick with the 4:1 ratio of edges as in Fig C.1 above,
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1= F(x,v,a,b)/(16*Pi*a*b):

Hx

_F(Y.rx.rb.r a) f(lG*Pi*a*b) :

= fieldplot ([Hx Hy],x= -2%*a.

Hy :
pl

=THICK,grid =

.6%b, arrows

.2%a , y= —-6%*b.

constrained) :
:= PLOT(CURVES([[a,b]l, [a,-b],[-a,-b],[-a,b],[a,b]l],COLOR(RGE,1,0,0))):

[30,30],scaling

p2

display(pl,p2);

¥ oF F ¥ F B E Ly e L b b Eldab s b S B R R R R OB OR OB S
P A A A N A IR R B T T T -
¥ OF K B OE N & E PP el Gt oot % B R OR R OE R
PO ¥ KRR E R B RpEE LRGSR &SR RS R R R KRR KRR
AR YRR YRR REEEEEEEEE SRR R GG R R
¥ 4 YRRt h RSB R R R RRE AR A
v g RRRPROAEREEREESRAR KRR SR
T S Al el e e e e NN LS S A
dd bt eI ESERR B RR AR AR R 58
t et e g f W EERRRRERR ARG A5 58 8
t e AR el R R RRR A A4S 4444
e g S I e R BERAR 54955859
R R L R A I
R IR IR A O R A U R R R R IR S R
O R R R R i R T
%#@@@&@@¢@$®w@ﬁﬂq%©%$$@¢%@%@¢@
IR R R R R
R RN TR i A
AR R AN RN D A I N A I
by v % Y Y Y S YY Y I RAPIPE PR P
by Y Y Y WYY APAA AP AP AR B
U WYY Y Y YNNI ANAAAAT IR I FF T
YWY O W Y Y MW OSEET TS AR A A A A A AR R
B oW oM OW YYD URWRPEANI NI AIA AT A A A AR
WU WYY VYR RD Iy ISIIITITAA A A PP
LA B T I R e R o R e R A B B
L T - T I = = = P R R A B
LT B T T R e A - R
T I T N R R G R N T I T I O BT SRS S S S |
I T T T T - T B T R =< - = A B R R A S B B -

Fig C.2

In this plot the H field appears to be maximal at the conductor boundary (shown in red) and as one moves
away it becomes the field of a thin round wire. Current J,, is flowing in the z direction toward the viewer.
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The second plot is of |H|2 as a surface over the x,y plane. Recall that |H|2 is proportional to the energy
density in the magnetic field which in turn contributes to inductance.

pPlot3d(3000*% (Hx"2+Hy"2) ,x= -2%a..2%a,y= -6%b..6%b, grid
normal, axes=boxed,scaling=constrained) ;

[40,40] ,projection =

view from above view from below Fig C.3

The |H|2 surface is very steep at the conductor boundaries, somewhat resembling a rectangular volcano
which dips all the way down to 0 in the center, as shown from below on the right. The L; integration
discussed below is over this central "cone" of the volcano.

The red plot below is a slice through the volcano at x =0 :

x = 0: plot([Hx"2+Hy"2,(0.03)*sqrt (Hx"2+Hy"2)],y=-6..6, color =
[red,black] ,thickness=2 numpoints = 500)

0.00254
0.00264
0.00244
0024
0.0024
00157
00167
00144
0124
014
0.0005
0.06K6
0.00KK
0.00

y Fig C.4

The black plot is of | H | (but scaled down) and resembles the Hg plot for the round wire shown in Fig
B.8.
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We return now to a computation of the internal inductance L; of the rectangular wire. From (C.3.7),

1 a b
La= ps JadS (17 = s (grp)® [ ax [ dy [Fexyab) + Fyxba)’] - (CA8)

Since F(x,y,0a,ab) = aF(x/a,y/a,a,b) one can show that L; must have this functional form
Li = (ni/8m) f(b/a) (C4.9)

though this conclusion is obvious based on dimensions alone. The factor (n;i/8m) is L; for a round wire of
any radius, as shown in (C.3.10). The problem is to find function £ . We set a = 1 with no loss of
generality and use the obvious four-fold symmetry of the energy density so that

1 1 b
Li=4pus (gip)® S, dx [ dy [Feuy.Lb)? + Fiyaxb. )]

i 1
= (51 g7 [} ax [ dy [y Lo + Forxb ) 3 (C.4.10)

Thus our function of interest is
1l b ) )
#0) =gz S dx [ dy [Fey, 10 + Flyaxb. )] (CA11)

where the integrand is ( look carefully to see top level brackets),

> Fl1 := F(x,yv,1,b)"2 + F(y,x,b,a)"2;

#l :=((1+‘x)]n(l+2X+X2+U‘—b)2)+(1—x)]n(l—2x+x2+(y—b)2)+2(y—b)arctan{—l +;J—2(y—b) arctan[_1 +;J
¥ - ¥y

_(1+x)]n(1+2x+x2+(y+£;)2)—(1—x)]n(l—2x+x2+(y+32)2)—2(y+b) arctan[—l+xJ+2(y+b)arctan[_l+XD2+
y+h y+b

((_y+b)]n(bz+2by+y2+(—4 %) (b =y (B2 = 2By 4 ye 4 (—d 4+ 7)) 4 2 (=4 + 1) arctan[—);-:_b J
-4 +x

_2&4+x)mam(iif:}—@+b)m®2+2by+y2+(4+xf)—(b—yﬂﬂb2—2by+y2+(4+xf)
—4+x

y+i ry—£E2
— 2 {4 +x)arctan) — |+ 2 (4 + x) arctan|
4+x 4+x

If one were to expand this expression, there would be 162 + 16% = 256 + 256 = 512 terms if no terms
combined. In fact there are 232 distinct terms:

F2 := expand(F1l): nops(F2);
232
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Here are four sample terms in the integrand of (C.4.11),

for n from 13 to 16 do
print (op(n,F2)) ;
od ;

2
(1= 2x+x2+0—5)2) x°

— b
-1 ]11(.:_‘:'2— 2E:ny+y2+(4+x)2)b arn:tan(y—]
4+x
—2m@2+2by+y2+(—4+xﬁ)y2m@g—2by+y2+(—4+xﬁ)

(1+x} 2 (—1+x}
—8 arctan| —— |y arctan
y—b y—b

It seems rather unlikely that all 232 terms can be double-integrated analytically! For example, if we ask
Maple to analytically integrate the last term shown above just over the x range, it gives up,

int (op(16,F2) ,x=0..1)
1

T+x) 2 -1+x
=3 arctan| —— | arctan| —— | x
y=b y-h

0

Thus, in order to compute £(b) we must turn to numerical integration which, for each value of b, requires
doing 232 numerical double integrals and adding up the results. As is visible in Fig C.3 and Fig C.4, the
overall integrand is singular at the conductor edge, so we might expect some difficulties with the numeric
integrations near the upper endpoints.

We were not successful trying for a hour to get Maple to compute the integral (C.4.11) analytically or
numerically, but certainly the numerical integration can be done. Holloway and Kuester quote the
following numerical approximate formulas for two special cases,

Li = (ni/8m) [0.96639] a=>b (square wire) // very close to the round conductor

L; = (ni/8m) [(4n/3) b/a] b/a<<1 (flat wire) /I Ly =(1/6) ps (b/a) (C4.12)
We discuss the second case in Section C.5
Reader Exercise: Do the numerical integration outlined above to determine function £(b) for several b

values and plot for b = 1 to 10. Is £(1) = 0.96639 ? Holloway and Kuester have a plot in their Fig 2
which looks like this for L; [L; for a circular wire is 50 nH as shown in (C.3.10)],
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50 48.3
nH
0 , -
0 side ratio 1 Fig C.5

Comment: Appendix B.3 provides three 2D methods of computing H from J. We chose to use the
formula (B.2.12). Holloway and Kuester use the method of first computing A then B = curl A. A third
method is to use the 2D Biot-Savart Law (B.2.24). That third method begins this way :

1
Hixy) = [d?x 2 J&) xR R=x-x' (B.2.24)

and
Jz(x) = (I/4ab)0(-a<x <a)B(-b <y <b)

SO
a b 1
H(x,y) = f W dx' f_b dy' 5 RZ (I/4ab) 2 xR
But
R=(xx)R+(yy) =  BxR=(xx)9 - )% .
Thus,
Haxy)= [ “ax [ " dy 547 (V4ab :
«(xy)= ) '] dy' 3Rz (V4ab) [ (y-y)]
a b 1
Hy(x,y) = f_a dx' [ LAy gz (Udab) [+ (x-x)]
or

a (P 2
He(xy)= (U8mab) [~ dx' [ 'dy' (-y)R

Hy(x,y) = - (I/8mab) [ " dx' [ l:)dy' (x'-x)/RZ . (C.4.13)

These last integrals are the same as (7) and (8) of Holloway and Kuester with 2a = w and 2b = t.
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C.5 The DC internal inductance of a thin flat wire
This is a fascinating problem with a result that is non-obvious.

Consider an infinitely long conductor whose cross section has the shape of a thin strip of width w and

height t with t << w,
y
SRS
»

The correct result for L; was given earlier in (C.4.12) and we repeat it here, setting w = 2a and t = 2b,

N
<

Fig C.6

L; = (ni/8m) [(4n/3) t'w ] = (1/6) ps (/W) t<<w . (C.4.12)
We shall now attempt to obtain this result in a simple manner, intentionally misleading the reader a bit.

The uniform current density is J, = I/(wt), flowing toward the viewer. Here is a blowup of a piece of the
strip near its center,

Hx(y) <0
RN == N 2 y
P
S
t © ' 0 X
v
|
-y
Il
~
v\ | S 42
Hx(-y) =0
B R e Fig C.7

The red math loop is positioned as shown for an application of Ampere's Law,

[sJeds =fcHeds . (1.1.37)

Starting at the lower left corner of the red loop for fﬁ ¢, this says

J22y s =s Hx(-y) + 02y - Hx(y)s - 02y . (C5.1)

We assume that "near the center of the strip" there is no significant transverse field component Hy, though
we accept that such transverse fields do exist far away "near the edges" of the strip as in Fig C.2,

310



Appendix C: DC Properties of a Wire

VIR 12 152 852 8534 T Ve T I IR AT,
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N R &
TN s 3 v O s e T T Er
N A I E = B R~
BN B e e e e e Fig C.8

Thus, the two vertical sections of the red loop make negligible contribution to the line integral in the main
central region. Symmetry indicates that Hyx on the upper red loop segment is equal and opposite to that on
the lower segment, so the line integral is then -2Hx(y) s and we continue :

Jz2y s = -2 Hg(y)s

Jzy =-Hx(y)s

/(wt)*y =- Hx(y)s

Ha(y)1=- y/(wt) . (C.5.2)

The result is that Hx(y) = -(I/wt)y which is a very reasonable linear function of y, with Hx(y=0) = 0. The
fact that Hy(y) does not depend on x is also reasonable since, when w >> t, the central region of the strip
is basically all of the strip excluding the tiny end regions which we ignore. A similar argument is made
for the analysis of a parallel plate capacitor, where the end effects are ignored if w >> t.

To get the internal inductance due to this Hy energy storage, we compute its contribution from the
dotted rectangle in Fig C.6, then multiply by (w/s) to get L; for the entire strip. So, using (C.3.7),

Li = (W/s) i J goteea dS (H/D? = (w/s) 1 J doteea (sdy) [-y/(wh)]?

t/2 t/2
— (wis) us (w2 ft/l dy y2 = (wis)us (w22 [ , & y2

=(w/s) s (wd) 22 (1/3) 12)° =w t ut™2 (2/3) /8
=(1/12) p (t/'w) = (ni/8m) [ 2n/3 (t/w) ] // strip w>>t , due to Hy (C.5.3)
But this is only half the correct result for L; which was just quoted above. By luck, (C.5.3) happens to be

the correct result for the Hx contribution to Li; by luck because it is derived from Fig C.7 with the
assumption that Hy = 0 which is not true. The other half of L; in fact comes from the Hy, field in the strip.
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One can write

o t/2 w/2 2 2 o .
Li=p [ o Y I L, X [HLD™+HYD™] = Lix + Liy (C.5.4)
- -Ww

so the Hyx and Hy contributions are simply additive with no interference.

So where did the argument above go wrong? It all seemed so reasonable. One is of course biased by the
appearance of the fields in Fig C.8 shown just above. One's impression is that as the aspect ratio is
increased from 4:1 to perhaps 100:1, the nature of the above plot should become even more convincing:
large horizontal arrows to the left along the top of the strip, large horizontal arrows to the right along the
bottom of the strip, and some minor edge effects at the distant ends.

But this is in fact not a correct impression! For a 10:1 aspect ratio strip, here is the field map (Hx,Hy) for
the upper right quadrant of the strip

e e
— —— i ————— — p———
y TR —_— —_—— —_—— —_ _ _-_— _—
T —_— — —— e —_ —_— _——
DQ__ . —_— —_ —_— —_—— —_— —_—r
T 3 i 5 & 10 Fig C.9

. Fig C.10

and this displays our conjectured functional shape Hx(y) = -(I/wt)y applying not just at the center of the
strip, but all along the strip. This then explains graphically why our calculation above came up with the
correct result for the Hy contribution to Lj. The other half of L; comes from the transverse field
component Hy which has this appearance (we now set Hx = 0 in the field plot)

125

; — I —_— —r— — o N -1
08d - - = - — - -
y 064 - = —r — — —_ —_—
0] — e —_ —=— —r — i I
024 - _ — — — T —1 T
g 2 i ] ] — —
. Fig C.11

The fact that the Hy contribution to L; is exactly equal to the Hyx contribution is just not obvious. One
would think some simple argument could be concocted to explain this fact (perhaps an "equipartition
theorem"). For example, one might conjecture looking at the above plot that Hy, = Hy(x) so that Ampere's
law for the Fig C.7 red loop says, using s = dx,
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Jz 2y dx =dx Hx(-y) + Hy(x+dx) 2y - Hx(y)dx - Hy(x)2y .

Jz 2y =-2 Hx(y) + [Hy(x+dx) - Hy(x))/dx * 2y .

Jzy =-Hx(y) +y 0xHy(x) . (C5.9)
We might then try Hx(y) = -A(I/wt)y based on Fig C.10 with A some constant. Then (C.5.5) says

(I/'wt) (1-A) = 0xHy(x) => Hy(x) = [(Vwt) (1-A)] x =Bx (C.5.6)

which seems reasonable in terms Figure C.11. But Hy(x) = Bx is problematical in two respects: (1) there
is no obvious way to determine B without taking a limit of the complicated full Hy formula ; (2) Even
when that is done, Hy(x) is in fact not linear in x as a simple plot shows, so the model is inaccurate and
does not give the result that L; due to Hy is (1/12) p (t/w).

The field plots shown above and the |H|2 energy plots of Fig C.3 are easy to produce from Maple. These

latter plots are like topographical maps and they can be displayed in that manner as shown on the right
below,

Fig C.12
where we have reverted to the 4:1 aspect ratio strip.
One should not confuse the [H? topo contour lines shown here with a plot of the H field lines. Making a

field line plot is not a built-in function for our vintage Maple V and requires some minor coding to
implement. Here is such a field line plot for a 20:1 aspect ratio thin strip (method given in Appendix O),
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Z //@\ N
(=== SPDDD)))))))

Fig C.13

Each contour starts at x = 0 and y = some value and is iterated CCW (chasing the direction of the H
vector) until it arrives back where it started. The little jogs at the top represent the small error of this
numerical process. Looking at this field line plot, it is totally obvious that there does not exist some
"broad central region" in the strip where the field lines are mostly horizontal. The transverse field
components (vertical) appear as soon as one leaves the exact center of the strip and it is totally wrong to
ignore such transverse Hy components in the computation of L;.

The correct calculation of L; is done in the 2009 paper of Holloway and Kuester. They point out
errors made by earlier authors and make the point that half the internal inductance comes from each field
component. They do not claim that the transverse contribution is exactly half the result, but that it is half
to a high degree of precision. In an email communication, Prof. Kuester made the appropriate point that,
since div H = 0 (there is no magnetic charge), the H field lines must close on themselves and that is what
forces the above figure to have the shape it has, where there is no "broad central region" having
essentially horizontal field lines. In the corresponding parallel plate capacitor picture for electrostatics,
since electric charge does exist, the E fields lines do not need to close on themselves, and have sources
and sinks all along the capacitor cross section, allowing for a uniform broad central region.

Here is one more field line plot showing a larger range of field lines,

Fig C.14
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As the field lines are continued outward, they eventually become circles as the strip eventually becomes a
line source (a point source in cross section) when viewed from far away.

Reader Exercise: Come up with a simple explanation for why the Hyx and Hy fields each contribute half
the total L; value for the thin strip. Is this perhaps true for any edge ratio of the rectangular cross section?
That certainly seems unlikely.

C.6 The DC internal inductance of a hollow round wire

The pipe geometry is as follows, where we assume J is uniform and total current is [ :

Bad

Fig C.15

As with the round wire case, we can avoid using (C.4.1) (or alternates) to compute H due to symmetry.
The total current enclosed within the red circle is this,

. 2 2
area inner annulus ator r-a

lenc(r) = area full annulusatob  bZ-a2 I validfora<r<b . (C.6.1)

Forr<a, Ienc(r) =0, and for r > b, lenc(r) =1. Ampere's Law says
27r He(r) = lenc(r) . (C.6.2)

Note that Hg(r) = 0 inside the tube, so this region makes no contribution to Le or L;. Inside the annulus,

2 2
1 1 r-a
He(r) = lenc(r)/ (27r) =1 1 bral I. a<r<b (C.6.3)
Recalling that
Li=ps | in dS (H/D)? (C.3.7)
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we conclude that

1 1 1
=1 G e om0 2 00

and then using dS = 2xrdr we find

1 _1 b 1 2 20
La=hs 57 Gz S, drp 07290

1 1
= 3 R

Maple computes the integral J as follows

J := Int{{(r"“2-a"2)"2/r,r=a..b);
b
2 2 2
r—a
J = ( ) dr
r
c
J := int{(r"2-a"2)"2/r,r=a..b);

1 3
J:=4—b4—&2a2+a4 ]n(b)+4—cx4—a4 In(a)

which we restate as
J=(1/4)b* + (3/4)a* - a®b? + a® In(b/a)
and then the final result for the internal inductance of a hollow pipe with b > a is
1 1
Li= W 57 pZa?)y [(1/4)b* + (3/4)a* - a?b? + a* In(b/a)]

(a) limit as a— 0: should be round wire of radius b
Reading off this limit from (C.6.6),

1 1
Li= W 7 57022 [(1/4)b* + (3/4)a* - a®b? + a? In(b/a)]

11
= Wi 57 57 [(1/4)b*+0 -0+ 0 In(b/a)]

_ 1
L

(C.6.4)

(C.6.5)

(C.6.6)

(C.6.7)
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and we recover the L; of a round wire as found in (C.3.10).

(b) External Verification of (C.6.6)

The result appears in a very fat (2,263 pages) 1922 handbook edited by Pender and Del Mar, from which
we quote via Google books, page 827 (thank you anonymous scanner person ),

External and Internal Self Inductance of a Round Wire. — The
nductance of a round wire may be considered as made up of two parts,
the inductance due to the flux external to the wire and that due to the flux
m the wire. The first or “external” inductance is

I r
Le= 3l [log.?; — 1] ’ (13)
‘he “internal ™’ self inductance is
L;=tE. (13a)
2

if Inductance of a Hollow Tube of Circular Section, Return Neg-
d. — The exiernal inductance is the same as for a solid wire, i.c., equa-
(13), taking for r the external radius of the tube. The imternal inductance
e tube, putting r; = external radius and n = internal radius, is

rd s 13n'—rgd
i=znk [(r:‘ — 3t log n 4r-n | (14)

In their version which uses cgs units, the round wire has L; = (u/2) per unit length according to their
(13a), so one must add (1/4x) to their (14) result to compare with (C.6.6). Using r = b and r; = a the
results then agree after some algebra.
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(c¢) limit as b-a — 0: thin shell radius a and thickness d

In this limit, the hollow pipe is a thin cylindrical shell of inner radius a and thickness d. Continuing the

Maple code, we first replace parameter b by a+d,

X = mu*(1l/(2*Pi*{b"2-a"2)"2));
I

L2 | o—

X =

2
T (E:nz - a2)
LT = x*JI;

1 3
1 LL [—&4 - bz czz +a4 Ini &) +4—a4 - a4 ]n(a)]

S 2 2
'.n:(bz—azj
b = a+d;
b=a+d
LT,

1 3
1 M[.ﬂ_,(a+d)4_ (a+d)2cz2+a4]n(cz+d)+4—a4—a4]n(a)]

2 2
T (a +d)2 - azj

Maple then expands this L; function about d =0,

series(LI,d=0,4)

1 1 3
a6 2 20 3
T Ta

Of course our only interest is in the first term, so in this limit we have found that
1

Li= on (d/a) = g—; [ (4/3)(d/a) ] thin shell, wvalid ford <<a

where again (n3/87) is L; for a round conductor of any radius.

(C.6.8)
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(d) Maple Plot

Write (C.6.6) as

Hi 1
Li=g { s [b* + 3a* - 4a%b2 + 4a* In(b/a)] }

:g—; {(1—_)1(232 [1+3x*-4x% -4x* In(x) ]

Hi
=S f(x) .

Maple then plots f(x) :

f = (1-x"2)"(-2)*(1 + 3*x"4-4*x"2 - 4*x"4*In(x)),

1432 a4

22
(1-z7)
plot(f,x = 0..1, thickness=2);

14

0.8

0.6

0.4+

0.2

As the pipe is hollowed out from a round wire to a foil shell, f(x) drops from 1 to 0 as shown.

Appendix C: DC Properties of a Wire

(C.6.6)

Fig C.16
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Appendix D: The General E and B Fields Inside an Infinite Straight Round Wire

This Appendix presents a rather lengthy calculation of the fields and currents inside a round wire without
the Chapter 2 assumption that such fields and currents are symmetrical about the axis. This wire is
regarded as one conductor of an infinite transmission line down which a wave is propagating.

Since this Appendix is quite long, a brief summary is in order (see also Table of Contents) :

Section D.1

(a) A longitudinal traveling wave form E(r,0,z,t) = e (@t7k2) p(r 0) is assumed inside the round wire
and E(r,0,z,t) is then shown to satisfy a certain vector Helmholtz equation.

(b) The field E(r,0) and the surface charge n(0) are both expanded onto "azimuthal partial waves"
e¥™@ with coefficients E(r,m) and N,

(c) The Helmholtz equation's vector Laplacian & = V2 is stated in cylindrical coordinates.
(d) The three Helmholtz component equations and div E = 0 are written out in these coordinates.

Section D.2

(a),(b),(c): The z and r Helmholtz equations and the div E = 0 equation are solved for E,, then E,
and then Eg. These solutions are expressed in terms of Bessel J functions of a complex argument and two
unknown constants ap and Ky, for each partial wave.

(d) a boundary condition relating E, to surface charge density n(0) is derived (see D.9 below)

(e) this and another boundary condition Eg(a,m) = 0 (see D.8 below) are used to evaluate ap and Ky,
and then the solution E field components are stated in box (D.2.33).

Section D.3
It is noted that the boxed E field solutions also satisfy the ignored third 6 Helmholtz equation.

Section D.4
The B fields are computed from the E fields using Maxwell -joB = curl E, and then box (D.4.13)
summarizes both the E and B partial wave fields inside a round wire.
Section D.5 These E and B fields are shown to exactly solve the other three Maxwell equations.
Section D.6 The m = 0 partial wave results are stated and compared to the results of Chapter 2.

Section D.7 The problem of finding an exterior field solution for the round wire is discussed.

Section D.8 Arguments supporting the second boundary condition Eg(a,m) = 0 are presented.

Section D.9 The "charge pumping boundary condition" is discussed in relation to surface currents.
Section D.10 High frequency limits of the round wire E fields are presented.

Section D.11 Low frequency limits of the round wire E fields are presented, along with comments on

accuracy, the meaning of symbol k, and the ¢”3** ansatz made in Section D.1.
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D.1 Partial Wave Expansion
Warning: In this appendix, we use the same function name E to represent three different functions,
E(r,0,z,t) E(r,0) E(r,m)

The functions are distinguished by the arguments shown, and if they are not shown, the general context of
the discussion will indicate which function is implied. The symbol E is thus "overloaded".

(a) The General Method

The starting point for the calculation is the damped wave equation (1.3.36, region 2) for the E field inside
the wire. Unsubscripted parameters refer to properties of the wire.

(V2 - g 0¢2 - node)E(r,0,2,) = 0 . (1.3.36)

Cylindrical coordinates (1,0,z) are used, as appropriate for an infinite straight round wire. Recall that the
damping term arises when the driving current J on the right of (1.2.1) is replaced by Ohm's Law J = 6E.

We now make the ansatz that a solution to the above wave equation may be expressed in the
following form where the t and z dependence is exposed and where E(r,0) is a complex function to be
determined:

E(1,0,zt) = &3 “*7*=) g(r,0) . (D.1.1)

The idea here is that we take our round wire to be one of two conductors of a transmission line (the other
wire may or may not have a round cross section). The form shown in (D.1.1) says that the E field inside
our round wire is assumed (an Ansatz!) to be a simple "traveling wave" moving down this transmission
line in the +z direction. As this interior wave moves down the line, we expect to have an exterior wave
whose E field takes the same general form shown in (D.1.1). If we match the E and B field boundary
conditions of the interior and exterior waves, we expect k to have the same value on both sides of the
round wire boundary.

About k

For a lossless wave, we expect the conductors to simply deform the exterior fields (for example,
causing the E field to be perpendicular to the conductor surfaces), but we expect the exterior wave to
travel at the speed of light vq4 in the dielectric, with no "drag" from the conductors. In this lossless case,

we then expect to have k = ® \[Ha€a = ©/vg = Pao in (1.5.1b). If the dielectric conducts but the

conductors are perfect, we have instead k = ® \(pa€qa = Pa in (1.5.1a), and then k has a negative

imaginary part which causes decay along the line, but k is still a characteristic of the dielectric medium.
However, if the conductors are not perfect, then they too contribute to the decay, and in this case we

expect that our parameter k will no longer be a characteristic just of the dielectric. For example, we expect
it will depend on R, the resistance per unit length of the conductors.
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We shall continue to use the generic parameter k throughout this appendix, to make sure our theory
can handle situations with loss. One should think of k as a general complex parameter which (hopefully)
has a negative imaginary part and whose real part is the wave phase velocity. Only in the special case of a
completely lossless line do we have k = @w/vg = Bqo.

In the strong and extreme skin effect regimes, Chapter 4 develops a formula for the parameter k based

on Maxwell's equations. This formula states that k = -j \/ (R+joL)(GHjwC) . This same formula arises in
the network model of Appendix K, but in that model the formula applies all the way down to o = 0.
Probably this extrapolation of the Maxwell-derived k expression down to low frequencies is reasonable
though not exact. Having remarked on these two models for k, we shall ignore them until we reach
Appendix D.11, so we continue to work with our generic parameter k.

When (D.1.1) is put into the above wave equation (1.3.36), time derivatives can be replaced 0r— jo with

the result

(V2 + B?) E(r,0,z1) =0 (D.1.2a)
or

[Van? + (B2-k?) ] E(r,0) =0 V2=Vl +0,° (D.1.2b)
where

B2 = pew? - jopo = o (¢ - jolo) =o?pé E=¢-jo/o . (1.5.1¢c)

We could have defined the temporal Fourier Transform of E(r,0,z,t),
EA(r,0,2,0") = FT{ E(1,0,z.t), ®'} = ¢”3*% E(1,0) 218(0-0') = ¢ 3% E(1,0,2,t) 218(0-0")

as in (1.6.11) and then (D.1.2a) would be valid as well for E~(r,0,z,0) which would be a more
conventional Helmholtz equation, but since E(r,0,z,t) is monochromatic, we leave (D.1.2a) as is.

One can regard (D.1.1) as an assumed variable-separated form for a solution, an "ansatz". If a
consistent solution to the Maxwell equations can be found with this assumption, it is justified de facto.

Sign Convention Comment: Section 1.6 discusses the Fourier Transform (1.6.8) where e*3°®

+joqt

appears in

the expansion formula. For EA(x,0) = 2nd(w-m1) one gets E(x,t) =e¢ and then the form of a wave

+j (0t-kz)

solution is e with the + sign associated with wt. In general, EE people like to assume time

*39 (and they prefer j in place of i for \/-_1 ). The Fourier Transform is of course

dependence of the form e
valid with the other sign choice for the two exponentials, and for that other sign choice one would have
EAX,0) = 2n8(0-01) => E(x,t) = ¢ %1% and one would think of a wave as ¢3 (#t7k2) = o*3 (kz-ot)
This sign convention is common in many physics texts [e.g. Jackson (7.8)], but in this document we use
the ¢*3“**2) convention usually used in EE texts [e.g. Haus-Melcher 13.1 (7)]. Jackson suggests a
physics/EE conversion algorithm of i «<» -j. It is all just a convention choice and, as in (1.6.6), only the
sign of the imaginary physical field under consideration is affected. If one thinks of the physical field
under consideration as Re{E(x,t)}, the sign convention choice makes no difference at all.
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(b) Partial Wave Expansions

The next step is to do a "partial wave expansion"” (that is, a complex Fourier series expansion) of E(r,0) in

terms of "azimuthal harmonics" ¢*™, so that the variable 0 is replaced with the partial wave index m:

o0
Er0)= Y E(rm)ei™® // expansion (D.1.3a)
m = -00
E(rm)=(1/2m) | " 40 E(r,0) e ™ // projection (D.1.3b)
-

Note that dim[E(r,m)] = dim[E(r,0)] = volts/m. In analogy with (D.1.1) we define a surface charge
density n(0,z,t) which has the following ansatz variable-separated form,

n(0,z,t) = 3 (°*7%2) (@) . (D.1.4)

We then expand n(0) as in (D.1.3),

o0
n@® = Y Npe¥™® // dim[n(8)] = Coul/m? (D.1.5a)
m = -00
n -jmé . 2
N = (1/27) f do n(0) e’ . // dim[Ng] = Coul/m (D.1.5b)
-

N is the "moment" of the surface charge distribution in the m* partial wave. As with E(r,0), the function
n(0) is also a function of implicit arguments ® and k.

In principle, n(0) could have a phase which varies with 6. If we momenarily assume this is not the
case and assume that n(0) is real, then (D.1.5b) says N_p = Ny~ and then

(e 0] o0 o0
n0) = Y Nped™ =No+ X [Npe?™ +Ng*e ™ ]=Ng+2 Y Re{Nyel™}
m = -00 m=1 m=1
o0
=No+2 > {Re(Np)cos(mb) - Im(Np) sin(mb) } . (D.1.6)

If we furthermore assume that n(0) is an even function of 0, as symmetry implies for our particular figure
below, then (D.1.5b) says the Ny, are real and then we have

o0
n(0) =No+2 > Npcos(mb). // n(0) real and even in 0 (D.1.7)
m=1

For a moderately closely spaced twin lead transmission line (we allow for different radii), one might
expect the m=0 and m=1 partial waves to be dominant : [ the moments appears in (6.5.4) ]
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—— m=0 other conductor
m=1

K n(B) = No + 2N1cos(6)
a 1
: A

Fig D.1

Notice that
No = (1/27) f_n do n(0) = (1/2n) (1/a)(1/dz) f_n [adOdz] n(0) = (1/27) (1/a)(1/dz) Q

where Q is the total charge on a thin ribbon of width dz wrapping the round wire. In (4.3.8) we refer to
the quantity Q/dz as q(0), where q(z) = q(0) e3*% = the total charge on the wire per unit length. Thus,

No = (1/2ma) q(0) = <n(0)> /1'q(0) =CV (D.1.8)
(c) The Vector Laplacian in Cylindrical Coordinates
Given the following cylindrical-coordinates field components,

E(1,0,2,t) = Ex(1,0,2,) + Eo(1,0,2,)0 + Eo(1,0,2,0)2

we may write out our ansatz wave form (D.1.1) and the Helmholtz equation (D.1.2a) in more detail,

Ex(1,0,2,t) = e “***) E.(1,0) . [VZE(1,0,2,)]: + B% Ex(r,0,2,t) = 0
Eo(r,0,z,t) = &3 (°*7*%) Eq(1,0) . [VZE(,0,2,0)]e + B? Eo(r,0,2,t) = 0
E,(r,0,z,t) = 3 (°*7%2) E_(1,0) . [VZE(1,0,z,1)]z + B2 Ex(r,0,2,)=0. (D.1.9)

where B2 is the Helmholtz parameter of the conductor medium, not to be confused with k.

In Cartesian coordinates, it happens that [V2E]; = V?(E;), but this is not generally true for curvilinear
coordinates. In cylindrical coordinates, it is true for the z coordinate only. The operator v? when applied
to a vector field is called "the vector Laplacian" and it is very different from the scalar Laplacian, so much
so that some authors (Moon and Spencer) replace [VZE] by [®E] which is defined in this manner

[%E] =[V2E] = grad(div E) — curl (curl E) = V(VeE) - V x (V x E) (D.1.10)
whereas
V¢ = div(grad ) = Ve(Vg) . (D.1.11)

324



Appendix D: Fields inside a Round Wire

It is the vector Laplacian that appears in our Helmholtz equation (D.1.2). For cylindrical coordinates it
turns out that,

(V?E)y = V2E, - (2/1%) 0oEe - (1/1?) B
(V?E)e = V2Eg + (2/1%) 06Ex - (1/1%) Eq
(V2E), = V2E, (D.1.12)

where V2 is the scalar Laplacian, given in cylindrical coordinates by
V2 = (1/1)0(10z) + (1/1%)8e? + 852 = 022 + (1/1)0¢ + (1/12)8e? + 0,2 . (D.1.13)
Notice in (D.1.12) that Eg is mixed into the "r equation" and E, is mixed into the "6 equation”.

See for example Morse and Feshbach Vol I p 116, Moon and Spencer p 139, or do a web search on
"vector Laplacian". The author's Tensor Analysis document, Sections 13, 14 and 15, derives these results
for arbitrary coordinate systems. Here is a summary of vector differential operators in cylindrical
coordinates taken from Morse and Feshbach, where the last line corresponds to the above discussion:

A4 Loy

Y
+&¢Ta¢+a$

grad ¢ = a, —

EIA

. 1o
div A E;E_(TA)‘)_'__

o f1aA, o4, A,  0A, 19 14,
curl A = a’(r Ad W)-‘_a{’(az ﬂr)+a?(_r6?TA"’_;ﬂ—¢)

vy = ”(?)+ Exa ML

r or T 2 9¢? | 0zt
A 204 A 204,
VIA = 2 — T ¢ 2 Llg .
A a,[VA,, : T 4 a¢]+a¢|:VA.,, +r a¢]+azvaz

(D.1.14)

We use 0 for azimuth instead of their ¢ since ¢ is our scalar potential.

Using the ansatz form (D.1.1) and partial wave expansions of the form (D.1.3) or (D.1.5), it is a
simple matter to convert an equation containing the above differential operators and involving
components like E;(1,0,z,t) or n(8,z,t) to a simpler equation involving components like E;(r,m) and Np,
and this will be done below.

(d) The three Helmholtz equations and div E = 0 (in partial waves)
1. The z equation: The E, Helmholtz Equation from (D.1.9) is [V2E]z + BZ E,=0.
Using (D.1.12) and (D.1.13), the E, equation may be written,

[0:° + (/1) 8z + (1/1%) Be® + 0,2 + B2 13 “* ¥ E,(1,0) = 0. (1)
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Inserting the expansion (D.1.3) for E,(r,0) and moving the m sum to the left gives
w . -
Y [0:2+ (1/r) 8 + (1/1%) 8 + 0,2 + B2 13 * 2 E, (rm) 3™ =0 . )
m = -0
We can then make the obvious replacements 0, = -jk and 0 = +jm to get,
w - -
S {[0:2+ (1/r) 6 -m? (1/1%) — k2 + B2 1 I @ *2VE (rm) } 3™ =0 . (3)
m = -00
Due to the completeness of functions ¢¥™ on the interval (-n.1), we conclude that { } =0, or

[6:2 + (1/1) 6 -m® (112 — k2 + B2 ]I ¥ E (r,m) = 0. 4)

T

Alternatively one can apply f d6 ¢™I™'® to both sides of (3), use the orthogonality property
7T

[Tdoed@me Zong )
-

and then change m' to m to get (4).
Next, multiply both sides of (4) by % ¢™3 (°*7¥2) o get,

[1?0:2 + 1 O - m? +12( B2- kH)] Ex(r,m) = 0 . (D.1.15)
We may then write these rules for converting equation (1) to equation (D.1.15)

Conversion Rules: 0z — -jk Og— Ho
Op — Hjm f(r,0,z,t ) — f(r,m) (D.1.16)

We can now practice with these rules to convert various other equations of interest. A field with unstated
arguments has the full arguments (r,0,z,t).

2. The r equation: The E, Helmholtz Equation from (D.1.9) is [VZE]r + [32 Ex=0.
Using (D.1.12) we find,

V2(Ey) - (2/1?) 8gEe - (1/1*) Ex + B?Ex =0

[0:2 + (1/1)0z + (1/1%)0e% + 05%] Ex - (2/1%) 86Ee - (1/1%) Ex + P?Ex =0

[0:2 + (1/1)0z + (1/1%)0e? + 852 - (1/1%) + B?] Ex - (2/t%) 3B =0 .
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Now apply the conversion rules to get
[0:2 + (1/1)0 + (1/1%) (-m?) - k2 - (1/12) + B?] Ex(r,m) - (2/r%) jm Ee(r,m) =0 .
Group like terms and multiply by 2 to get
[1?0:2 + 10y - (m?+1) + r2(B?-k?)] Ex(r,m) - 2jm Eg(r,m) =0 . (D.1.17)
3. The 0 equation: The E¢ Helmholtz Equation from (D.1.9) is [V?E]e + 2 Ee = 0.
Using (D.1.12) we find,
V2(Ee) + (2/1%) GEx - (1/r?) Eg + p?Ee =0
[0:2 + (1/1)0z + (1/1%)06? + 8,2 Eg + (2/1%) GgEx - (1/1°) Eg + B?E¢ =0
[0:2 + (1/1)0z + (1/1%)de? + 852 - (1/1%) + B2] Eo + (2/1%) Ex =0 .
Now apply the conversion rules to get
[0:2 + (1/1)0 + (1/r%)(-m?) + (-k?) - (1/1%) + B?] Ee(r,m) + (2/1%) jm Ex(r,m) =0 .
Group like terms and multiply by ? to get
[1?0:2 + 10x - (m?+1) + r2(B2-k?)] Eo(r,m) + 2jmE(r,m)=0 . (D.1.18)
4. The divE = 0 equation: Using (D.1.14) for div E ( times r ) we write div E =0 as
Or (tEy) + OgEg + 1 0E, =0 .
Applying the conversion rules gives

Or [1 Ex(r,m)] + jmEg(r,m) + r (5jk)Ex(r,m) =0
or
[l +10r | Ex(r,m) +jmEe(r,m) + 1 (jK)Ez(r,m)=0 . (D.1.19)

Here then is a summary of the above four results:
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The Three Helmholtz Equations and the div E = 0 equation (in partial waves) (D.1.20)

[V2E], + B2 E,=0:
[1?0:2 +1 0y - m? + 12 ( P?- k%) Ex(r,m) = 0 (D.1.15)

[V2E]; + B2 E.=0:
[1?0.2 + 10y - (m2+1) + r2(B%-k?)] Ex(r,m) - 2jm Eg(r,m) =0 (D.1.17)

[VZEle + p* Eo =0

[1?0:2 + 10x - (m?+1) + r?(B2-k?)] Eo(r,m) + 2jmEx(r,m) =0 (D.1.18)
divE=0:
Or [r Ex(r,m)] + jmEg(r,m) -jk r E (r,m) =0 (D.1.19)

Helmholtz Comments: The scalar Helmholtz equation (V2+B2)u(r,6,z) = 0 is fully separable in cylindrical
coordinates and the "harmonics" (we call them atomic forms) are as follows

[Ja(B'D), Ya(Br)] * [, 737 * [e I, &7 37] (D.1.21)

where k is a free real parameter and where p'? = p? - k?. Here we use parameter names relevant for our
particular problem where u = E,. These atomic forms appear for example in Moon and Spencer p15 with
B=1x m=p, B =iq, az = m? and -0z = p'2. Whether a parameter like m or p' is real, imaginary or
complex depends on the nature of the problem, and the above is a standard atoms choice for problems of
our type. The 0 "quantum number" m is quantized to be an integer by the fact that the problem region is
the entire range (-w,m) for 0 and the solution must be single valued in 6. Our k is a parameter determined
for a lossless line by k = on/ugeqa and is thus correlated with the selected frequency ®, whereas our
parameter B is always complex as in (1.5.1c or d). In general, in any list of atomic forms like that shown
above, two of the three atoms will be oscillatory and the third will be exponential, and in our case Jpn(B'r)
is the exponential one, hence the skin effect with its exponential damping as shown in (2.3.7). Away from
a singular point, any solution to (V2 + Bz) u(r,0,z) = 0 must be writable as a linear combination of the
atoms, SO

u=J dk Zn [Ax,m Ju(BT) + Bx,m Ya(B'T) [Cx,m ™ + Dy ne 3™ ] [Ex me % + Fy me™ %],

A general solution method is to find a subset of the above most-general form that is appropriate in each
"region" of the problem, and then to match boundary conditions between regions. If the problem is well-
posed, this will determine all the constants A,B,C,D,E,F. We refer to this solution method as "the method
of Smythian forms" (Smythe used this method a lot). Often many of these constants are 0.

In contrast, the vector Helmholtz equation is not separable in cylindrical coordinates (see Moon and
Spencer p 139), it is not even "R-separable”, so there are no associated "harmonics" as there are with the
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scalar Helmholtz equation. Nevertheless, the functions ¢3™® form a complete set for 0 in (-7,7) and our
expansion of each E; onto these e¥™ is certainly allowed, even though these ¢3™ are not part of any

associated harmonics for the vector Helmholtz equation.

However, in Cartesian coordinates each Helmholtz component equation is a scalar Helmholtz
equation. In cylindrical coordinates z is a Cartesian coordinate, so we should not be surprised when we
find below that E, ~ Jn(B'r) ¢™® ¢ 3% and this fits into the general form noted above. Neither Ez nor Eg

will have such a form.

D.2 Solutions for E; E. and Eg
(a) The E, Solution

As shown in (D.1.15), the Helmholtz equation for E,(r,m) is

[1?0:2 + 10z + (1 B2 - m?)] Ex(r,m) = 0 (D.2.1)
where
pZ=p%-k* . (D.2.2)

For a perfect conductor, || is very large compared to the low-loss value k = Ba = Bgo (slight dielectric

conductivity), so we could ignore the distinction between B and p' in that low-loss case. To show this,
recall from (1.5.1b and d) that

2
2_ 2 2. — B ~ £ S
Bao” = © paga p JOUG ||3d02| g OFq

In scale, p and pg are about the same, so using numbers from (1.1.28) and (1.1.29),

B> o s81x10” 10 10°
[ Bao? |~ 0ca ~27f885x 102 ~ f{Hz) — f(GHz)

B, 32x10°
Bao | = \[f(GHz)
For f=100 GHz we then find that |B/Bao| =~ 3200, so for f < 100 GHz, |B/Bao| > 3200.
As noted earlier, we maintain k as a general complex parameter to be able to handle situations with
loss, and thus we maintain the distinction between B and ' in all that follows.

Setting x = B'r one finds 0r = f'0x and then 10, = X0x and so on so that (D.2.1) reads

[x204% + X Ox + (x2- m?)] Ex(x/B',m) = 0. x = B'r (D.2.3)

329



Appendix D: Fields inside a Round Wire

This is Bessel's equation [ Spiegel 24.1] and the solution subject to the condition that E, be finite at r =0
is Ez(x/B',m) = Czp In(X) or

E(r,m) = Cam Ju(B'r) (D.2.4)
where C,p, is an arbitrary constant for each partial wave m.

For m = 0, equation (D.2.4) is consistent with (2.2.22) found by other means. In Section 2.1 we dealt
only with the m=0 partial wave, which embodies the symmetrical part of the problem.
(b) The E Solution
As shown in (D.1.17), the Helmholtz equation for Ex(r,m) is, using (D.2.2),

[1?0:2 + 10x - (m?+1) + 1?B?] E(r,m) - 2jm Eg(r,m) = 0 (D.2.5)
while the div E = 0 condition was stated in (D.1.19) as

[1 +10r ] Ex(r,m) +jmEe(r,m) + r (5jk)Ez(r,m) = 0
or

-imEg(r,m) = [1 4+ 10y ] Ex(r,m) -r (GK)E,(r,m). (D.2.6)
Inserting this into (D.2.5) gives [ m = 0 is a special case, but it falls out below correctly ]

[120:2 + 10y - (m?+1) + 12 B'2] Ex(r,m) + [2 + 210z ] Ex(r,;m) - 2r (jk)Ex(r,m) =0
or

[1?0:2 + 310y + (1-m?) + 12 B'?] Ex(r,m) = 2r (jk)Ez(r,m) . (D.2.7)

Inserting solution (D.2.4) for E,(r,m) this becomes

[1?0:2 + 310y + (1-m?) + 1% B'?] Ex(r,m) = 2r (jk) Com Ju(B'T)

" [r?0:? + 310 + (1-m?) + 12 B?] Eg(r,m) = 2j (k/B') Czm B' 1 Ju(B'r)
N [120:% + 310 + (1-m?) + 1% B] Ex(r;m) = Kpn B'r Ju(B'r) (D-2.8)
where

Kn=2j (k/B") Com - (D.2.9)

In order to get the left side of (D.2.8) into something recognizable, we define
E(r,m) = x ! F(x) (D.2.10)

where x is a dimensionless radial variable which will play a major role in the following,
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x =B and x5=p'a . (D.2.11)
Then (D.2.8) becomes

[x20x> + 3x0x + (1-m?) + x2] { X" Fu(X)} =2j (K/B") Czm X Ju(X)
or

X [x20x% + 3%0x + (1-m?) + x?] { X! Fu(x)} =K X Jn(X) . (D.2.12)

Ever eager, Maple expands the left side of (D.2.12),

g fm({x)/x:
L = x*(x"2*diff{g,x, x)+3*x*diff(g,x) + ((1-m™2) + x"2)*qg):
simplify(%): expand(%): collect(%,fm(x))

2 2 o 2,12
(= +x ) finlx)+ 2ﬁn(x) T+ axﬁn(x) x
ax

so that (D.2.12) becomes
[ x2 042 + X Ox + (x2-m?)] Fr(x) = K x2 Jn(x) . (D.2.13)
The left side of (D.2.13) is the normal Bessel operator [ Spiegel 24.1] , but the equation is also driven by a
power times a Bessel function. The solution to the equation is the homogeneous solution of the Bessel
equation plus the particular solution which is the response to the driving function on the right hand side.
The homogeneous solution is the usual linear combination of Ju(x) and Yp(X), but we must reject

Yn(x) since it blows up at x=0 and thereby causes the field E, to be singular, which it cannot be, smack in
the middle of a wire.

The particular solution is not very obvious and required some hunting to find. It is this
F(x)P2Et2 — (1)Ko [ X Jme1(X) ] (D.2.14)
as Maple confirms, continuing the above code,

fm = (x) -> (1/2)*Em*x*BesselI(m+1,x)

1
fm=x %Eﬁfm x Bessell(sm + 1, 23
L: simplify(%);

x2 o Bessell(a, 1)

Therefore, we now have this full solution for Fp(x)
Fm(X) _ Fm(x)particular + Fm(x)homogeneous — (1/2) Kn [ x Jm+1(X) ] +ap Jm(X)

and then from (D.2.10) the full solution for E,
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K
Er(r,m) =an X * Ju(x) +7“‘ Jms1(X) . (D.2.15)

For each value of m, there are two as-yet undetermined constants, ap and (Kg/2). However, looking at
(D.2.15), we see that, since Jo(x) = 1 for small x, we must have

apg=0 (D.2.16)
to keep Ey finite at r = 0. Later we shall obtain expressions for ap and (Ky/2).
(¢) The E¢ Solution
Recall (D.2.6) in slightly altered form,
JmEg(r,m) = - O[rEL(r,m)] +r GK)E(r,m). (D.2.6)
We can then insert our known E, and Ey to get Eg :
E.(r,m) = Czp Jn(x) (D.2.4)
Er(r,m) =an X * Ju(x) +% Jns1(X) . (D.2.15)

so (D.2.6) just above becomes the following :

JMEe(tm) = 0ulr{ am X Jn(3) + 2 Tnya (1] +1 (K) Cam Jn9)
. -1 Kn Km .
JmEg(r,m) = -0g[X{ am X~ In(X) +7 Imi1(X)}] + 5 X In(x) /' Kn=2j (k/B") Czm
. Kn Kn
jmEg(r,m) = -Ox[am Jm(X) 5 X Jm+1(X)] 5 X Jm(X)
m m Km
ije(r,m) = -anm Jm'(X) '7 Jm+1(X) '7 X Jm+1'(X) +7 X Jm(X)
jmEg(r,m) = -ap Jn'(x) + % [-Jn+1(X) - X Jp41'(X) +xTu(xX)] . (D.2.17)

At this point we invoke the recurrence relations [ NIST 10.6.2 ], where € is any Bessel function,

{'f?:i(z) = %jv—l(z) - (V/Z) %}v(z)s
10.6.2

cg;'(z) = - v-l—l(z)"' (sz)%ju(z)>
to write
Josr' = Jm- (MH+D)X et first relation with v =m+1
Jn' = -Jns1 + (/X)Ip second relation withv=m . (D.2.18)
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Insert these into (D.2.17) to get

) K,
jmEg(r,m) =-ap Jn' + Tm [-xJm+1' - Jme1 + xJn]

Kn -
- dm {‘Jm+1 + (m/X)Jm } + 7 [ -X { Im - (m+1)x 1Jm+1} - Jmir t XJm]

K
= an Jm+1 - Am (m/X)Jm +7m [-XJn+ (M+]) Jme1 - Jmer + XIn)

Km
= an Jm1 - am (M/X)]n +7 [ m Jm41]

Kn
- ap (M/X))n +(7 m + ap ) Jns1 -
Dividing by m then gives the final solution [ again, m = 0 is a special case ]
. -1 Km am .
JEe(r,m) =-ap X~ Jn(x) + (7 R ) Jme1(x) x=pr . (D.2.19)

We now gather up the solutions developed above, but first, recall that

Kn=2j (k/f") Czm (D.2.5)
which we can solve to get

Cam=(1/2))(B/k) Knn . (D.2.20)

Installing this into (D.2.4), our three E field components are then

First summary of the E field solutions (D.2.21)
: Km
E.(rrm)= -j(B/k) 5 Im(x) x=fB'r (D.1.27)
-1 I<m 2 2 2
Er(r,m) = ap X~ Jn(X) +t5 Jm+1(x) B<=p“-k (D.2.11)
. -1 Kn an
jEe(r,m) =-ap X~ Jn(x) + (7 + E ) Jn+1(X) (D.2.15)

These solutions were obtained from the z and r Helmholtz equations and from the div E = 0 equation. As

Ko a
will be shown below, for m = 0 it turns out that ag = 0 and also (70 + HO =0, so Eg(r,0) = 0. This last

result may be directly obtained by solving the m = 0 Eg equation (D.1.18) to get Eo(r,0) = Cgo J1(p'r) and
then the boundary condition Eg(a,0) = 0 forces Cgo = 0.
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It is an easy matter to have Maple verify that this solution set solves the div E equation and all three of
the Helmholtz equations z, r and 0 :

alias{I=I, j= sqrt(-1), J=Besseld):
Enter the left sides of the four equations in box (D.1.20):

el := r*"2*pDiff(Ez,r,r) + r*Diff(Ez,r) —-m"2*Ez + r"2*bp"2%*Ez;
2
_2é a 2 2, 2
el =r Bz [+# Bz |—m  Ez+r bp~ Bz
2 dr
ar
e? = r"2*Diff{Er,r,r) + r*Diff(Er,r) -(m"2+1)*Er + r"2%bp"2*Er -2*j*m*Ephi
2
28 8 2 2,2 . .
el =r Erl+r Er|—im™ + 1) Er+r bp~ Br— 27 m Ephi
Igg?"2 or
e3d := r"2*Diff(Ephi,r,r) + r*Diff{Ephi,r) -(m"2+1)*Ephi + r"2*bp"2*Ephi +2%*j*m*Er;
2
-1 - a2 _ 2 - -
gi=r 2Epkx +r 3 Ephi |—(m™ + 1) Bphi+r bp™ Bphi+ 2 jm Br
ar i
ed = Diff({r*Er,r) + j*m*Ephi - j*k*r*Ez;

3]
24 :=[a—rEr]+ijphi—jkrEz
s

Next, enter the claimed E field solutions from hox (D.2.21):

Ez := -j*(bp/k)*(Km/2)*J(m,x);
1 bp &m Iim, x)
Br=—r———————
2 k
Er := am*{1/x)*J(m,x) + (Km/2)*JT(m+1, x);
am J(me, x0 1
Br=—————"4+-"EmIlm+1,x)
x 2
Ephi := {(-j)*{-am*{1/x)*J(m,x) + (Km/2+am/m)*J{m+1,x))
am Im, x) |1 ke
Bphi=—f| = H[ S w1
x 2 m
x := bp*r; setx

x=bpr

Show that each left side evaluates to zero as box (D.1.20) requires
value(el): simplify(%)

0

value(e?): simplify(%)
0

value(e3): simplify (%),
0

value(ed): simplify(%)
0

Maple Comment: In Maple one must be careful with this kind of verification to make sure Maple has
not misunderstood something. For example, perhaps it thinks 0,E, = 0 because it thinks E, is a constant.

This is the purpose of using the "inert" Diff operators (versus diff) when the function to be differentiated
has not yet been defined, and then forcing them to evaluate later with the value() operator. One should
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always view expressions before simplification to make sure things are kosher. For example, changing the
colon to semicolon after value(el) to force display, one gets

> value(el); simplify(%)

mlim, Bpr
(1) T0m+ 1, p ) Tombpry T\TTmE LI
e m+ 1, bpr mIm, bpr r
N r2 bpz fom —(I(m, bpr)— 5 z ] bp — 2p + z
1 B by r r
2 i
o melim, Bprl
JrepT Em | -Jm+ L+ o o3
1 bpr lim bpmIm bpr)y 1ir bp” KmlIlm bpr)
- - _Z
2 i 2 i 2 i
0

Here Maple has duly computed the Bessel function derivatives in expression el but does not yet realize
that the expression is 0. This is brought out by the simplify(%) command (simplify the last computed
expression) and the output of the simplify command is the 0 on the last line.

Here is an alternative verification of divE = 0 and (VZ+B?)E = 0 using Maple's fancy differential
operators and the fact that V’E = grad(divE) — curl(curlE). We use the same ficld components as above,
but tack on the 0 and z dependence of the partial waves:

E := [Er,Etheta,Ez]:
¢ = [r,theta,=z]:
Ez := —-j*(bp/k)*(Em/2)*T{m, x) *exp(j*m*theta) *exp(-j*k*=z):
Er := {(am*(1/x)*J(m,x) + (Em/2)*T{m+1,x)) *exp(j*m*theta) *exp(-j*k*=z):
Etheta := (-j)*{(-am*{(1/x)*T(m,x) + (Em/2+am/m)*T(m+1,x) ) *exp(j*m*theta) *exp(-j*k*=z):
X := bp*r: bp := sqrt(b"2-k"2):
diverge(E,c,coords=cylindrical)
]
gd = simplify{grad{diverge(E,c,coords=cylindrical),c,coords=cylindrical)):

c¢c = simplify({curl{curl(E,c,coords=cylindrical),c,coords=cylindrical)):
vlap := gd - co:
evalmi{vlap + b"2*E): simplify(%)

[0,0,0]
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(d) The Charge Pumping Boundary Condition

The reason we are interested in the surface charge n(0) of (D.1.5) is that it acts as a driving source of the
radial electric field inside the wire. Recall the equation of continuity (1.1.35) converted to the ® domain

divJ = - jop o o[fvpdvi = [sJ eds. (D.2.22)

This is meant to be (1.1.25) where J is conduction current and p is free charge. When applied to a thin
box of radial area dS straddling the wire surface,

dS

FigD.2
one finds that Is J o dS =-J.(r=a-£,0)dS and fv p dV =n(0) dS so that (e implies just below surface)

Jr(r=a-¢,0) = jo n(0) . (D.2.23)

We assume there is no conduction current outside the wire to get this result (non-conducting dielectric).
Since J = oE, this is really a boundary condition on the radial electric field just below the surface,

E,(r=a-£,0) = (jo/c) n(0) . (D.2.24)
We convert this to m-space using the conversion rules (D.1.16) to obtain (dropping the €)
Er(r=a,m) = (jo/c) Ny, . (D.2.25)

Thus, the interior radial electric field must have a certain value at the r=a boundary in each partial wave,
and this value is determined by the moment of the surface charge distribution.

By way of interpretation, the surface charge of a transmission line is "pumped" by the radial current in the
wire (in quadrature), see Fig D.7 far below. This radial current is accompanied by the usual longitudinal

current one expects to find inside the conductors of a transmission line.

If the dielectric conducts with some 64 > 0 but 64 << o, one must make these replacements in (D.2.24)
and (D.2.25),
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n(0) — (Ea/eq) n(0) Nm — (&a/€4) N .

See (D.9.23) and surrounding discussion. Generally we shall assume 64 = 0 in the following work just to

avoid having the extra (Eg/eq) factors floating around.

(e) Application of the Boundary Conditions

Our task here is to derive expressions for the constants an and Ky appearing in the above E field

component equations.

We have two boundary conditions to impose:

Er(r=a,m) = (jo/c) N, (D.2.26)
Eg(r=a,m)=0 . (D.2.27)

The first is the radial charge pumping condition shown in (D.2.25) above. The second boundary condition
is an assumption that requires its own discussion in Section D.8 below. It implies that the cross sectional
wire surface is an equipotential surface and that therefore Eg(r=a,0) = 0. This in turn requires that in each

partial wave Eg(r,m) = 0 since

Ee(r,m) = (1/2m) | " 40 Eo(1,0) ¢ 3™® (D.1.3b)

Ee(a,m) = (1121) | : d0 Be(a,0) e =(1/2m) [ ’; d00e ™ =0

These two boundary conditions serve to determine the two constants ap, and Ky, though a bit of algebra is

required. The first step is to use the E, and Eg expressions shown in summary box (D.2.21) to write out

the two boundary conditions as
-1 Km :
am Xa  Im(Xa) T 5 Jn+1(Xa) = (jo/o) Np (D)

-1 Kn an
-am Xa = Jn(Xa) t (7 +E ) Jm+1(xa) =0 . (2)

Addition and subtraction of these equations gives two new equations,

Kn Kn dm .
B3 Jne1(Xa) + (7 i ) Jmt1(Xa) = (0/0) Nn (3)
2 8 Xa ™ Jnlxa) - = Jmea(xa) = (/o) N )

1

Using the recursion relation 2m x ™~ Jp = [Jn4+1 + Jm-1] , the second may be immediately solved for ap,

n |
2 _ (j0/20) 2 Ny Al )
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Using this same recursion relation and (5) for ap , equation (2) may be solved to get

1 1
Gt TG - ©

Kn dm .
(5 *+4 ) = (0/20) Nn

Finally, subtracting (5) from (6) we find

Ko _ . 1 1
> = (jo/26) Np [Jm+1(Xa) ~ Jn-1(Xa) I ?

Notice the following situations for m =0,

ap=0 (8) // from (5)
ag . 1 . 1
0 (jw/20) 2 Ny m = -(jo/26) 2 No m 9 // from (5)
0 . 1 1 . 1
5 = (jo/20) No [Jl(Xa) ~Ta(%0) 1 =(jo/c) No @ (10) // from (7)
Ko ag .
(7+F ) =0 (11) // adding (9) and (10)

We summarize the coefficients as follows:

am = (jo/206) 2m Nmm . ap=0 (D.2.28)
e _ (j0/20) Nu [7— 1 B0 _ (/o) No s

2 ~ (020 Nalj e — T 0] 2 = (00 Noj oy

Kn am 1 1 Ko a0

(7t ) = (@20 Na 2 e 1 k)] o) =0

The third equation is obvious from adding the first two, and Maple verifies that the first two satisfy (1)
and (2). At this point it is convenient to introduce the DC resistance per unit length of the wire (C.1.1),

1
Ree ==z (D.2.29)

along with a new symbol to indicate the relative surface charge moment,

N
Nm Fo . (D.2.30)

The DC moment Ny can be related to the total current I in the wire as follows:
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2 2 x .
1= fO”de f:rerz(r,e) = fo“de foardr{c S Eg(rm)ed™ 1 //(D.1.3a)

m = -oo

o0
2 .
=6 foa rdr Ex(r,m) fo T 40 eI = 216 foa r dr E,(1,0)

m = -0
a . Ko

=2nc [ of dr {-j(B/K) 5~ Jo(x) } // (D.2.21) for E4(r,0)

) Ko pa ,
=B/ 2n6— | , Tdr o) /) x = Br s0 xdx = B rdr

. -1 I<0 Xa . -1 KO
=-j(B'k) 275(57 [ fﬁ dx x Jo(x)] =-j(B'k) " 2no > [ Xa J1(Xa) ] // GR7 5.52.1
=-j(Bk)™* 2m6 {(jw/o) No /J1(xa)} [ Xa J1(xa) ] //(D.2.28) for%

(BK) ™ 210 No xa = (B'k)™* 210 No B'a

= 27w (a’k) Ng
so that
= 27w (a/k) No (D.2.31a)
No = (k2nwa) I . //'T is called i(z=0) in (4.9.2) so I =i(0) (D.2.31b)

From (D.1.8) we know that No = <n(0)> = (1/2ra) q and since q = CV we get the alternate form,
1= 2ma (0/k) No =2ma (0/k) (1/2na) q = (0/k) CV . (D.2.31¢)

It follows from (D.2.31b) that the normalization factor appearing in (D.2.28) may be written as
: . N : : 2
(jo/26) Np = (jo/20) FONO = (jo/20) Mm [(k27wa) [ ] = (j/4) Nm (ak/oma®) 1

= (j/4) (ak) Nm I Rac - (D.2.32)

We may now construct the final form for our E field solutions in (D.2.21) using the coefficients in
(D.2.28) and the replacement (D.2.32) :

. Kn , . 1 1
Ez(rm) = (/%) 5 In(x) = -i(B/k) (0/20) Nu [;—5 5 ~T %

) 1 Im(x)

. . 1 1
=-j(B/k) [(/4) (ak) Nm I Rac] [Jm+1(Xa) " Jno1(Xa) 1 Jn(x)
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Jn I
=(1/4) Nm I Rac (ap) [ Jm+féza) - Jm_(faa)]

_ K,
Er(r,m) = ap x 1 In(x) +7m Jnt+1(X)

. 1 _ 1
= [G0/20) Nal £ 2m T o557 )+ [0~ T Ve

. 2mx " J(X) Jnt1(X) Jnt1(X)
=04 @)malRae {73 700" + 0k T Jma(xa)

Jt Jm-
=(j/4) (ak) Nm I Rge  { Jm+11((2) * Jm_ll((;a)x)}

where in the last line we used the NIST (10.6.1) Bessel identity (2m/X)Jn(X) = Jp-1(X) + Jn+1(X). Finally,

. _ K a
jBo(m)  =-an x M In() + (5 ) Jaea(x)

. - 1 1 1
= [(©/20) Na] { -2mx7" == [T *7 ) Jana®)

2 _1Jm Jmet s
= (]/4) (ak) Nm I Rdc { - n;:Txa(;() * Jm+]]..((:za),) * Jm—;..((:zz.) ] }

Jm+1(X) Jm—l(x)

=(j/4) (@) M I Rae {32005 -7~ 5}

Gathering up one more time:

1
Second summary of the E field solutions : Rgc = pu— B’Z = B2 - k2 (D.2.33)
E — (1/4 N, g, = [~ Tn(x) —p
2(r;m) = (1/4) nm [ Rac (aP') fm m = Jmt1(Xa) ~ Jm-1(Xa) ] x= fBr

Jm+ Jm—
Eo(t;m) = (j/4) Na 1 Rac (2k) ga gn= Jm+11((2) + Jm—i(()):z)] xa=Pa

Jm+ Jm‘
Ee(r,m) = (1/4) Nm I Rdc (ak) hm hm = [ Jm+:..((;::) ) Jm—:_.((;::) ]

Maple verification of these solutions is shown below.
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Observations about the solution:

(1) We looked for a traveling wave solution inside a round wire in which phase fronts propagate down the
wire (z direction) with angular frequency ® and wavelength A = 2/Re(k). We found the solution shown
in the above box. This solution satisfies all three components of the vector Helmholtz equation (D.1.2) as
well as the div E = 0 equation.

(2) For a low-loss line one has § = 6/(jo) and &g = €4. These are the complex dielectric "constants". The
corresponding wavenumbers are then

B=p=0\uE ~o\Loo) =e?34\Jouo = 33412/  (15.1c),(22.19), (2.2.21)
k =Ba=o \/ Haa = 0 \lUg€da = ®/ Vva = Pao va = speed of light in the dielectric (D.2.34)

Thus, in our wave solution (D.1.1), the phase fronts propagate down the inside of the wire at vg, the speed
of light in the dielectric outside the wire. Although we have been quiet about the fields outside the wire, it
seems reasonable to presume there is a wave outside also moving down the wire at v4 . See Section D.7.

(3) For r near a, where most of the action occurs due to the skin effect, the Bessel function ratios
appearing in (D.2.33) are on the general order of unity so we expect the three brackets [...] to be of the
same general size. It then follows that the E, and Eg fields are smaller than E, by the ratio |k/B'| which we
have shown in the discussion below (D.2.2) is very small at frequencies below 100 GHz (lossless). Since
E. is an electric field inside copper, it is already itself quite small, so the E; and Eg fields are extremely
small. This then justifies their omission from the development of Chapter 2.

(4) If there exist moments Ny of the surface charge distribution on the wire with m > 1, then the
corresponding n, # 0 and it is clear that E,(r,0) and hence J(r,0) are non-uniform inside the wire. That
is, these fields vary with 6 as cos(m6) as well as with r. The non-uniformity is not "small" but has the full
strength of nm. Of course we only expect to get significant moments of charge density n(6) when
conductors are "fat and close". See (6.5.4) for the special case of both conductors being round wires, and
then Section 6 (b) for more on this "proximity effect".

(5) The surface impedance from (C.2.1) is just Zg(0) = E(r=a,0)/I. Thus, from (D.1.3a),

0
Zs(0)=(1/1) Y Eg(a,m)ei™ // (D.1.3a)
m = -0
0
_ Xaln(Xa) Xalm(Xa) me e
“UMRae 2 M T3 "0y T i) ) © //(D.2.33)  xa=Pa
m = -00
where, (D.2.35)
wa n -jmé
M =Na/No =77 [ ™ don(0) e // (D.1.5b) and (D.2.31b)
-
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Thus we see the expected non-uniformity of Z,(0) around the perimeter of the wire cross section due to
the m # 0 surface charge components. Z,(0) is larger where J,(a,0) is larger.

Maple verification of box (D.2.33)

We use the same method illustrated below box (D.2.21). The same expressions el,e2,e3,e4 are entered as
the left sides of the four equations whose right sides we expect to be 0. Then:

Enter the claimed E field solutions from hox (D.2.33)

Ez := C*xa*{J{m,x)/J{m+1,xa) - J(m,x)/T(m-1,xa));
T, x) T, %) ]

Jim+ 1, za) Jm—1,xa)

Er := C*j*{a*k)*(J(m+1,x)/T{m+1,xa) + J{m-1,x)/T{m-1,xa));
Tm+1,x)  Tm—1.x) ]

+
Jm+ 1, za) Im—1,xa)
Ephi := Cc*{a*k)*{(J(m+1,x)/0T(m+1l,xa) - J(m-1,x)/0{m-1,xa));

Ez:=C"xa(

Er:=jCak[

Jim+1,20 Jim—1,x)
Ephi=Cak -
Jim+ 1, xa) Jm—1, xa)
x := bp*r: xa := bp¥*a: setxandxa
C = (1/4)*(Hm/H0)*I*Rdc;
1 M I Rde
4 W

Show that each left side evaluates to zero as box (D.1.20) requires
> value(el): simplifvy(%)

0
= value(e?): simplifv(%)
0
> value(e3d): simplifv(%);
0
> value(ed): simplify(%)
]
Now check the houndary conditions
I := (2*Pi*omega*a/k)*N0: # (D.2.31)
Bdc := 1/(sigma*Pi*a"2):
eval (Exr,r=a); #f compare (D.2.26)
J Mm@
8
eval {(Ephi,r=a); #f compare {(D.2.27)
]
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D.3 What about the Eq Helmholtz Equation ?

A review of the above derivation of the three fields E,, E, and Eg shows that the Eg Helmholtz equation
has been completely ignored. The Eg expression was obtained from the div E = 0 equation after the E,
and E. fields were computed.

It is reasonable to wonder whether the solution fields found above in fact solve this 6 Helmholtz equation
which mixes the E, and Eg fields together in a manner similar to the r Helmholtz equation.

A related question is whether the three Helmholtz equations and div E = 0 are four independent
equations, or is one of the three Helmholtz equations dependent? In Cartesian coordinates suppose we
know that (implied sums on repeated indices)

(0305 +P* E1 = 0
(ajaj + Bz) E>=0
04F. =0 . // divE =0 (D.3.1)

Can we show that (0505 + B?) Es = 0 so this third Helmholtz equation is dependent? Applying the
operator (0505 + Bz) to the last equation above one gets

(0305 + B%) 0:E1 =0

or

0i (0505 + Bz) E;i=0
or

01 (0305 + B?) E1 + 82 (9505 + B?) E2 + 03 (0505 + B?) E3 =0
or

03 [(9305 + B?) Es] =0 (D.3.2)
This does not prove that (0505 + Bz) E3 = 0 since (0505 + [32)E3 = f(x1,Xx2) # 0 also satisfies (D.3.2).

Rather than pursue this question further, we simply note that the Maple code below box (D.2.21) verifies
that the E field solutions given in that box do indeed satisfy the 6 Helmholtz equation (as well as the other
two Helmholtz equations and the div E = 0 equation).

Reader Exercise: Come up with some reason that this had to be the case.
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D.4 Computation of the B fields in the round wire
The B field components may be computed from the Maxwell curl E equation (1.1.2),

-0¢B =curl E . Maxwell curl E equation (1.1.2) (D.4.1)
In cylindrical coordinates one has from (D.1.14),

curl E = £ [ 1 206E, - 0;Eq] + 0 [02Ey - 0:E5] + 2 [ 1™ 20x(tEe) - r *00Ey | (D.4.2)

where the fields are of the traveling wave form shown in (D.1.1) which we assume also for the B field.
Thus, combining (D.1.1) with (D.1.3a), one has

e 0]
E(1,0,2,t) = &3 (°t7%2) E(r,0) = I (0t7k=2) > E(r,m) ™ (D.4.3)
m = -0
o0
B(1,0,z,t) = &3 (“t7%2) B(r,0) = I (®t7k=) > B(r,m) ™. (D.4.4)
m = -0

Inserting the three cylindrical components of the E expansion (D.4.3) into (D.4.2), one finds that these
replacements may be made,

O — Hjo 0z — -jk O0g — Hjm. (D.4.5)
Similarly, inserting the B expansion (D.4.4) into -0+B one may replace 0r— +jo. After doing this, both

sides of (D.4.1) are expansions having the general form of (D.4.3) and one may then equate terms in the
m sum [completeness of the ¢7™ on (-n.7)] to find that

JoB(r,m) = £ [ YjmE, +jkEe] + 0 [-kEy - 0rEz] + 2 [t 20:(rEe) - 1 jmEy | (D.4.6)
and this then gives the three partial wave components of the B field

B(r,m) = (j/o) [curl E]r = (j/®) [r"jmE, + jkEg]

Bo(r,m) = (j/) [curl Eo = (j/0)[-}kEx - &-Ex]

B.(r,m) = (j/®) [curl E]; = (j/o) [t 0x(tEe) - r }jmE,] . (D.4.7)

It is now a simple task to insert into these B; expressions the E; field components from box (D.2.33),
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1
Second summary of the E field solutions : Ryc = - B2 =p2 - k2 (D.2.33)
— [} _ Jm(X) Jm(X) o '
Ez(r,m) = (1/4) \n [ Rac (aP') fm fn = [ Jwr1(Xa) T Jme1(Xa) ] x= B

Jmt1(x) Jn-1(x)
Jnt+1(Xa) - Jm-l(xa)]
Jm+1(x) Jm—l(x)

Ee(I‘,Il’l) = (1/4) Nm I Rdc (ak) hm hm - [ Jm+1(Xa) ) Jm—l(Xa) ]

Er(r,m) =(j/4) N [ Rge (ak) gn Zn=[ Xa = P'a

We have carried out this task manually to obtain the following results (which will be verified below),
B.(r,m) = - (1/4) (2/0) N I Rac ( 17'm (B) fu + k* hy )
Bo(t;m) = (j/4)(a/) i I Rac (K gn = B?fin [ (/%) - 1 ()/Im(x)] )
B.(rm)= (j/4)(a/©) Mm I Rac (kP'em). (D.4.8)

Here the f,, gm and hy, are the same functions appearing in the box above, and the new function ey, is

_ Jm(X) Jm(X)
em = Tar1(%2) + Ta0a) | (D.4.9)

Notice that the E; and B; fields all have the common factor [(1/4) Nm I Rge a ]. For purposes of verifying
the B; expressions above, we shall set this factor to 1 everywhere to obtain these scaled fields,

Ez(r,m) = B'f
Ex(r,m) =jk gn
Ego(r,m) = k hy

Be(r,m) = - (1/0) ( r'm (B fa+k? hy )

Bo(r,m) = j (1/®) (k* gn~ Bf [ (M/X) - Jns1(x)/In(x)] )

B.(r,m) = j(1/o) (kPB'em) . (D.4.10)
To verify that -joB = curl E for the above set of fields, we shall check these three equations

-joB; = [curl E]y ? i=r0.z (D.4.11)
where from above

[curl E]z = [r"YjmE, +jkEs]

[curl E]o = [-JKEy - 0rE,]
[curl E], = [r"*62(tEe) - 1" jmE.] . (D.4.12)
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We start by entering these three curl expressions into Maple,

restart; alias({(I=I,j=sqrt({-1),J=Besseld):
Enter the curlE expressions

curlEr := (j*m/r)*Ez + j*k*Eth;
z
curiBr = +j ik Eih
r
curlEth := -j*k*Er - Diff{E=z,r);
&
curlBth =—jk Br— | — Bz
ar
curlEz := (1/r)*( Diff(r*Eth,r) - j*m*Er) ;|

a
(—r‘ Eﬁz] —jmEr
dr

curifz =
r

followed by the scaled B and E field expressions from (D.4.10) above,

Enter the B expressions

Br := -{(1l/omega)*{ (m*bp*f/r) + k"“2%h );
b
—pf-i-kz}z
r
Br=-
Iy
Bth := (j/fomeqga)*(k"2%*g - bp*2%*f*(m/x - JT(m+1l,x)/T{m,x)));
N o fm Tm+1,x)
J[»‘C g-ip f(_——
x Tim, %)
Bth =
o
Bz := (j/omega)*k*bp*e;
ik bpe
PR A
I
Enter the E field expressions
Ez := bp#*f;
Bz =bpf
Er := j*k*qg;:
Er=jikg
Eth := k*h;
Hih =k h

Next come the various supporting functions,
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Enter the supporting functions
e ;= J(m,x)/T(m+l,xa) + Jim,x)/T{m-1,xa);

. Jim, 27 Jim, 27
T Im+xa) | Tm—1,xa)

f = J(m,x)/T{m+1l,xa) - JT{m,x)/T{m-1,xa);
. Jime, x) Jime, 27
j’ﬂm+Lm)_ﬂm—Lm)
g = J(m+1l,x)/T(m+1,xa) + JT{m-1,x)/T{(m-1,xa);

. Jim+1,x) Jim—1,x)

& fm+ 1 za) | Iiom— 1. za)
h = J(m+1,x)/T(m+1,xa) - JT{m-1,x)/T{(m-1,xa);

Jim+1,x) Jim—1,x)
T Xm+1xa) Jm—1,xa)

x := bp*r;
x=kpr
xa := bp*a;

ra=bpa

Taking the precautions noted in the "Maple Comment" below (D.2.21), we now verify (D.4.11) that
-joB; = [curl E];z

-j*omega*Br - curlEr: simplifvy(%):
0
-j*omega*Bth - wvalue{(curlEth): simplify({%):
0
-j*omeqga*Bz - waluef{curlEz): simplify{%)
0
Here then is a summary of all the E and B field results in a single box
Summary of E and B fields inside a round wire (D.4.13)
Ex(r,m) = (1/4) N I Rae (ap") fn x =P Xa = p'a B? =p%- Kk

Ex(r,m) = (j/4) NMm | Rac (ak) gn
Eo(r,m) = (1/4) Nm I Rgc (ak) hy

B.(r,m)=(j/4) (a/®) Mm I Raec (k B'em)
B(r,m) = - (1/4) (2/0) Nm I Rae ( r7'm B' fn+k? hp )
Bo(r,m) = (j/4) (a/®) Nm I Rac (k2 gm - P%fin [ (V/X) - Jme1(X)/Im(X)] )

T Ta(x) e Jea® 1
‘m = Jn+1(Xa) Jn-1(Xa) Em ™= Jnt+1(Xa) Jn-1(Xa) Rae = W
S Tu() C Jen® Jea®)
fm B [ Jm+1(Xa) ) Jm—l(xa) ] hm B [ Jm+1(Xa) ) Jm—l(Xa)
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D.5 Verification that the E and B fields satisfy the Maxwell equations

We already know that the Maxwell curl E equation is satisfied, since it was used in the previous section to
derive the B fields. As for the other three Maxwell equations, we expect to find that

divB=0 // since B = (1/jo) curl E so div B= (1/jo) divcurl E=0

divE=0 // no free charge inside conductor

curl B=puJ +pjocE =pu(c+joe) E =pu(jo)( € -jo/o) E=jo u& E (D.5.1)
=i (BP/0)E . // see (1.5.1¢c)

In cylindrical coordinates the curl and div operators are, from (D.1.14),

curl B= £ [ 296B; - 3,Be] + 0 [02Br - 0:By] + 2 [ r"202(tBs) - 1 06B; |

div B =1"20,(tBy) + r 10¢Be + 9,B, (D.5.2)
Using 0, — -jk and 0¢ — jm we can write these in m space as

curl B(r,m) = £ [ r"YjmB, + jkBe] + 8 [-}kBy - 0:B,] + 2 [ 20(rBo) - r }jmB; ]

div B(r,m) =r1"10:(rB;) +r jmBe -jk B; . (D.5.3)

We continue the Maple code of the previous section to verify that the other three Maxwell equations are
satisfied:

Showthat divE =0

divB := (1/r)*diff(r*Br,r)+(1/r)*i*m*Bth-j*k*Bz: simplifv(%):
]
Show that divE =0
divE := (1/r)*diff(r*Er,r)+(1/r)*j*m*Eth-j*k*Ez: simplify (%)
]
Compute components of curl B
curlBr := (1/r)*j*m*Bz + j*k*Bth:
curlBth := —-j*k*Br - diff(B=z,r):
curlBz := (1/r)*diff{r*Bth,r) - (1/r)*]*m*Br:
b := sqrt(bp”2+k™2): setinbetahere called b

One component at a time, show that the curl B Maxwell equation is satsified
curlBz - (j/omega)*b"2*Ez: simplify(%);

]
curlBr - (j/omeqa)*b"2*Er: simplifv(%);
]
curlBth - (j/omega)*b"2*Eth: simplify(%);
]
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The reader is again referred to the "Maple Comment" below (D.2.21). The expressions on the three last

lines prior to simplification are quite complicated, for example

> curlBz - (j/omega)*b"2*Ez; simplifv(%);
_(kg(l(m+l,bpr) J(m—l,bpr)J 52( Tios, Bp 7Y T, Bp 7 J(m J(m+1,bpr)D
i _ o dmt Lpr)
r

4 Im+ 1 tpa)  Jom—1,bpa) m+ipa) Jom—Lbpa))\bpr  Jom bpr)
0

[(J(M’bpﬂ_ (m+l)J(m+l,bpr)]bp [—J(m,bpr)+ (e — 1) T — ],bpr)]bp}
2
k&

bpr bpor
Jm+ 1, bpa) * Jim—1,bpa)
we I, by ) pz Jion, B #)
, 2[[—I(m+l,bpr)+7bpr jbp [—J’(m+l,bpr)+7bpr pr][ﬁ J'(m+l,bpr)}
I Im+1,bpa) N Im—1,bp a) twr I bpr)
[J(m,bpr)—w]bp J'(m+l,bpr)[—l(m+l,bpr)+w]bp
_ 2( T, Bpr) _ I(im, bp #) J_ m_ bpor N bpr ‘o
Jm+ 1 bpa) Im-—1bpa) bpr2 T, bp r) I(m,bpr)2
, [ T, by 7) T(m, b 7) ]
) o .T(m+1,bpa)_1(m—l,bpa) of Wm+1,bpr) Im-1bpr) ] T, bp #) I, Bp #)
S 7 - AT +ET) bp -
St r (m+ 1 bpa) Jm-1.bpa) _ Jm+Ldpa) Jm-1bpa)
fali) L]

0
No approximations were made in the E fields, the B fields, or in these Maxwell verifications.

D.6 The exact E and B fields for the m=0 partial wave

The m=0 partial wave is all there is for an axially symmetric problem like that considered in Chapter 2,
where the round wire is imagined in isolation, but is operationally the central conductor of a coaxial cable
with a very distant return cylinder (outer shield). Here is the reduction of box (D.4.13) for m = 0:

Ju®) Jox) - Jox)  Jo(x) .
= M " Tt ~ Thee ™ Tixe! 7
Jo®) Jox) - Jo(x) Jox) - Jo(®)
o= x0) " Tt ! = M " Thxe ! =2 Tixa)
J1(x) J_1(x) J1(x) J1(x) J1(x)
20~ [T " T00 ) T e TThew ! T2 T
Jix)  Jaa®) Jix) Ji(x)
o= [T x0) " Tt L) " Taxe) ! 7O (D-6.1)
= ! = U M
Ex(r0) = (14) [ Rac @B) fo = (1/4) [ Rac (aB) 2T 5
J1(x)

Ex(r0) = (/4) I Rac @K)go = (4) 1 Rac (ak) 275
Eo(r,0) = (1/4) 1 Rge (ak) ho =0

B:(r,0) = (j/4) (3/) [ Rac (kp'eo)=0

B(1,0) = - (1/4) (a/0)  Rge (k* ho ) =0

349



Appendix D: Fields inside a Round Wire

Be(r,0) = (j/4) (a/®) I Rac (k? go + B?fo [J1(x)o(x)])

J
= (j/4) (/) I Rge (k22 Jl((:z) B?2 JO((X)) [J1(x)Jo(x)])
. Jix) o, 1)

= (j/4) (@/0) 1 Rac (K* 27 T B2 2 Thtx)

— (/4) (/o) I Rae (K2 + B2 )2 Jl((:))

= (j/4) (a/0) I Rge B2 2 Jl(( )) /] B2 = p2-k? (D.6.2)

The results then are
Summary of E and B fields inside a round wire ( m = 0 only ) (D.6.3)
EL(r0) = (1)1 Rae () e Ba(r,0) =0 x=Br xa=Pa
1
Ex(r.0) = (j/2) I Rac (ak) Jl((x)) B(r.0) = 0 Rae =27
. 2 Jl(x)
Ee(r,0) =0 Bo(1,0) = (j/2) (a/®) I Rgc B m

For a low-loss transmission line k = Bgo = ®/vgq. As implied by the comments below (D.2.2), in this
situation one has k << |B| and thus also k << |B'| . Ignoring the difference between Jo and J; in scale,

(D.6.3) shows that | Er / E; | ~ | k/B'| << so the E, field is very small and E, is the main electric field.
For such a transmission line one has,
Jo(x) N 2 Jo(%)
Ez(1,0) = (1/2) IRac (aP) 7, = (o/B) [(1/2) (ap*/0) I Rac] T,y
o J1(x) _ 2 J1(x)
Be(r.0) = (7/2) (w0) I Rac B 3 () = [(1/2) (aB%0) | Rac) 3, 1 5 (D.6.4)

where on the right we have rewritten the expressions in a seemingly obscure manner. As shown in (2.2.3),
B%/® ~ -juc so that

1
[(172) (B%/®) I Rac] = (1/2) a (- juo) [ == =] 3% . (D.6.5)

Since this is the bracket appearing in both field expressions in (D.6.4), we find that

J
E(r,0) = (w/B) [- Jz,fa] J1°((X )) - (@/B) 27tIa JI(}(Q)

h® o h®

il J21ra] Ji(xa) 27ta Ji(xa) - (D.6.6)

Be(I‘,O)

These results are in agreement with E(r) and B(r) shown in summary box (2.2.30) from the Chapter 2

calculation where we assumed E = E(r) 2 and B = B(r) 0.
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D.7 What about the E fields outside the round wire?

The E field Helmholtz equation (D.1.2) outside the wire contains Bq instead of B. If we assume perfect
conductors, then k = B4 as well in (D.1.1). This means that

p? = Ba®-Ba® = 0.

We can then translate box (D.1.20) by replacing Bz— k*> — 0 and [32 — k% = de to get the following
"exterior" versions: (Note that V2= V22D + 622)

[V2E], +k*E, =0: // [V22pE]z =0

[1?0:2 +1 0y - m?] Ex(r,m) = 0 (D.1.15)ext
[V2E]; + k2 E=0: // [V22pE]z =0

[1?0:2 + 1y - (m?+1)] Ex(r,m) - 2jm Eg(r,m) =0 (D.1.17)ext
[V2E]o + k2 E¢ =0 : // [V22pE]e =0

[1?0:2 + 10, - (m?+1)] Ee(r,m) + 2jmE.(r,m)=0 (D.1.18)ext
divE=0:

Or [I‘ Er(r,m)] +ij9(r,m) 'j kr Ez(ram) =0 (D-l-lg)ext

The differential operators appearing in the above equations are no longer Bessel-style operators, they are
Euler-style operators. Euler ODEs have the general form [ 1?6.% + a r 8, + b] f(r) = 0, and the solutions
have this form ( from p 45 of Polyanin's excellent ODE compendium, or just use Maple),

118. z*y”_ + azy’. +by = 0.

The Euler equation.
Solution:

l—a

=172 (Culz|* + Calz|™*) if (1 —a)® > 4b,
l—a

¥=19 Izl (C1 +Caln|z]) if (1 —a)? = 4b,
l=a

|x| 72 [C)sin(pln|z|) + Cz cos(pln |I|}] if (1 - a)® < 4b,

where = (1 - a)? — 4b|}/2,

For E,(r,m) the equation (D.1.15)ext shown just above is in fact an Euler equation which has a =1 and
b=-m?so p = m and the solution forms are these (r >a outside the wire),

Ez(r,m) = Apt™ + Br ™ m>0
Ex(1,0) = C,lIn(r) + D, m=0 . (D.7.1)
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Since z 1s a Cartesian coordinate, [VZZDE]z = 0 is the same as sznEz = 0 which is just the 2D Laplace
equation. When this equation is solved in polar coordinates (r,0), one finds E, = E,(r,m) ¢3™® and the

expressions shown above are the standard atomic forms for the radial function. See for example Stakgold
Vol II p 92 (6.7) and following discussion.

We can mimic our interior solution method presented in Section D.2 above, using the div E = 0 equation
to eliminate Eg, and eventually end up with expressions for the three field components outside the wire.
For m > 1 the general form for the exterior solution is found to be,

Ez(r,m)=Aq "+ By r'™
1 B} e
Ex(r,m) = (]k/2)—B r —2jk—2—Amr1+m+Cmr‘“1 +Dp ™t

m?+ 2m+3
jEe(r,m) = (Jk/2)— Bn '™ + ]k—(Zl_)A ™ L Cp ™ 4 Dy r ™t (D.7.2)

where there are now four constants Ap, Bp, Cn and Dy, to be determined in each partial wave. One could
match the three E-field boundary conditions at r = a as per (1.1.51) (subscript d means dielectric)

Ez(a,m) =Ez4(a,m)
& Ex(a,m) =&y Erq(a,m)
jEe(a,m) = jEeq(a,m) (D.7.3)

using the interior solutions shown in (D.2.33) where Eg(a,m) = 0. This gives 3 conditions on the 4
unknown constants so these boundary conditions can be met.

The problem with this exterior solution method is that more information is needed to solve the
problem. The "Smythian Form" solution (D.7.2) is fine, but it only applies inside a thick cylindrical shell
(blue) whose inner diameter is r = a and whose outer diameter is r = b, where b causes this shell to touch
the nearest other conductor, as illustrated here,

other conductor(s)
(e A
L/

FigD.3

The reason is that the dielectric E-field wave (Helmholtz) equation is not valid inside the "other
conductor”, so the form (D.7.2) cannot apply in a region which includes any of this other conductor. Since
the blue shell region does not include r = oo, one cannot rule out coefficients like Ay and Cp. One is now
stuck worrying about boundary conditions at r = b and the whole problem becomes intractable. But if one
could find the complete exact exterior solution, one would find that inside the blue cylindrical shell the
solution's partial wave fields would have the form shown in (D.7.2).
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Reader Exercise:
(a) Verify (D.7.2).

(b) In Chapter 6 a transmission line with two round conductors is solved "exactly". Convert the solution
to a coordinate system like that shown above, compute the E;(r,m) using (D.1.3b), and verify that these

E; field components fit into the form shown in (D.7.2).
D.8 About the boundary condition Eg(a,m) =0
We start with a quick review.
In earlier sections of this Appendix we examined the electric field inside a round wire (radius a) which
was regarded as a conductor in an infinite straight transmission line. The electric field was assumed to
have the form of a longitudinal wave traveling down the conductor,

E(1,0,z,t) = &3 *7%2) E(1,0), (D.1.1)
where k is the wavenumber parameter of the surrounding dielectric medium. We expanded the function

E(r,0) onto azimuthal partial waves ¢?™® and solved the Helmholtz wave equation inside the wire with
solutions as shown in box (D.2.21),

Ez(r,m)= -j(B'/k) % In(X) x=B'r (D.1.27)
-1 Kn

Er(r,m) =ap X~ Jn(x) +t5 Jm1(x) . (D.2.11)

. -1 Kn am

JEe(r,m) =-ap X" Ju(x) + (7 + m ) Im+1(X) . (D.2.15)

where B'2 = Bz—kz with B being the (complex) wavenumber parameter of the conductor, and where ap, and
K are undetermined constants.
At this point we applied the two boundary conditions, assuming a non-conducting dielectric,

E(r=a,m) = (jo/c) N (D.2.26)
Eo(r=a,m)=0 . (D.2.27)

where Ny, is the m®™ partial wave moment of the surface charge n(0) distribution, where
n(0,z,t) = &3 (**7*¥=) () . (D.1.4)

These conditions determined the constants ap, and Ky, giving the resulting E field inside the wire,
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Ju(X) Im(X) : Nn
Ez(r,m) = (1/4) Nn I Rac (ap') [ Tmn(x2) Jm—l(Xa)] a=radius mMg= No (D.2.33)
Jm+ Jm—
Ex(r,m) = (j/4) I Rac (ak) [ Jm+11((2) T Jm-ll((:z) 1 x= pr
Jm+ Jm_
Eo(t;m) = (1/4) in I Rac (ak) [ Jm+11((>2) i Jm-::((:a).) ] Xa—pla

where Rge = 1/(ma%0) is the DC resistance of the wire per unit length, and I is the amplitude of the current
in the wire. Everything is an implicit function of frequency . It was noted that, for [k/p'| << 1, the fields
Er and Eg are much smaller than E,, and this is the case for f ~ 100 GHz or below (but not too small).

An implication of the solution is that the E fields inside the wire for each partial wave are described
by a single parameter Ny, which is the surface charge moment noted above. If the other transmission line
conductor(s) were to change their position relative to the round wire and/or to vary their cross sectional
shape, the only effect this would have would be to adjust the set of parameters Np, and the solutions
would still be given by (D.2.33) quoted above. Although the set {Np} is infinite, it seems likely that for
reasonable shapes of the other conductor(s), the lowest few Ny partial waves would provide a good
approximation to the E fields inside the wire. Since Ohm's Law is assumed to apply inside the wire, one
then knows in detail the current densities J,, J and J,. The magnetic field B inside the wire is then also
known and was calculated above. The lowest moment is always N = (k/2nwa) | from (D.2.31b).

As an example, the following five-conductor transmission line might be expected to have a strong m
= 2 quadrupole surface charge moment No,

Fig D4

A critical ingredient of our solution is the assumption that Eg(r=a,m) = 0 and that is the subject now
addressed. We present two somewhat different arguments as to why Eg(r=a,m) = 0. It should be noted
that King in his Transmission-Line Theory book always assumes that any straight transmission line
conductor cross section has an equipotential surface (a ring, see for example middle p 14, top 15, 25
bottom). Due to the presence of small transverse vector potential components, Eg= 0 and "equipotential"
for the scalar potential ¢ are not the same thing.

(a) The Quasi-Static Argument
In electrostatics, we are used to metal surfaces being equipotentials. For example, if we put a point charge
q near a metal sphere, it induces a surface charge on that sphere. The electric field lines land on the sphere

exactly perpendicular to the surface. One argues that if there were even some tiny E field component
tangential to the surface, the surface charges would adjust their position to cancel out that tangential field.
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Since the situation is static, any adjustment has already been made. Since E¢an = 0, the sphere's surface is
an equipotential surface.

If we were to then slowly move the charge q around (perhaps it rotates in a circle around the sphere),
the surface charge instantly adjusts at each new position of q, and those E field lines remain perpendicular
to the surface, and Etan = 0. While the charges are adjusting position, there is admittedly some very tiny
surface current driven by some tiny E¢ap , but if we move the charge slowly, we are "quasi-static" and the
approximation E¢ap = 0 is very good. One might compare the time constant of the moving sphere (T, the
period of ¢'s revolution around the sphere) to the time constant of the surface charge adjustment. For
copper the time constant is roughly the mean electron collision time which is on the order of 107** sec.

The conclusion here is that for frequencies << 10** Hz (100,000 GHz), the quasi-static situation prevails
and then E¢ap = 0 is a very good approximation.
This then is our first argument for why we claim the boundary condition Eg = 0 on the surface of the

round wire in a transmission line operating at a typical frequency.
We note from our solution Eg(r,m) that if we assume Eg(a,m) = 0 on the round wire surface, we will

still have Eg(r,m) # 0 inside the wire. This fact is consistent with our argument above since there are no
free charges available to adjust themselves inside the wire.

However: if Eg = 0 by this quasi-static argument, then we should expect that E, = 0 by the same
argument, since E, is also a tangential field at the round wire surface, and since E, operates at the same
frequency o as Eg. But we know that E, # 0 because J, # 0 just below the wire surface -- there is current
flowing there -- and E; is continuous through the surface by (1.1.51). So the E field lines are not quite

perpendicular to the round wire surface in the z direction. This is not too surprising since we expect
everything to vary in the z direction as e’ “**) 5o we would expect the surface not to be an
equipotential in this direction.

But what happened to that quasi-static argument we just applied to Eg ? What happened is that there
is external field activity associated with the wave going down the line which forces E, # 0. One might say
the EM wave traveling down the line induces a J, in the round wire, with its associated E; # 0. But then
perhaps this same thing could somehow happen with Eg and then our quasi-static argument that Eg = 0
collapses. We think this could happen in fact, but only if the transmission line is driven by an apparatus
which creates a "torsion wave" in the line. For example, the apparatus could drive counter-rotating
azimuthal currents onto the round wire surfaces of a twin-lead transmission line as suggested by this
picture (which is not meant to imply that other field components vanish),

Ee

FigD.5
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It seems from our work above that such a wave would satisfy Maxwell's equations and be a viable mode
of the transmission line. In this case, Eg# 0 because the EM wave going down the line forces Eg # 0, just
as the normal wave forces E, # 0.

We have not investigated whether this type of torsion wave is really viable. Whether or not it is, we
assume in our transmission line discussion that this mode is not activated and that therefore the quasi-
static argument for E¢ = 0 is valid at the round wire surface.

(b) An Ansatz Argument

We make an ansatz that E;,E¢ << E, in our round wire E field solution, perhaps based on an expectation
that most current in the wire will be longitudinal. We assume this is true, and see if this assumption is
born out in a final solution of Maxwell's equations. Given that Eg is then very small, we can make an

approximation (another ansatz) that this field Eg is exactly zero on the surface of the round wire. This
may not be exactly true, but again we assume it for our purposes and see where it leads. This is the nature
of an "ansatz".

When we make this assumption, the cross section of the transmission line may be regarded (Chapter
5) as a two dimensional potential theory problem -- basically a capacitor problem where one conductor
has potential V/2 and the other -V/2, say (for a symmetric line, at some fixed value of z). In such a
potential problem, one always assumes that the electrostatic potential ¢ is a constant on the surface of
each conductor, and that is precisely what our ansatz says: E¢ = -(Vp)e = 0, ¢ = constant in the 0
direction. Now when we solve the capacitor problem for potential o, that gives E = - V¢ in the dielectric
between the conductors, and from that we may deduce E o fi at the surface of one of the conductors. For
the round wire with a cylindrical coordinate system whose axis is aligned with the wire center, that field
is Ex. Next, from this surface value of Ey (which will be proportional to V) we may compute the surface
charge density n(0) on the round wire using (D.2.24) which says E,(r=a,0) = (jo/c) n(0). For a "fat" twin
lead transmission line for example we expect this to have a bulge in n(0) on the side of the wire facing the
other wire (m = 1, dipole), since that is what happens in such a capacitor. In any event, given n() we may
compute the moments Ny, of the surface charge using (D.1.5b) and this then provides one "boundary
condition" on our coefficients ap, and Ky, which appear in all the field expressions we found above,

Er(r=a,m) = (jo/c) Np, . (D.2.26)

But recall that, in order to carry out this entire process just described, we had to start with the assumption
that Eg = 0 on the conductor cross section surface, so that we could have a capacitor problem in the first
place. According to (D.1.3b), if Eg(r=a,0) = 0, then Eg(r=a,m) = 0, so that in fact we must have E,(a,m)
being zero in all partial waves m. Thus our assumed ansatz condition is

Ee(r=a,m) =0 (D.2.27)

which is then a second boundary condition on ap and Kq. Although (D.2.27) might not be exactly true, we
know it is very close to being true. More importantly, we know that the above two conditions on ap and
Kn are consistent with each other, even though both boundary conditions might be slightly wrong. We
then expect them to give good values for constants ap and Ky,
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Using these "perhaps slightly wrong" boundary conditions, we obtain the solutions shown in (D.2.33).
It has already been noted above that for copper conductors and normal dielectrics, |k/B'| << 1 up to at least
100 GHz. The condition |k/B'| << 1 when applied to the (D.2.33) results shows that in fact our ansatz that
E:,Ee << E, is born out.

There are three footnotes to the above discussion.

First, we note that the second boundary condition does not force Eg(r,m) = 0 for r < a inside the wire.
In fact, there will be some small azimuthal "swirling" current inside the wire even if Eg(r=a,m) = 0, and
this is just a result of Maxwell's equations and their solutions above.

Second, one might make the argument that the round wire surface is an equipotential since that is the
way a line is driven at the source. For example, the center conductor of a coaxial cable plugs into a tiny
driving cylinder (jack) in a BNC connector and this drives only the wire surface, and it does so in an
azimuthally symmetric way so that one expects to have the wire surface be an equipotential at the driving
point; this equipotential surface then moves down the line as the wave progresses.

Third, we have the complication that we don't really have a purely electrostatic situation, and the
potential is in fact related to E by equation (1.3.1) which says E = - V¢ - 0¢A . The rescue here comes by

claiming that roughly A = AZ so that the transverse components A, and Ag are very small. In this case,
we then do get E = -V so that Eg = 0 is associated with constant ¢ on the wire surface. The argument for

A =~ AZ is that A is driven by J, and J is mostly in the Z direction, which in turn is related to our starting
ansatz (see Appendix M).

D.9 About the boundary condition E(a,0) = (jo/c) n(0) .

The "charge pumping boundary condition" appears in (D.2.23) and here we want to examine it more
closely. Our concern is that the derivation of (D.2.23) ignores surface currents that we know exist on the
surface of a transmission line conductor as the surface charge moves around in response to tangential E
fields. The first issue then is to define and quantify the nature of these surface currents.

(a) The notion of Debye Surface Currents

We continue in the context of our classical treatment of the conductor surface. In Appendix E it is pointed
out that the surface charge on a transmission line conductor exists in an incredibly thin surface layer we
shall call the Debye layer for want of a better name. For copper the thickness Ap of this layer is on the
order of one atomic radius. In addition to the normal conduction electrons, this thin layer contains extra
free electrons that are piled up just below the surface (negative surface charge) or are depleted from this
thin region (positive surface charge), as shown by the red curve in Fig E.1. We want first so show :

Fact 1: In a good conductor, the volume density of free electron carriers piled up at a surface (to make up
the surface charge) is negligible compared to the volume density of conduction electrons. (D.9.1)

Proof: From (E.7) the free charge density in the Debye layer (assume x is the inward surface normal
direction) is given by p(x) = p(0) ¢/ The effective free surface charge n is then given by

n= [ OOO dx p(x) = p(0) [ 000 dx e/ = p(0)Ap .
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The free electron density ne is then (n is the surface charge density)

ne = p(0)/e =n/ (ehp) .
As a typical example, consider a parallel plate capacitor with close plate spacing s. The E field in the gap
is E = V/s and the surface charge density from (1.1.47) is n = €E = €V/s. For V = 10 volts and s = 1 mm
we find

n=goV/s= 885x 10712 * 10/1073 = 10*7*#***3 = 1077 Coul/m®.
Then the free electron density is

ne=n/(ekp) = 1077 Cow/m?/[ 1.6 x 10™° Coul * 1071° m]

= 0.6 * 1077*1%*10 = 10?2 electrons/m®

As noted in (N.1.2), in copper the conduction electron density (one electron per atom) is 102° /m®, QED.

Corollary: The conductivity op inside the Debye layer is basically the same as ¢ outside that layer.
(D.9.2)

Proof: From (N.1.9) conductivity is 6 = (nqzr/m) where n is the electron density. The Fact above shows
that this density is the same in the Debye layer as in the bulk conductor, so op = 6. (We ignore the
possibility that the collision time t could differ in the Debye layer vs. in the bulk volume. ) QED

Consider now this crude drawing which shows a tiny slice of width dx of a piece of a transmission line
conductor cross section at its surface. The yellow Debye surface charge layer is greatly exaggerated in
thickness and is modeled as if it had a clean lower boundary. Recall from the comment below Fig E.2 that
at 100 GHz one has 6 =~ 4000 Ap so & >> Ap at all frequencies of transmission line interest.

,

AD Debye surface layer

skin effect layer

/

L Jr(a-¢, 0, 7)
«——dx—>

Fig D.6

The Debye layer holds the surface charge, and when this surface charge moves, one has a Debye surface
current. We now show :
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Fact 2: The total current in the Debye layer is negligible compared to that in the skin effect layer.
(D.9.3)

Proof: The field E; is parallel to the conductor surface, so we know from (1.1.41) that it is continuous
through the boundary at the bottom of the Debye layer. Then the ratio of the currents in the two layers is,

P J,°rsdx opE°A4  op Ez Ap » b
™ =198 = 5 1 ¥ =
| J.° 6dx oE.;"° 6

5 3 << . QED
(b) The role of Debye Surface Currents in the boundary condition

Now referring to the Debye surface currents as K," and Kg® we reconsider the derivation of the charge
pumping boundary condition of (D.2.24) where we had this figure,

FigD.2
If we include the Debye surface currents in the 0 and z direction in our application of continuity,

divJ = - jop o So[fvpdvi= [ eds (D.2.22)

the result is
-jon(0,z) = -Jg(r=a-g, 0, z) +0,K,(0,z) +(1/a) 0eKe(0,2) (D.9.4)

where we assume that the dielectric outside the round wire is vacuum with o4 = 0. The gaussian box
selected here is that shown in red in Fig D.6. The bottom face lies below the Debye layer so J.(a-¢, 6, z) is
the value of J, in the normal skin effect region close to the surface. The Debye surface currents may be
written approximately as

KzD = JzD Ap = GDEZD Ap =0 Ex(r=a,0) Ap // dim(K) = amp/m
Ke® =Jo° Ap =0pEe” Ap =0 Eg(r=a,0) Ap =0 //(D.9.2) and (3.7.0) (D.9.5)

where we use the Corollary above that op = . From (3.7.0) we have Eg = 0 at the surface so K¢° = 0 and
we have only the Debye current K,° to worry about. Recall that Eg(a,0) = 0 is the second boundary

359



Appendix D: Fields inside a Round Wire

condition (D.2.27) used in Section D.2 to evaluate the a, and Ky, coefficients, and that this condition is
itself a topic of interest in Section D.8, and we assume it is valid. We then have,

Hdon(0,z) = -Ix(a,0,2) +0,K.°(0,2)
= - Jr(a,G,Z) + az [G Ez(a,eaz) }\'D] (D96)

Assuming everything has z dependence e3 (“*"*%) as in (D.1.4), we replace 8, — -jk and then suppress
the z arguments to get

Jon®) = -Jx(a,0) -k [0 Ex(a,0) Ap]

- 0E,(a,0) -jk [0 Ex(a,0) Ap]

E4(a,0)
E.(2,0) )

= -oB:@0)[ 1 - jkho (D.9.7)

If we assume that the second term in (D.9.7) can be ignored, we get the charge pumping boundary
condition

Ex(r=a-£,0) = (jo/c) n(0) (D.2.24) (D.9.8)

which in return yields the E fields as stated in (D.2.33) where we see that roughly

E.(a,0
Er((z,e_)) ~ ‘E| ‘ (D.9.9)

Thus, our self-consistent condition for ignoring the second term in (D.9.7) is

K * 2@y Ko * (2] <<

D Er(a’e) g D |k|

o hpl<<1 o hp| e R25)<<1

o (W) <<1 o () >>1 // ignore \[2

But we know from above that (6/Ag) >> 1 for any f < 100GHz, so for such f the second term in (D.9.7)
can in fact be ignored. We have just proven:

Fact 3: For f < 100 GHz, the Debye surface currents can be ignored in the derivation of the boundary
condition E (a-¢,0) = (jo/c) n(0) . (D.9.10)
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(c) Where does surface charge n(0) come from?

According to our traveling-wave ansatz (D.1.1), all E field related quantities move down a transmission
line at vq as e’ (@e-k2) Eora low-loss line and a vacuum dielectric, vq = c, the speed of light. Therefore,

n(0,z,t) = n(6,0,0) eI (#t7*=) k= (0/vq) . (D.9.11)

One can ponder and then discard a list of hypotheses concerning where n(6) "comes from" as it increases
and decreases over time at some location z on one of the conductors.

The first hypothesis might be that the individual electrons which make up n(8) simply travel at vq4 in
the z direction down the conductor surface, and n(0) is not fed by any radial currents inside the conductor.
In this case one would have K;°(0) = v4 n(0). But we know this is not what happens. Apart from the
massive energy required to achieve relativistic electron velocities, we know from Appendix N.1 that the
electrons in the Debye layer in fact drift along at something like ~ 1 mm/sec, just as do the regular
conduction electrons in the conductor bulk.

The second hypothesis is a variation of the first, where we now allow that the Debye surface current
works like any other conduction current, and when one electron moves "to the right" at some point z, a
distant electron at z+L moves to the right at nearly the same time, all electrons in a long string moving to
the right one position, giving the illusion that a particular electron moved very fast. This does in fact
happen, and if it were all that happened, again we would have K,°(8) = v4 n(6).

Comment : Assume some skin depth 8 < a/10 so the bulk current is flowing in a sheath of thickness J just
under the conductor surface. The total sheath current is then roughly 2madJ,(a,0). We can regard this
current flow as due to an effective "full surface current” K, = J, 8. Notice that this "surface current" is
different from the "Debye surface current". Based on Fact 2 above, we certainly expect K, >> K," .

A third hypothesis is that somehow n(0,zt) is fed by azimuthal Debye surface currents, or some
combination of these along with the z-directed K,”(0). Our condition (3.7.0) that E¢ = 0 puts a stop to the
possibility of feeding by azimuthal Debye surface currents.

What we have learned from Fact 3 is that none of the above hypotheses explains where n(6) comes from.
The analysis above shows that, although the surface motions of the Debye surface charges do create
Debye surface currents, these currents are so small that they play no role in div J = -O¢p for the Gaussian

box shown in red in Fig D.6. The charge n(0) "comes from" inside the wire and is fed by the radial current
density J, just below the surface according to (D.2.24),

Jr(r=a-¢,0) = jo n(0) n(0) = (1/jo) J(a-¢,0) (D.9.12)

Here is a suggestive picture,
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i n(0) in the Debye layer. S
jn(6) in the Debye 1.\161’\//\ dielectric

Debye layer

Jr Jr Jr Jr Jr Jr Je 13, (1. e conductor
i i —

n(0) = (1/jo) J.(a-¢,0)

FigD.7

where the white boxes are little "radial charge pumps" delivering the required Jr needed to feed the
changing surface charge n(0). Apart from the miniscule K,” , charges in n(6) don't move in the z direction
in this picture, they just appear to be doing that due to the choreographed radial pumping in and out at the
wire surface. A wave front of the n(0) wave travels at vg, and this is just a phase velocity. In an analogous
situation, in a deep ocean wave the individual particles of water travel in small ellipses and do not travel
along with the wave, though there are small scale longitudinal motions due to those ellipses.

Comment: In our transmission line theory, the exterior problem in the dielectric is solved using the
capacitor method, from which one learns n(8). The boundary condition J.(r=a-€,0) = jo n(0) couples this
exterior information into the wire interior, allowing one to solve for the fields and currents inside.

In Section 6.5 (d) we show how div E = 0 inside the conductor (or div J = 0) forces a relationship
between J, and J, just below the conductor surface. When that relationship (6.5.18) is combined with the
charge pumping boundary condition (D.9.8), one finds that

E.(a,0) = (-jo/o) (B/k) n(0) (6.5.19)
or
J2(a,0) = (jo) (B/k) n(®) . (D.9.13)

This same result is obtained in a different manner as (6.5.13).

The "full surface current” K, was defined in a Comment above as K,(0) = 6 Jz(a,0). Thus,

K2(0) =8 J2(a,0) = [3 (jjw) (B/k)] n(6) (D.9.14)
But

B2/

k B OJ/Vd

SO

33n/4 (\[2 /5 .
[ (@) (B/K)] =8(-jm)eTE]\c{_) _ A7 vy

= 5 -DA2 *A2 va = (14)) va
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and we end up with
K2(0) = (1)) va n(6)
Re(K2(0)) =Im(K2(0)) =vqn(0) (D.9.15)

Once again, this last equation gives the illusion that the surface charge density n(8) moves "to the right" at
speed vgq to create the real or imaginary part of the full 3-thick surface current K. This is the equation that

replaces the incorrect equation K,°(0) = v4 n(0) which assumes there is no radial charge pumping.

Reader Exercise: Show using F = ma and F = qE (ignore magnetic fields) that, with a time-harmonic E
field, a classical electron inside a transmission line conductor traverses a tiny elliptical path and thus
never really goes anywhere. That path is traversed once per period T= 27/«0. Mathematically, show that
this amounts to proving that the three equations

x = Acos(ot-a)
y = Bcos(wt-b)
z = Ccos(mt-c)

are parametric equations for an ellipse with some orientation in 3D space. As just noted above, this goes-
nowhere aspect of the electron is similar to what happens with a droplet of water in an ocean wave. (Hint:
first show that the first two equations describe an ellipse in the xy plane and that the semi-major axes in
general are not A and B .)
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(d) Modifications for a Conducting Dielectric

Ignoring the Debye surface currents as per section (b) above, if the dielectric has some conductivity oq,
the charge pumping boundary condition (D.2.23) becomes

Jr(a-0,0) - Jr(ata,0) = jo n(0)
or
o Ex(a-0,0) - o4Er(ata,0) = jo n(0) // this is div J = -jop

where a > 0 is a tiny distance (¢ is already used for dielectric constant). Another boundary condition at the
surface is provided by (1.1.47) which says ( fi points into medium 1 which is the dielectric)

[€1En1 - €2En2] = Nfree // this is continuity of Dy at the surface
or
[eaEr1 - €0Ex2] = n(0) // assuming &g for the conductor

or
[eq Ex(ata,0) - g9 Ex(a-0,0)] = n(0) .

A seeming third boundary condition is (1.1.48),

€1En1 = &2En2
or

(ea + 64/jo) Era = (€0 + 0/joo) Ex = (0/joo) Ey
or

(eqa T 04/jo) Ex(ata,0) = (o/jo) Ex(a-a,0) .

There seem then to be three boundary conditions at the round wire surface,

o Ex(a-0,0) - ogEr(at0,0) =jo n(0) // modified cpbc from div J = -jop (D.9.16)
€q Ex(ata,0) - g9 Ex(a-0,0) = n(0) // div D = p (straddle) (D.9.17)
(ea T 04/jo) Ex(ata,0) = (o/jo) Ex(a-0.0) // &1En1 = &2En2 (D.9.18)

but only two of these conditions are independent. For example, multiply (D.9.16) by (-1/jo) to get
(o4/jo)Ex(ata,B) - (o/jo) Ex(a-0,0) = -n(0).

Adding this to (D.9.17) then gives
(eqa T 04/jo) Ex(ata,0) - (o/jo) Ex(a-0,0) = 0

which is in fact the same as (D.9.18).
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When we solve the "capacitor problem" as in Section 6.5 (a) to obtain n(0) on the round conductor
surface, we are using (D.9.17) with the assumption that E (a+a,0) >> Er(a-a,0). Typically one just says

that in a good conductor Ex(a-a,0) = 0 and then n(6) = €4 Ex(a+0,0). That is fine, but it is not clear what
happens to (D.9.16) above. The first term is the product of a large quantity ¢ times a small quantity E.(a-
a,0) so can be the same size as the other terms in the equation.

The resolution is provided by the discussion in Section 1.5 (c) where we encountered the equation
(1.5.17)

ne(X,0) = (81/81) ns(x,0) (1.5.17)
which in our current context (1 = dielectric) becomes

ne(0) = (Ea/ea) n(0) . (D.9.19)
In that discussion it is noted that n(0) is the actual free surface charge density, whereas n(0) is a related

"transport charge density" having the same dimensions as n(6). If we multiply (D.9.16) and (D.9.17) by
(&g/€q), our (redundant) triplet of boundary conditions becomes,

1 o (&/eq) Ex(a-0,0) - 04 (Ea/eq) Ex(ata,0) =jo ne(0)
2 &g Ep(ata,0) - (Ea/eq) €0 Ex(a-0,0) = nq(0)
3 &4 Ex(ata,0) =& Er(a-0,0). (D.9.20)

We now use the last of these three equations to eliminate E (a+a,0) in the first, which then becomes

6 (Sa/ea) Ex(a-0,0) - o4 (§/ea) Ex(a-0.0) =jo ne(6)

or
[0&s- 04a&]/eqa * Ex(a-0,0) =jo n(0)
or
[0 (eq+ 04/j®) - 04 (g0 + 0/jo) )/ea * Ex(a-a,0) =jo ne(0)
or
[ (o &4 - 04€0))/ea * Ex(a-a,0) =jo ne(0) // two large terms cancelled
or

[ 6 - ca(€o/eq) ] Ex(a-0,0) = jo ne(0) .

Assume now that €9 (conductor) and &4 (dielectric) are the same order of magnitude, and assume that,
even though the dielectric conducts, one still has 6 >> 64 . The last equation then reads

Ex(a-0,0) = (jo/o) nc(0) = (jo/o) (Ea/eq) n(0) // 8 space (D.9.21)
Er(a-a,m) = (jo/o) (§a/€q) N . // m space (D.9.22)

Above are the "modified" charge pumping boundary conditions which replace (D.2.24) and (D.2.25)
for a mildly conducting dielectric,
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Er(r=a,0) = (jo/c) n(0) (D.2.24)
Er(r=a,m) = (jo/c) Np, . (D.2.25)

How then does 64 # 0 alter the E field results summarized in box (D.2.33)? The rule is this:
Nm — Np' = (Eg/eqa) Nm everywhere . (D.9.23)

Here we use a prime to denote a parameter after the dielectric DC conductivity has been "turned on", and
no prime for the case that Ggc = 0 = o4.

But there is another change which must not be overlooked. Although k is treated as a generic constant in
Appendix D, we will eventually be setting k to a specific value k(w) which is determined by activity in
the dielectric, which in turn is affected by the dielectric conductance,

k=k(0)=-j\zy =-j VIR(©)+oL(0)][G(0)+HoC(o)], (5.3.6)

where the four parameters are as given in the simple model of (Q.1.9). In particular, C(®w) = C, a constant,
whereas G(®) = Ggc + C tanp®, so one may write ( since tang, << 1),

k(®) = - \/[R(@)+HjoL(®)][ Gae + C tango + joC]

~ -j/[R(@)HoL(®)][ GactjoC] (D.9.24)

which shows the traditional dependence on Ggc and C. The combination Ggc + jowC may be interpreted in
terms of the complex capacitance C' where Ggc + joC = joC' as in the line below (1.5.20). Then

k(®) = -jV[R(®)HjoL(®)][joC] . (D.9.25)

Thus one can write,

k'= - v[R(@)HoL(®)][ joC] // Gae >0 (D.9.26a)

k= -j\/[R(@)HjoL)][joC] . // Gae =0 (D.9.26b)

The point is that the value of k changes when Ggc is turned on. The k ratio is then

% _ \/% N (D.9.27)

where the \/ Ea/eq factor follows from (1.5.19).

Here then is an improved statement of the Rule for how things change when the dielectric conductivity is
turned on:
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Np— Nn' = (éd/ 8d) N

k- k' = [Elea k

C—oC= (&/eq)C . (D.9.28)
C' Gget+joC (Gac/0) (o4/€q)
where (E4/eq) =C :j(o—C =1+ io =1+ o // see (4.4.10)

For example, consider (D.1.8) in its form for Ggc = 0 [recall I = 27a (w/k) N from (D.2.31a) |,
No =<n(0)> =g/(2ra) = CV/(2na) = I= CV (0w/k) . (D.1.8)
Here n = ng and q = qs which are the surface charge and its cross section integral, so the above really says
No =<ng(0)> =qs/(2ma) = CV/(2ma) = I= CV (0w/k) . (D.1.8)
When Ggc > 0, the surface charges become their "transport charge" alter egos,

ng — n' =ng = (€g/eq)ns /1 (1.5.17)
s — q' = qc = (€d/ed)qs // integral of the above (D.9.29)

and then (D.1.8) becomes
No' =<nq(0)> =qc/(2ma) = C'V/(2na) => I'= C'V (0/k") (D.1.8)

or
(Ea/ea)No = (Ea/eq) <ns(0)> = (Eg/eq) qs/(2ma) = (Eg/eq) C  V/(2ma)

= T'= CV (0/k) = (Ea/eq) cvﬁ = CV (0/k)\[Ea/ea = I[Edlea (D.9.30)
d/cd

and we find that the total current increases by this ratio when Ggc is turned on,

% —[eea . (D.9.31)

A more direct path to this conclusion is the following, again using (D.2.31a) that [ = 2na (w/k) Np :

[ =2na (0w/k) Ng

s I'=2na (0/k') Ng' = 2naﬁ (éa/ea) No =~[Ea/a 2ma T No =+[Ealea 1. (D.9.32)
d’cd

As a simple verification of this claim, consider the Ggc "turn on" viewed from this perspective,
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1=V/Zy where 1/Z¢ = E’fj% (D.9.33a)
Gae + joC ioC'
I'=V/Zo where 1/Zq' = §°+—ji)L =«/§% (D.9.33b)

R +joL
where in general Zg =\/§ = 1\ /G—Jr% as in (4.12.18). From (D.9.33) we must have
r joC' ¢ _
1~ \joC :\/z = edta

which agrees with (D.9.31) above.

Now consider the Appendix D E fields from (D.2.33) as stated for Ggc =0 :

Second summary of the E field solutions : Rgc = ﬁz B2 =p2-K? (D.2.33)
Ex(tm) = (1/4) a1 Rac () fo = s - ) x= pr
Ex(r;m) = (/4) N I Rac (ak) gn gn=| JJ:;((Z) J{‘:j((ffz) xa= P2

I =2ma (0/k) Ng = CV (w/k) (D.2.31a) and (D.1.8) Ggc=0

When Ggc is turned on, the fields are instead given by [ taking [—>I' and k—k' and C — C' ]

Second summary of the E field solutions : Rgc = G—nlaz B‘2 = [32 -k (D.9.34)
Ex(tm) = (1/4) i I' Rac (aB) fn o = s x= Br
Ex(t:m) = (/4) Tl ' Ra (ak) gn o [ 2L xa=Pa
Eo(r,m) = (1/4) N I' Rae (ak’) he b = [ JJ:E((Q) : ;:11(2)

I'=2ma (w/k") No' = C'V (0/k') (D.2.31a) and (D.1.8) Gge >0
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It is convenient to express everything in terms of k', so we use
I'=C'V (0/k') = (Eg/eq) CV (w/k')

to rewrite the above box as

Second summary of the E field solutions : Rgc = p— 3 B2 =p2-k? (D.9.35)
Im(X) Im(X)

Ex(tm) = (14) (Eafse) Na OV Rae (k) @) fn  fn <[, (15 - Toape! %= BT

Jm+1(X) n Jm— l(X)
Jnt+1(Xa) Jn-1(Xa)
Jm+1(X) Jm-l(X)

Eo(r,m) = (1/4) ({a/€q) Nm CV Rac (wa) hy hp=[ Jos1(Xa) - Jo-1(Xa) ] Gge >0

Er(r,m) = (j/4) (Ea/€d) Mm CV Rac (0a) gn gn=1[ Xa =Pla

Then to get back to Ggc = 0, one replaces (§g/eq) — 1 and k' — k. Because k' appears as part of ' and p'
appears in x and x, and these are Bessel function arguments, one cannot simply say that the E; fields are
scaled up by the factor ({q/e4) when the DC conductivity of the dielectric is turned on. This is the case,
however, when |k'| << |B| which is the situation for large o (see (D.2.2) and following text).

Since the same factors appear repeatedly, we shall now define
B = (Ea/eq) CVRge =C'V R4 . // dim($B) = tesla (D.9.36)
Now in our application of the above fields, we will always be using the symbol k with the understanding

that k = k(w) = with G4 present or absent as appropriate, In this light we do a final rewrite, discarding the
prime on k', but keeping it in mind:

1

Second summary of the E field solutions : Rgc = p— 3 p2=p2-k* (D.9.37)

Im(X) Im(X)
Ez(r,m) = (1/4) Nm B (wa) (B'/K) fn fm =1 Tor1(%a) ~ Jm1(Xa) ] x= BT Xa = P'a

. Jm+1(X) Jm—l(X)
Er(r,m) = (j/4) Nm B (0a) gn Zm=[ Jns1(Xa) + Jn-1(Xa) ] B = (Ea/eq) CV Rye

Jot Jin-
Eo(r,m) = (1/4) Nn B (wa) hn hg = [ Jm+:|]..((;2) - Jm-1l((2) ]

G=>0

This form of the E fields is valid for Ggc > 0 if we interpret k properly and set (§g/eq) = 1 for Ggc= 0.
In this form, one gets the misleading impression that all E fields are simply scaled up by the factor ((g/€q),
when Ggc is turned on, but this is just an artifact of our notation due to the nature of k.

369




Appendix D: Fields inside a Round Wire

The B field expressions shown in (D.4.13) may be generalized in the same manner as the E fields: take
I - 1I'= (Eq/eq) CV (w/k') and then notationally replace k' by k. For example,

I Rae — I'Rac = (Ea/eq) CVRae (0/k') = B (0/k') — B (/k) . (D.9.38)

One sees that this rule converts the E fields in (D.4.13) to those in (D.9.37). Applying this rule to both the
E and B fields of (D.9.37) gives this final result

Summary of E and B fields inside a round wire (D.9.39)
E.(r,m) = (1/4) Nn B (0/k) (ap") fu x = B'r Xa=P'a pZ=p%-k*
Ex(r,m) = (j/4) N B (0a) gn
Eg(r,m) = (1/4) N B (wa) hy B = (Eg/eq) CV Rye
Bz(rm)= (j/4) (@) tm B (P'em) (Ea/ea) =1+ (G/joC)

Br(r,m) =- (1/4) (2) N B (1/k) ( 17'm B' fu +k* ha )
Be(t,m) = (j/4) (2) Nm B (1/k) (k? gm - B fm [ (VX) - Jne 1(x)Im(X)] ) T = Na/No

_ Im(X) Im(X) _ Imt1(X) n Im-1(X) Ry = 1

Cm Jn+1(Xa) Jn-1(Xa) Em Jm+1(Xa) Jm-1(Xa) © ~ona’
_ Jm(X) Jm(X) _ Jm+1(x) Jm—l(x)

o )~ et T D) TG G=0
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D.10 High frequency limit of the round wire E fields

The box (D.9.39) above displays the round wire E; and B; field components in terms of functions ey, fy,
gm and hy. Here we study first the symmetry under m«>-m of these functions, and then we evaluate them
at high frequency.

(a) Symmetry of ey, f,, g, and h, and expansions for E;(r,0)
Although en, does not appear in the E field expressions, it does in the B field ones so we include it here.
From NIST (10.4.1) we know that for integer m,

Jon(X) = (D)™ In(x) . (D.10.1)
For f, one then has,

Im(%) Jn(X)
frn :[ Jm+1(xa) ) Jm—l(xa)]

O SR e SN G S X R
- Jom+1(Xa) i Jom-1(Xa) - 0 Jn-1(Xa) i Jn+1(Xa) "
With ep, the result is the same:
Im(X) Im(X)
en = Jn+1(Xa) - Jn-1(Xa)
Cla® . Jw®d e
e =1 Jom+1(Xa) J—m—l(Xa)] =- 1 Jn-1(Xa) Jm+1(Xa)] ~
And coefficients gy and hy have the same symmetry,
Jm+1(X) Jm—l(X)
&= Jn+1(Xa) - Jn-1(Xa) ]
Jom+1(X) Jom-1(X) Jm-1(x) Jme1(x)
g—m:[ J—m+1(xa) * J—m—l(xa) ] :[ Jm—1(Xa) * Jm+1(Xa) ] ~8n
Jm+1(X) Jm—l(x)
b = [ Jn+1(Xa) ) Jn-1(Xa)
h = J-mt1(X) Jom-1(%) _ Im-1(X) Imt1(X) _ Jm+1(X) Jm-1(X) _
™ [ J-m+1(Xa) ) J—m—1(xa) ] _[ Jm-l(Xa) ) Jm+1(xa) ] o Jm+1(Xa) ) Jm—1(xa) oo
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Thus we have shown that

€-m = €m
fom=1n

-m = Em

hom = hg . (D.10.2)

If the surface charge n(0) happens to be even in 0, (D.1.7) shows that g = Np/No = 1-p. In this case, the
E field components in (r,0) can be written as in (D.1.7),

Ei(r,0) = E;(r,m=0)+2 > E;(r,m) cos(m0) (D.10.3)
m=1

Then for even n(0) the E fields are, using (D.9.39) with B = (g/eq) CV Ryce,

Ez(r,0) = (1/4) B (wa) [ fo +2 Zp=1" fuNm cos(mb) ] (B'/k)

Ex(r,0) = (/4) B (wa) [ go T2 Zn=1" gmTm cos(mb) ]

Eo(r,0) = (1/4) B (wa) [ ho +2 Zp=1" hpNm cos(mb) ] . (D.10.4a)
For general n(0) where 1, and 1-p, are no longer equal one has instead,

Ex(t,0) = (1/4) B (02) [En=-v fnim ¢ ] (B/K)

Ex(r.0) = (j/4) B (02) [Zme-e" ZnTm e ]

Eo(r,0) = (1/4) B (0a) [En=—w hpm 7™ . (D.10.4b)
(b) High frequency evaluation of e, f;, gn and h, and the E fields
For large @ we can use the following expressions for ' and k :

B2 = -jopuo (1.5.1d) for good conductor
k = @/vg=Bao0 = m\/LeC ~ (m/LC (Q.3.5)
B2 =p2-k*=~ -jous - ®°LC.

Although the second term appears to win out here for large ®, for frequencies of interest to us the first
term is always much larger due to the large size of ¢ (see discussion below (D.2.2)) . Therefore

=B = -jous .
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At high o this B' parameter is very large, so x5 = 'a will also be large and we need then to find the large
Xa limits of the functions fy, gm and hy, . The Jy(X) large-x limit is non-trivial, so we provide some detail.

From NIST 10.17.2, keeping a few leading terms in each inverse power expansion, we have this rather
complicated large x behavior for Jy(x),

In(x) = (2/1x)*2 { cos(w) [ao(m) - az(m)/x2 + O(1/x*)] - sin(w) [az(m)/x + O(1/x3)] ] }

w =X - mn/2 - n/4 => eI =73 (x-mn/2-n/4) _ -3 (Jum/2 Jn/4
4m?-1 (4m?-1)(4m3-9)
ap(m) =1 ai(m) = g =Cm ag(m) = 18 - dn . (D.10.5)

The expansion is in fact valid for all real and complex values of the parameter m, but we shall only use
the expansion for integer m. Using the above abbreviations ¢y, and dp, one gets, for large x,

Jn(x) = (2/mx)Y?[ cos(w) (1-dw/x?) - sin(w) (cw/x ) ] . (D.10.6)
Recall that inside the round wire,

8 =+/2/opc = skin depth /] opo = 2/8 (2.2.20)

B =¢34 (\[2/5)=(j-1)/5 (2.2.21)
SO

x =Br=e*4 \2/8) 1 = (j-1) (1/5)

xa=Ppa=e>41[2/5)a = (j-1) (a/d). (D.10.7)

Since x has a large positive imaginary part for small 5, so does w. Then

cos(w) =[eI¥+e Y2
sin(w) =[e¥"-e Y)2j

(1/2) 3%
-(12§) 73" =(j/2)e73". (D.10.8)

U

u

The large-x expansion above then becomes
In(x) = 2/mx)Y2 (1/2) [e73% (1- dn /x3) -] € I" (cm /X) ]
=(121x)Y2 3" [ 1 4 e (1/x) - dm (1/x3) + ... ]
= (12mx)Y/2 e73% I™™/2 3n/4 ] e (1/%) - dm (1/x3) +...] . (D.10.9)

It is not hard to show that this agrees with (2.3.5) through order 1/x. Notice from (D.10.7) that
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e-jx — e_j (3-1) (x/8) _ e(1+j) (x/d)

giving a convenient hybrid large-x form for Jn(x),
Jn(x) = (127x)t/2 e X3 (=/3) Gym eIn/4 11 e (1/x) - dm (1/X3) +...] .

From (D.10.10) we see by inspection that, through O(1/x),

Im(X) aen_ (2 o (143 (x- am 1 -j cm (1/%)- d (1/x2 ) +.
Jn(xa) ) r 1 5 cn (1/Xa)- dn (1/x2°) +.

- (j)m'n\/% e (143) (r-a)/3 [ 1-jew/X +jcn/Xa ]

and

J .
nlx). & e Eass //" independent of m
Jm(xa) r

Therefore, for large o,
Jm+1(X) Jm—l(X) \F (143 -
= + = = j) (r-a) /3
8= Mpa(xa) T Ipate) 1 27\ €

Jm+1(X) Jm—l(x)
Jm+1(xa) ) Jn-1(Xa

hp = [ )] =0

_ In(®) m®) 1 (2 (149) (z-a) /5 : .
fm = J o l(Xa)] )] . © [ 1-jcw/X +jcme1/Xa

m+1(Xa)

SOTASy PP ER [ jex + jom-1/xa]

= j\[7 @D EDE ) Dic(1/%) + j(cmertem-1) (1/xa)

~-2j \E e (1%3) (r-a) /3

(D.10.10)

(D.10.11)

(D.10.12)

and we see that f, , gn and hy, are all independent of m. For ey, (which appears in the B field expressions),

Ta(X) Ta(x) w fa .. . .
en =1 - 1(Xa)] = 0 1\/; oM F=2) /B[] jen/x + jems/Xa |

Jm+1(Xa)

. a : -
+ (J)+1 ; e(1+J) (r-a)/d

[1-jcw/X +jCm-1/Xa |
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a 5 - . . a o - .
b e ERB (/) (- ene) ] :'J\/; eI /B (j/xg) 2m ]

= ;
~ 0 dueto1/x,.

The E field expressions from box (D.9.37) are then,

Ex(r;m) = (1/4) 1 B (0a) (BVK) fn f = -2 V% o(1+3) (=21 /3 x= Br
Ex(r,m) = (j/4) Nm B (02) gn m = 2 \E e (1*3) (=-2) /8 Xa = p'a
Eg(r,m) =(1/4) N B (®a) hy, hp=0 k = Bao
or
1

Large o limits of the E field solutions : Rgc = pu— 3 (D.10.13)

Ex(rm) = - (/) Nla B (02) (B/Pao) "\ [+ e ++3) (278 x= pr

Ex(tm) = (1/2) N B (00) o eme xa=Pa

Ee(r,m) =0 B = CVRge

As observed earlier, the longitudinal current J, is much larger than the radial current J, by factor |B/Pao|.

Notice the standard skin effect behavior both in amplitude and phase for both field components. We saw

this earlier in several places:
E(x,0) = E(0,0) e */3 ¢73%/3 = E(0,0) ™ (1+3)%/3 x — (a-1) 1D example  (2.1.8)

E.(r
[E2(1)| _ \/é e—(a—r)/a /S > 3/\/5 =21

[Ez(@)] — \r

(2.3.7)

The 0-space fields from (D.10.4b) are then,

Ea(,0) = ~(/2) B (0a) (BK) (A [7 ¢ @@/ (50 " ng eI

E:(1,0) = (j/2) B (0a) {\E e-(1+j) (a-r) /3 ) [Zm=_0000 N ejme ]

M =Na/Nop . (D.10.14)

Eo(r,0) = 0

But[ Zm= e Nm eI s just n(6)/Ng from (D.1.5a). Meanwhile,
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(3/2) B (0a)/No = (j/2) (Ca/ea) CV Rac (wa) / No

=(j/2) (1) [ 2ma No] Rac (ma) / Ng /1 (D.1.8) and &g/eq = 1 for large ®
= (j/2) 2na (1/ona?) (0a) // Rge = 1/oma®
= (jo/o)

so then for large  (D.10.14) becomes,

E,(1,0) = - (jo/c) % e~ (I (@) /3 ) (B/k)

Er(r,0) = (jo/o)

a _ B -
; e (1+3j) (a-r) /8 n(e)

Eo(r,0) = 0 (D.10.15)

so both E, and E, track n(0). From the first line of (D.10.15) the surface impedance is then

Zs(0)= Ex(a,0) /1 = -(jo/o) n(0) (B/k) / [2ma (w/k) No] = - (j/o) (B/2ma) O _

n
<n(6)>

where I comes from (D.2.31c¢) since (Eq/eq) = 1 for large . But (2.2.21) says B = (j-1)/9, so

0 1 0
Z+(0) = - (/o) (j-1)(1/2mad) <Ege;> = a8 (1+j)<JL’(6)L> (D.10.16)

and Z¢(0) is seen to track n(0). Averaging over the round wire surface (as done in (4.12.9) ) then gives

1 .
<Zs0> = 5y (1) (D.10.17)

which is the same as Zg appearing in (2.4.16) for the symmetric round wire case.
Observations on the E fields for large

In the extreme skin effect (small 5, large @) regime:

1. There is no azimuthal field Eg inside or on the surface of the round wire.

2. Both E, and E, exhibit the standard skin effect form for amplitude and phase.

3. At least for low loss situations, the ratio E,(1,0)/E«(r,0) = - (B'/k) = - (B'/Bao) is very large in magnitude
and is constant in r and 6.
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4. Both E; and E; track the surface charge density n(6) for azimuthal dependence.

5. If n(0) # constant, then J, = oE, # constant in 6 and the longitudinal current density is asymmetric
across the round wire cross section, which is known as the proximity effect. This implies that the surface
impedance Zg is a function of 0, as shown in (D.10.16). In Section 2.4 the surface impedance was a
constant since only the m=0 partial wave was involved.

Reader Exercise. Use -joB = curl E in the form (D.4.7), with (D.10.13) for E, to obtain the following
expressions for the partial wave magnetic fields inside a round wire at large :

Ba(t:m) = (/2) Ml Rae (1/0) mao ()2 & (¥3) (270172 (D.10.18)
Ba(t;m) = (/2) Nla | Rae (/@) mp ()%/2 &™) (27078

Bo(tm) = (/2) I Rae (o) B ()2 &9 @078 [ (3o Bao/P) - j2+ (1/3) -1) .

In the transmission line limit |(Bgor)| << 1 and from comments below (D.2.2) |(Bao/B)| << 1, so the last

bracket simplifies to [-j/2 + (1/9) (j-1) ] . Since the exponential decays quickly in r, we could set r = a in
this bracket and make little difference to get [- j/2 + (a/d) (j-1) ]. But (a/d) >> 1 more or less in the large
o limit, so then the bracket is = [ (a/d) (j-1) ] Observations:

o As expected, the B field components have the same skin effect exponential decay as the E field
components.

e The B, and By components vanish for m = 0 but the Bg component does not. Why is this so?
[ Hint: Look at (D.4.6) ]

® By is larger than By by roughly (a/6), and By is larger than B, by the factor |(B/Bao)| >> 1.
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D.11 Low frequency limit of the round wire E fields
(a) A High Level Review of Appendix D and its Accuracy

As presented above, the general approach of Appendix D was to solve for the E and B fields inside a
round wire assuming the ansatz traveling wave form

E(r,0,zt) = ¢ “*7%2) E(1,0) (D.1.1)

where k is an arbitrary complex parameter. For any k, we found the following E field solution, where k
dependence is now shown more explicitly:

Second summary of the E field solutions : Rgc = cs_nlaz B2 =p2-K? (D.9.37)
' Im(x) Im(x) ' '
E.(r,m) = (1/4) Npm B (wa) (B'/k) fn fm =1 T " Jma(xa) ] x= BT Xa =fP'a
. Jm+1(X) Jm—l(X) _
Ex(r,m) = (j/4) \n B (03) gn gm = Jns1(Xa) + Jn-1(Xa) ] B = (Ea/ea) CV Rye
Jm Jn-
Eo(r.m) = (1/4) m B (wa) ha = [t 1(x) G>0

Jn+1(Xa) i Jn-1(Xa)

High Level Overview

These fields exactly solve Maxwell's equations and the two boundary conditions (D.2.26) and (D.2.27),
and from these E fields we computed the corresponding B fields. The coefficients ngy are the moments of
the surface charge distribution n(8) on the round wire surface. In principle, any linear combination of
these solutions for different k values (including a continuous superposition) is also a possible solution.

However, when this round wire is part of a transmission line, one must also take into consideration
the field solution outside the round wire -- the solution within the transmission line dielectric region. This
is the so-called exterior solution, whereas our round wire analysis provided an interior solution. The idea
is that the exterior solution provides the correct value of parameter k to use for the interior solution. The
solutions must have the same k value due to the boundary between interior and exterior.

Whereas Appendix D found the interior solution for the E field using the Helmholtz equation,
Chapters 3 and 4 obtained the exterior solution in terms of the potentials ¢ and A, using the King gauge
condition. This analysis was not valid at low frequencies for a variety of reasons noted in those chapters,
perhaps the most dramatic of which is shown in Fig 3.6.(b). This drawing illustrates how the round wires
of a twin-lead transmission line are clearly not surfaces of constant A, potential at very low frequency,
whereas the theory assumes that they are. The main results of Chapter 4 were the first and second order
"transmission line equations" (4.12.15) and (4.12.17) involving i(z) and V(z). The second order equations
are (damped, ® domain) wave equations which directly imply an o k= dependence on z. Through the
boundary between the interior and exterior solutions, this implies a similar ¢”3** form for the interior
solutions, which form is the ansatz of Appendix D. However, at low frequencies these wave equations are
no longer valid, there are "correction terms" [ see (S.29) ], and thus the e %% ansatz (D.1.1) of Appendix
D is no longer valid. Therefore, we cannot expect low frequency predictions of Appendix D concerning
interior fields to be accurate. See Chapter 7 for further discussion of low frequency issues.
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Meanwhile, on a separate track altogether, Appendix K describes the so-called "network model" of
the exterior solution [ at least i(z) and V(z) ] for a transmission line, using lumped R,G,L,C components.
In this model, the same transmission line equations obtained in Chapter 4 are found to be true, justifying
the network model. However, in the network model, these transmission line equations are valid all the
way down to DC (0=0) whereas we have just shown that the "physics model" does not support this
conclusion. Nevertheless, we can use the network model's low frequency range as an approximation to the
true exterior solution at low frequency. In other words, we can pretend that the transmission line
equations are valid all the way down to DC. In so doing, we should not be surprised to find results which
are inaccurate. Note that the network model says nothing about interior field solutions.

Above low frequencies both the physics and network models provide the same value of k to be used
in the round wire interior solution. That value is k = -j\/gf =4 \/ (RHjoL)(GHoC) . Since k is a function
of o (explicitly and also through o dependence of the parameters), the transmission line has "dispersion"
and a group velocity vg = Ow/0k different from the phase velocity v, = w/k. Appendix Q obtains

expressions for k(o) appropriate for both high and low frequencies as limits of this rather complicated
function. We then use these limits in our low frequency analysis below, aware that they can give
inaccurate results. Appendix R makes use of the k(w) function in a case study of a certain Belden cable.

(b) Low frequency values for '

For low @ and G > 0: We seek an expression for B’ at low . Since B = p? - k?, we need to know about
B and k. For any ®, we know first that

B2 = -jopuc (1.5.1d) for good conductor

so B2 — 0 as ®—0. Meanwhile, the ultra-low frequency limit of k is known from (Q.4.6) to be,

Re(k) = (0/2) (Racz + ©aLac) \/C/(@aRac2) + O(w?) ® <0g = (04/€q)
Im(K) = - \Rac2G [ 1 + (tany/2) (w/0q)] + O(0?) . (Q.4.6)

Here we use Rgez to indicate the total DC resistance per unit length of the two transmission line
conductors, to avoid confusion with Rgc appearing in (D.2.33) which is for the round conductor alone.
Symbol G refers to the DC dielectric conductance of the transmission line, called G4c in Appendix Q.

As ©—0, one finds Re(k)— 0 and Im(k)— - \/Rac2G . Thus, at low o,

p* =0
k= - z\|Rac2G => k? = - Rae2G
B?=p?-k* = k*~ Rac2G . (D.11.1)

For any reasonable transmission line Rgc2G will very small so the Bessel argument x, = f'a << 1.
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Low Frequency Example: For Belden 8281 coaxial cable, Appendix R below Fig R.6 gives Rgc2 = .036
and G = 0.338 x 107* so [3'2 ~ Rge2G = 1.22 x 10726 and then B'= 1.1 x 108 m™®. The central
conductor hasa=3.94x10"*m sopa = 5x 10712 << 1.

Since P'a is very small, we shall need to evaluate f;,, g, and hy, for small x5 = p'a.

For low ® and G=0: When G = 0, the ultra-low ® behavior of k is given by (Q.4.9),

Re(k) = +1/Rae2C/2 \Jo (1 - tany/2) + O(w3/?)
Im(k) & -/Rac2C/2 \[o (1 +tany/2) +O(0’/?) . (Q.4.9)

As ®w— 0 one then has,

k=~ 1\/Rae2C/2 o (1-j) =1/Rac2C o ¢ 374

kz = 'j(’) Rdc2C
B% = -jouc (1.5.1d) for good conductor
B =p?-k* = -jopus HjoRac2C = -j0(Uo - Rae2C) . (D.11.2)

Again B' is very small at low frequency and in fact B' — 0 as ©®—0. Thus again B'a << 1 so we need to
evaluate f,, g, and hy, for small x, = p'a.

(c) Low frequency evaluation of e, fy, gn and hy,
Although ey does not appear in the E field expressions, it does in the B field ones so we include it here.
In the following we consider only m > 0, knowing from (D.10.2) that *_, = *y for * =e¢, f, gor h.
The small x limit for J(X) is given by NIST 10.7.3,
Jn(x) = (x/2)" /n! . forn=0,1,2,..... (D.11.3)
Since Jp-1 appears in our coefficient expressions and since m = 0 is encountered, we have to deal with m

= ( as a special case since the above limit is not valid for n = -1. To this end we use NIST 10.2.2 which is
valid for integer n,

Jon(X) = (-1)"Ia(x) = (-1)™ (x/2)" / n! (D.11.4)
so that J_1(x) =- J1(X) = - (x/2). Our small-x forms of interest are then

Ja(x) = (x/2)" / n! forn=0,1,2,.....

Joi(x) =-(x/2) forn=-1 . (D.11.5)
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We now examine the small x limits of en, fp, gm, and hy, .
First f, for m > 0, and then for m = 0:

Tn(X) Tn(X) (x/2)"/m! (x/2)"/m!

=000 " Teat) !~ T2 Hmr)! (/2 H(m-1)!

=[ (m+1) (x/xa)™ (2/xa) - (1/m) (x/xa)"(Xa/2) ] = (x/x2)" [ (m+1) (2/x3) - (1/m) (xa/2) ]

=~ (d/xa) (mt) (%) J/ 2 xams 0
Jo(x) Jo(%) Jo(%) Jo(%) Jo(%) 1
o =[x - Tt " Thew ™ e T2 Thea) T2 a2) e

Since only the first term in fy, survives the small x limit, the results for ep, are the same as for f, :

Ch® I
‘m =~ Jnt+1(Xa) Jn-1(Xa) ]

=~ (x/xa)" (m+1) (2/xa) .

But eg is different

o) Jo(0 o0 Jo(x)
0 =[x T TGl T T ™ Tixa)

1 =0.

First g, for m > 0, and then for m = 0:

o hen(® ) Jea®) (2™ (mtD)! (x/2)"Y/(m-1)!
8= Tk | Jmixa) | T 2™ mA D) T T (xa/ 2 Y(m-1)!

= (x/xa)™ + (x/xa)™ 7t

Jl(X) J_l(X) Jl(X) Jl(X) Jl(X)
80~ [T T Tt ] T e T e T2 T

=2 (x/Xa)

Results for hy, are then obvious since there is only a sign change between the terms in gp,
ha = (x/xa)™! - (x/x2)™ " ho =0 [ exactly, for any x and X, ]

The results are then,

em = (r/a)" (m+1) (2/p'a) eo=0
fo = (/)™ (m+1) (2/p'a) fo = 4/(ap')
gn = (/)™ + (/)" ! g0 =2 (r/a)
he= (t/a)™? - (/)" ? ho=0
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form > 0. Allowing for all integer values of m, using the symmetries (D.10.2) we can write,

en = (1/2)'™" (m+1) (2/B'a) co=0
fo = (/a)"™! (Im[+1) (2/p'a) fo= 4/(ap")
gn = (t/a)™* + (r/a)!™I"? go =2 (r/a)
ha= (t/a)™*? - (r/a)!™1 71 ho=0 . (D.11.6)
(d) Low frequency E fields
Recall that for the general case G > 0 we can write the E fields as
1
Second summary of the E field solutions : Rgc = p— B2 =p2-Kk? (D.9.37)
' Im(x) Im(x) ' '
E.(r,m) = (1/4) m B (wa) (B'/k) fn fmn =1 T2~ Jma(xa) ] x= BT Xa =f'a
. Jm+1(X) Jm—l(X) _
Er(ram) = 0/4) MNm B ((Da) Em Zm = [ Jm+1(Xa) + Jm—l(xa) ] B = (é;d/gd) Ccv Rae
Jm l(X) Jm—l(x)
Eo(r,m) = (1/4) Na B (®a) ha ha = [ Jm; 0 Tt ] G>0
For small o, use the small-x limits of (D.11.6) to get
E.(r,m) = (1/2) Nu B (w/k) (r/a)" (m+1) (D.11.7)
Ex(tm) = (j/4) N B (@a) [(t/a)"™*" + (/)" ]
Eo(r,m) = (1/4) Nm B (wa) [(r/a)™* - (/)™ ] m >0
E;(r,0) = B (w/k) B = (Ea/ea) CV Ryc
Ex(r,0) = (j/2) B (or)
Eo(r,0)=0 m=0 G=0
For G = 0 one has,
(Ealea) = 1 (D.9.28)
k=1Rac2C Vo ¢3* = C(0k) =e¥* \Jo \[C/Racz (D.11.2)

and then the E fields are
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E.(r;m) = (1/2) nme3’* V Rae [0 \[C/Raez (r/a)™ (m+1)

Ex(r,;m) = (j/4) Nm CV Rac (0a) [(/a)™* + (1/a)* ]
Eo(r,m) = (1/4) Nm CV Rge (0a) [(/a)™* - (r/a)™*]

E.(r,0) = ¢34V Rgc\Jo \/C/Rac2
Er(r,0) =(j/2) CV Rgc (@r)
Ee(rao) =0

(D.11.8)

m>0

As o — 0, all E fields go to zero as one might expect since Zg — . In the network model one has,

R,
AN A% A% ANV ANAN
R-=iog: -t
R>
AAAN AAN AN AN AN
z=0 z —»

FigD.8

The current is [ = CV(w/k) =V e3/4 \/6 /C/Rgc2 and it too — 0. With no current in the transmission

line, it seems reasonable that all E fields should vanish.

For G > 0 one has instead, for small ®,

(Eg/eq) = (GljoC) (D.9.28)

k= - z\/Rac2G (D.11.1)
and then the E fields of (D.11.7) are,

Ez(r,m) = (1/2) Nm V Rge \/G/Rdc (r/a)" (m+1) (D.11.9)

Er(r,m) = (1/4)Nm V Rae (G a) [(t/2)™ + (r/a)™ 1]

Eo(r,m) = -j(1/4) Nm V Rac (G a) [(r/a)™*! - (r/a)™ 1] m>0

E.(1,0) = V Rgc \/ G/Rge

Ex(r,0) =(1/2) VRgc (G 1)

Ee(r,0)=0 m=0 G>0 o—0

As o — 0, all E fields approach finite values except Eg(r,0) = 0. This seems reasonable since even at DC
current flows between the conductors through the dielectric when G > 0.
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Consider now the ratio E,(r,m)/ E,(r,0). For G=0 or G > 0 the ratio is exactly the same, namely

Jz(r,m) _ Ez(ram) _ m
100 "~ Ele) = (1/2) N (1/2)™ (m+1) asw—0, m>0 (D.11.10)

where J, = oE; is used to obtain the leftmost ratio.

An anomaly. For the G = 0 case, the above result is rather disturbing. In the DC limit ® — 0, we expect
the current density J, inside our round wire to approach a uniform value. This is so because we expect
there to be no eddy currents at ® = 0 and these are the cause of J, non-uniformity as discussed in
Appendix P. In order for J, to be uniform, the partial wave components J(r,m) for m # 0 must all vanish.
But the ratio above shows that they do not vanish in relation to J(r,0). It is true that in the final limit 0— 0
all E fields vanish, as shown in (D.11.8), but we would have expected that, as we approach the limit, the
current density would smoothly approach a uniform constant value.

Let us re-examine this situation in the 6 domain rather than the m domain. Recall that for n(0) even, one
has N-m = Nm and then
o0
Ez(r,0) = Ex(r,m=0)+2 > E.(r,m)cos(m0) . (D.10.3)
m=1

Inserting the small-o fields from (D.11.8) then gives

Ex(r,0) = ¢3/% V Rge\Jo \[C/Rac2
o0
+2 Y (1/2)med’* VRae\Jo \[C/Raez (r/a)™ (m+1) cos(mb)

m=1
. 0
=e3/* VRage\Jo \[C/Racz [ 1+ Y M (/a)™ (m+1) cos(mb) | (D.11.11)
m=1
and therefore
o0
1,(r,0) =¢34 6 VRae\Jo \[C/Racz [ 1+ 3 Nm (@a)™ (m+1) cos(m) ] . (D.11.12)
m=1

The integral of J over the round wire cross section gives the total current I. In this integral, the partial
waves with m > 0 make no contribution due to the df integral. Therefore

1= (636 VRaeJo \JC/Raez ) *ma? = 3% VAlo \[C/Rgez . (D.11.13)

The expression for E, and J, can then be written in this simple form,
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Ez(1,0) = IRge [ 1+ D, Mm (/a)™ (m+1) cos(mb) ] as®m—0 (D.11.14)
m=1

J21,0) = 6 IRge[ 1+ 2 NMm (/2)" (m+1) cos(mb) ] as®—0 . (D.11.15)
m=1

One sees explicitly now how J,(r,0) is not uniform but varies with both r and 6 over the round wire cross
secction. As ® — 0, the shape of J, over the round wire cross section approaches the bracketed function.
The correct ® = 0 result I/(naz) is just the "1" term, as if all the 1y, vanished for m > 0. But they don't
vanish since a DC capacitor made from two infinite cylinders held at V in a vacuum holds charge which
is asymmetric around the cross section perimeter.

There is a possible obscure argument that somehow, as @ — 0, the ratio of the eddy currents to the
total current I is somehow constant and that is how the J, asymmetry is maintained all the way to ®w—0.
We don't think this argument is valid, so we really do have an anomaly of our theory as ®— 0.

The surface impedance for the round conductor is given by,

(e 0]
Zs(0)=E2(,0)/ 1 =Rgc[ 1+ 2 Mm (/2)" (m+1) cos(mb) ] asow—0 (D.11.16)
m=1
and so
<Zs(0)> =Rac aso—0 (D.11.17)

as one would expect.

Reader Exercise: Does (D.11.9) give the correct solution to the implied magnetostatics problem, or are
there anomalies like the one noted above? Notice that Zg is certainly correct based on the reader exercise

given in Appendix K (c). The "wave" decays in z according to e¢”3¥% = exp(-\/RG z) which also seems
reasonable.
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Appendix E: How Thick is Surface Charge on a Metal Conductor?

It is often said that surface charges exist only very close to the surface of a conductor. In this section, we
will show how extremely true this statement is. Here is a crude sketch of what we expect surface charge
distributions might look like at the plates of a capacitor.

3

metal metal

Fig E.1

The red plot is charge density p, and the black plot is the electric field magnitude. The charge density is
exactly p = 0 in the dielectric region between the two plates simply because there are no available charge
carriers as there are in a metal (the electron cloud), see Section 3.1. Barring a huge E field or very high
temperatures, electrons cannot just "jump off" the metal surface into the dielectric region because of an
energy cost to do so, called the work function.

The figure suggests that the charge distribution might have an exponential decay going into each
metal surface, with some characteristic distance which we seek to find. The reader might wonder: is it the
skin depth 6? The answer to that question is: most definitely not!

We are accustomed to using Ohm's law J = oE in various forms. Application of this law in the
regions of charge density in the above figure leads to a contradiction. In the DC static case, nothing
moves, so there can be no J, but there is clearly some E, so how can J = 6E ? The reason is that Ohm's
law only applies in a neutral medium. When there is a net charge density, the corrected Ohm's law is this:

J=cE-Dgradp . dim(D) = m?/sec (E.1)

The grad term, associated with Fick's Law, represents a flux of charged particles (a current) created by a
gradient of the charge density. The charge flows (diffuses) from a region of high density to one of lower
density, hence the minus sign, just as heat flows from a region of higher temperature to one of lower
temperature. In a static situation with no current, the second term balances the first term in a surface
charge region,

cE=Dgradp . (E.2)
As electrons pile up on the boundary, they resist further pileup by their higher density. Basically this is a
diffusion effect, and D is a diffusion coefficient.

There is another more familiar equation which relates E and p, namely (1.1.3) + (1.1.6),

divE =p/e . (E.3)
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Inside a metal conductor the dielectric constant € requires some careful study, but here we shall just set it
to go as if there were nothing in the electron cloud of the metal that could be polarized. Taking the
divergence of (E.2) and using (E.3) we get this result

V?p=(c/Deo) p . (E.4)
The inverse combination of symbols in (E.4) is the square of something called the Debye length,
Ap? = (Deo/o) (E.5)

which is associated with charge screening in plasmas (such as the electrons in a metal). Thus, (E.4) may
be written,

V=12 p . (E.6)
In our one-dimensional problem of the above figure, the solution of this equation is

p(x) = p(0) e*/*0 (E.7)

where x is a coordinate going into the surface. This says that the thickness of the charge surface layer
inside the metal is basically Ap.

If the electron cloud inside the metal is treated as a classical gas of particles of mass m, charge q,
temperature T, and density n, one gets formulas for the various coefficients. Here are some expressions:

J=nqv v = average drift velocity // (N.1.1)

T = mean lifetime between collisions // below (N.1.2)

u = (v/E) = (g/m)t = mobility /I (N.1.7)

D =kT(w/q) = kT(t/m) = diffusion coefficient /1" Einstein relation"

o = (nq?t/m) = conductivity // (N.1.9)

Ap = \/m = Debye length /I (E.5) and last 2 equ. above (E.8)

This set of equations represents a classical model for the free charge in a metal.

One major and one minor adjustment is needed (see Kittel p 278-280) when quantum theory is
applied because electrons are fermions. This means that they cannot all park in the same state, so they
"pile up" in higher and higher states in something known as the Fermi sphere. Only electrons at the
surface of this sphere can do anything useful. Due to the pileup, the temperature of the active electrons is
very much higher than one might think using classical physics. One finds this temperature by setting kT =
Er where this latter is the Fermi energy,

Er = (h% 87°m) (3n°n)?/3 =kTr . (E.9)
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The appearance of the Plank constant h is the clue that this is a quantum result. This was the major

quantum adjustment. The minor one is that T in the Debye formula gets replaced by (2/3)T. Thus,

Ap = \/m = Debye length (quantum correct)
We shall now run some numbers. Here are the basics,

n = 8.45 x 1028 electrons/ m*> for Copper

k = 1.38 x 10723 = Boltzmann constant

m=9.1x1073 kg = electron mass

h=6.63 x 1073* J sec = Planck constant

Plugging these into (E.9) gives the following effective electron temperature

Tf := (1/k)*(h"2/(B*Pi*Pi*m))*(3I*Pi*Pi*n)"(2/3):
n := 8.45e28:
k := 1.38e-23:
m := 9. 1e-31:
h := 6.63e-34:

evalf(Tf) ;
21702 43451

SO
Ty =81,702 © K = pretty hot .

We can now compute the Debye length, using (E.10) :
g0 =8.85x 1072 F/m

q=1.60x10"°C

Id := sqrt(e0*k*(2/3)*Tf/(n*q*q)):
el := B.8he-12:
q := 1.60e-19:

evalf(Ld) ;

5545425447 10717

SO
Ap =5.55x 1071 m=0.55 A (Angstroms) // =55 pm

(E.10)

(E.11)

(E.12)

and this result for Ap appears on page 280 of Kittel. The atomic spacing in crystal copper is 3.6A, while

the copper atomic radius is about 1.3A.
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The basic discussion above through (E.7) appears in Portis pp 162-164 (Chap 5, Sec 11). Portis then
gives a small table of metal parameters and Ap for copper is quoted as 0.59A, close to our result above.

Thus, we come to the dramatic conclusion of this section:

Fact: In our simple model, the thickness of the surface charge density below the surface of a conductor is
incredibly small. For copper, it is less than the radius of one copper atom, and the general result applies to
any metal. Thus, the surface charge decays away right in the very first atomic layer of a metal.

Fact: The thin layer of negative surface charge on the right plate in Fig E.1 above serves to neutralize the
E field which would otherwise be present inside the right conductor due to the positive charge on the
surface of the left plate. One says that the E field inside (and to the right of) the right plate is "screened"
(killed off) by the negative surface charge layer on the right plate.

This is of course the principle behind the ever-popular Faraday Cage (note kids inside):

Fig B.2

http://www.wonderwhizkids.com/resources/content/imagesv4/apupdate/physics/Electricity/conductors/Faraday _cage.j

From Section 2.2, we found that the skin depth 6 for copper at 100 GHz is about 0.2 microns which is
2x10""m = 2000A. Even at this large frequency, the skin depth is still about 4000 times larger than the
thickness of the surface charge layer. At 1 GHz this ratio is 40,000.

Fact: Whereas surface current can exist "deep" into the surface of a conductor, even when the skin effect
is dominant, the surface charge can always be thought of as being exactly on the surface.

389


http://www.wonderwhizkids.com/resources/content/imagesv4/apupdate/physics/Electricity/conductors/Faraday_cage.jpg�

Appendix F: Waveguides

Appendix F: Waveguides
F.1 Discussion

A transmission line must have at least two distinct conductors to carry the TEM wave described in
Section 3.7 and as illustrated in the figures there. For a two conductor transmission line the surfaces of the
conductors have a potential difference of amplitude V # 0.

A single wire cannot carry a TEM wave except in the sense of Section 2.1 where it acts as the center
conductor of a coaxial cable with a far-distant return sheath. A TEM wave cannot propagate down the
inside of a hollow pipe regardless of cross section shape since the continuous conductor cross section
"shorts out" any possible V # 0.

In this document we have associated the TEM wave with the phrase "transmission line". but certainly
a waveguide is a form of transmission line. Normally one associates the word "waveguide" with the TE
and TM modes such waveguides carry. The usual form of a waveguide is in fact a hollow pipe, often of
rectangular or circular cross section. However, it is possible for a 2 conductor transmission line to have
TE and TM modes. In this Appendix we shall not present a theory of waveguides since that is well done
in Jackson and many other texts, but we would like to show that a transmission line made from two
closely spaced parallel plates can carry waveguide modes in addition to the TEM mode. We want to use
this simple example to illustrate the notion that waveguide modes have lower cutoff frequencies whereas
the TEM mode can operate all the way down to ® = 0 ( albeit in a very lossy manner).

The terminology TEM (Transverse Electric and Magnetic) means that both the E and B fields are
transverse, as shown in Figures 3.5 through 3.7. In reality, we know there is a very small longitudinal E,
field because E; is continuous at a conductor surface and we know J, = 6E; just inside the conductor.
This E, field exists and has a cosine-like shape between the conductors, having the opposite direction at
the second conductor. This field might be smaller than the transverse E field by a factor 10™* as shown in
(3.6.2).

A TEM wave is very much like a plane wave with its transverse E and B fields, but the fields are
distorted by the presence of the conductors. As Fig 3.5 shows, this distortion is such that the Poynting
vector E x B always points down the line (z direction), E and B are always perpendicular at any point [for
sufficiently large o, see (3.7.25)], and the E field lands perpendicularly on the conductors. The TE and
TM modes have much more complicated field patterns.

The waveguide modes are called TE (Transverse Electric) and TM (Transverse Magnetic). The
nomenclature is a little confusing since both TE and TM waves generally have transverse E and B fields.
The distinction is that the TE modes have no E, field, while the TM modes have no B, field. So TE

means the E field is "transverse only".
F.2 The TE waveguide modes for a parallel-plate transmission line
We shall assume (our usual "ansatz") that the entire E field is given by
E(xy,z) =Ey(x) e 0t § (F.2.1)
where we have our usual overloading of the symbol E.

This field in the dielectric must satisfy the m-domain wave equation (1.5.32) which says
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(V2+BHE=0 . (F.2.2)
Here Bq is the usual Helmholtz parameter of the dielectric as in (1.5.1a),

Ba® = Haga®? - jopaOa = ®°pg ( €4 - j0a/®) = 07 palq Ea =€a-jod/® . (1.5.1a)
but in this Appendix we assume the dielectric is non-conducting so

Ba® = 02 gta = 02 /vg> ( = Bao® but we shall just call it Pa?). (F.2.3)
Inserting the ansatz form (F.2.1) for E into (F.2.2) one finds that,

(0x" + 0y® + 02"+ Pa) Ey(x) €? @7 =0

or

(05> + 0 +(-k®)+ Ba®) Ey(x) =0 . (F.2.4)
Define

v’ = Ba®K® (F.2.5)
so that

(@x +7%) Ey(x)=0 (F.2.6)
SO

Ey(x) = A sin(yx) + Bcos(yx) . (F.2.7)

We now introduce our parallel plate transmission line (the gap is exaggerated in width)

L/ R

o

Fig F.1
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Since we require Ey = 0 at the two inner plate surfaces, we find that

Ey(x) = A sin(yx) where sin(yd) =0 => vyd=mn . (F.2.8)
Thus, the parameter y is quantized by the boundary conditions and we have

E, ™ (%) = A sin(ymX) Ym = m(/d) m=1,273... (F.2.9)

Suddenly there are "modes" labeled by m. The lowest non-vanishing mode has m = 1, and this is the
mode shown in the figure.

We find that the wave's wavenumber k is also quantized. From (F.2.5),

km = \/Bf Va2 (F.2.10)

ej (ot-kz)

In order to have a traveling wave , one needs k in (F.2.1) to be real, which requires that

Bda=Ym - (F.2.11)

For a non-conducting dielectric one has Bg = on[la€a = ®/vq where vq is the light speeed in the
dielectric. Recall from (1.1.29) that \/ Logo = 1/c. So the above condition is

®/vg > m(n/d) => o > m(n/d)vg

)
® > O On =M(T/d)V="Yp Vq . (F.2.12)

Thus the m®™ TE mode can only operate for ® above oy, and as m increases the low end mode cutoff
increases. For ® < ®; there can be no TE action on this waveguide.

The B fields for our TE mode can be obtained from the Maxwell curl E (1.6.24),
B = (j/o) curl E = (j/®) [X (3yEz - 0zEy) +§ (0zEx - 0xEz) + 2 (0xEy - OyEx)]

= (j/o) [ﬁ (- OzEy) + z (OxEy) 1

so then
Bx ™ () = (j/0)(K)Ey(X) = -(kn/®) A sin(ymX) (F.2.13)
B, ™ (x) = (j/®)0xEy(X) = (j/©) Yn A cOS(YmX) . (F.2.14)
E, ™ (%) = A sin(ymX) . (F.2.9)
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If A is real, then Ey and By are real and in time phase, while By is 90° out of phase. An attempt has been
made to display all three field components in Fig F.1.

To show that the waveguide mode outlined above is viable, we verify Maxwell's equations. Since the
Maxwell curl E equation was used to obtain B, we need verify only the remaining three equations:

div E = 0By + 8yEy + 8,E; = 0yEy(x) =0 (F.2.15)
div B = 0By + 0yBy + 0B, = 0yBy + 0,B,

= -(kn/®) Ym Acos(YmX) - jkm (j/®) Ym A cOS(YmX)

~(K/®) Ym AcOS(YmX) + K (1/0) Ym A cos(ymx) =0 (F.2.16)
Finally,

curl B= % (6yB; - 0:By) +§ (0zBx - 0xBz) + Z (6xBy - 6yBx)

+ 9 (0zBx - 0xBz) = 9 [ (-jkm )-(km/®@) A sin(ymx) + (j/o) ymz A sin(ypX) |

9 [ (kn” /o) A sin(ymx) + (/0) Yn® A sin(ynx) ]

¥ ka® + a° 1j (Al0)sin(ymx) =9 Ba’ j (A/o)sin(ymx) . (F.2.17)
According to (1.6.23)

curl H(x,») = joD(x,0) + J(x,0) (1.6.18)
with J =0, D = ¢E and H = B/p one should have

curl B =joep E (F.2.18)

Installing curl B from (F.2.17) and E from (F.2.9), the Maxwell curl B equation will be satisfied if

Ba® j (A/w)sin(ymx) = joep A sin(ymx)
or

Ba® (1/0) = wEqpg
or

de = (028de

which is (F.2.3) quoted above. Thus we have shown that our TE waveguide modes satisfy all four
Maxwell equations.

Although the TE and TEM modes are both "transverse electric", there is a significant difference in the
E field pattern. In TEM the E field lines run from one conductor to the other so that the line integral of E
generates the potential difference V, as shown in Fig 3.5. The E field lines are "sourced by" (or "create")
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the surface charge on the conductors. In the TE mode of Fig F.1, the E field is still transverse but is
parallel to the conductors so the line integral of E between the conductors gives V = 0. These E lines are
not sourced by charges on the conductors but are more like the E field lines in a free-space light wave.

Comments:

1. The parallel plate transmission line also has TM waveguide modes, and the cutoff frequencies are the
same as for the TE mode.

2. A rectangular waveguide mode has two quantized integers and the cutoff frequency is then a function
of both these integers. For TM the E, field will have sine behavior in both x and y directions. See for
example Jackson Section 8.4 page 361.

3. The obvious boundary condition is that E¢ = 0 at the walls, while a less obvious condition is that
Bx = 0 at the walls [ see (3.7.17) ]. Notice in our example that Bx ™ (x) = 0 at the walls and this is a
normal B field.

4. Waveguide problems are normally dealt with using the Helmholtz equation for the E and B fields,
whereas the TEM transmission line problem is more easily dealt with using potentials ¢ and A.

5. We have dealt above with an ideal waveguide. In real waveguides the fields E and B penetrate distance
0 (skin depth) into the walls and generate ohmic losses causing the wave to be damped. The same thing of

course also happens for the transmission line TEM mode.

Reader Exercise: Make a 3D vector plot of the E and B fields for Fig F.1, and also plot the Poynting
vector S = E x B and compare with the TEM wave pattern. Except at the center, in addition to S, there
seems to be an Sy component suggesting a transverse power flow distribution in addition to the expected
longitudinal power flow. (See below)

F.3 A waveguide interpretation

Adding the (F.2.1) ansatz z dependence e 3= o (F.2.9) gives, with (F.2.10) for ky, ,

Ey(X,2) = A sin(ypx) ¢” 3 m? K =[Ba> - Yu2 (F.3.1)
The solution was approximate because it ignored skin depth effects.

It is convenient to think of (F.3.1) as the superposition of two "free space" plane waves of wavenumber Bq
traveling at some skew angle +0 relative to the z direction, reflecting back and forth off the sides of the
waveguide:

Ey(x,2) = (Aj/2) [e73P1°" - ¢73P2°"] = qum of two plane waves (F.3.2)

where
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Bi= PBx X+Pz2 =wavevector of the first wave = Brer= Pxx+ P2z

B2=-Px X +P>2 =wavevector of the second wave = Paor=-Pxx+ P,z (F.3.3)
(B = (B2)* = Bx" + B2 = Bd’

tand = Bx/Pz . (F.3.4)

Adding the two terms in (F.3.2) gives
Ey(x,2) = (Aj/2) [e3P1°F - e73P2°F] = (Ajj2) [ IPrx-IPaz _ +IBax-3Baz |
= (Aj/2) e 3Pz [¢7IPxX _ o*IBxX | = (Aj/2) ¢7IP2% [-2] sin(Px X) ]
= A e P2 5in(Byx) . (F.3.5)
Comparing with (F.3.1) one concludes that
Bx = Ym = mm/d Bz =km /| ®m = YmVd

VYm (0Om/Va) Om

T ABE 1 @Vl - (Ve 0P -om? (F.3.6)

The two plane waves have wavenumber Bq = ®/vq and not k. Their sum is the superposed wave going
down the guide in the z direction with wavenumber ky shown in Fig F.2. As ® approaches cutoff from

above, tand — o and 6—m/2 and at cutoff the plane waves just bounce back and forth sideways and there
is no propagation down the guide at all. Here is a picture:

r "
imo -

tand = Bx/Bz = Yw'km

FigF.2

395



Appendix G: The DC vector potential of a round wire

Appendix G: The DC vector potential of a round wire carrying a uniform current

In this problem, an isolated, infinitely-long and z-aligned round wire ( p2,€2,02, radius a ) carries a current
I. The wire is immersed in an infinite dielectric medium (jt1,€1,01). We begin for general o, but quickly
go to the DC limit ® = 0. We wish to calculate the vector potential A of this wire both inside and outside.

Section G.1 sets up the problem, makes some ansatz assumptions, and then ends up with a 2D
Poisson equation for the potential which is V2,0 Az(r)=- [qu/(ﬂ:az)] 0(r<a).

Section G.2 directly solves this Poisson equation for the potential A,(r). The solution is required to
meet two boundary conditions at r = a.

Section G.3 very quickly computes this same Aj(r) using Ampere's Law with the same boundary
conditions and obtains the same result found in Section G.2.

Section G.4 laboriously obtains the same A,(r) result using the 2D Helmholtz integral (which in this
case is really just a Laplace integral). This serves as a prototype case for dealing with such integrals, so
much detail is provided. It is found that for p; # p2 homogenous terms must be added to the Helmholtz
integral in order to meet the boundary conditions.

Section G.5 comments on the solution for A at low frequencies.

G.1 Setup and Assumptions
1 = dielectric 2 = conductor
The ®-domain Helmholtz wave equation for A using the King gauge is given by (1.5.4),
(V2 +B1®)A= - paly BiP=0’m & &G =e-jor/w (G.1.1)
div A =jopi1&10 . // King gauge [ 1 = dielectric, 2 = wire ] (G.1.2)
We take a uniform prescribed current inside the wire ( assume low frequency),
J, = [/(ma?)] £ (G.1.3)
so the Helmholtz wave equation reads
(V2 + B1H)A) = - [Tna/(ma®)] 0 [xP+y? <a) 2
where V? is the vector Laplacian and where 6(B) = 1 if B is true, else 0.
In Cartesian components this says,

(V2 +B1*)Ax(x) = 0
(V2 +Br*)Ay(x) =0
(V2 + B1)Ax(X) = - [In/(na?)] 6\[x*+y” <a)
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where in these three equations V2 is the scalar Laplacian. We shall seek a solution in which both Ax and
Ay vanish. In this case one has,

AX)=A.(x) 2.

We assume a very low frequency o for which we know any longitudinal wave that might be going down
the wire has a very long wavelength. We then ignore z variations in A, to write

A(X) = Az(x,y) 2. (G.1.4)
In this case, one finds that VZAZ = V22D A and then the only equation of interest is this:

(V220 + B1%) Az(xy) =- [Ina/(ma?)] 00 x*+y* <a) . )/ V2ap=V? - 0, (G.1.5)
Now take w—0 to get

V220 Az(x.y) = - [ln2/(ma®)] 0(x*+y* < a”)

which is just a 2D Poisson equation with a constant source limited to a region of space. At this point we
are free to replace x,y with polar coordinates r,0, so we have for r in the range (0,),

V220 A(r,0) = - [Ipz/(na?)] 6(r<a) . // 6(r<a) = Heaviside 0(a-r). (G.1.6)
From B = curl A in cylindrical coordinates one finds that, since only A is non-vanishing,
B=curl A= [ 06Ay - 0;A0] + 0 [02Ar - 0rAL] + 2 [ 1 20x(tA) - 1 F6Ax |
= P [ 206AL] + 0 [ 0:A,] .

Since we expect the magnetic field lines to be entirely in the 0 direction, we are led to make the
assumption that 0gA, = 0 and then the problem is this,

V2,0 Ag(r) = - [Ipz/(ma?)] O(r<a) B=Be with Be = - 0;A, . (G.1.7)
If we can find a solution, then the ansatz assumptions that Ay = Ay =0 and B = Beﬁ are justified.
G.2 Direct solution for A,(r) from the differential equation

Using V25p in polar coordinates the ODE (G.1.7) reads

(1/1)0(r0zA (1)) = - [In2/(na®)] O(r<a)
or
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Or(t0:A (1)) = - [Ip2/(ma®)] r O(r<a)
or
rA"(r) + AZ(r) = - [Ipnz/(ma®)] r 0(r<a) . (G.2.1)

The two regional differential equations are then

rAZ"()+ AZ'(r) =0 r>a region 1 (dielectric)
rAL"(N) + A1) = - [lpo/(ma®)] r r<a region 2 (conductor) . (G.2.2)

The general-form solutions to these ODE's are,

Az(r)= Cln(r)+D r>a region 1
Az(r)= - [qu/(4na2)] ?+E In(r) + F r<a region 2 (G.2.3)

where there are 4 constants to be determined. For r>a the functions 1 and Inr are the well-known atomic
forms (harmonic elements) for the 2D Laplace equation for situations of azimuthal symmetry. The first
term in region 2 (G.2.3) is the particular solution of region 2 (G.2.2) to which we have added a possible
homogeneous solution E In(r) + F.

In order that A,(r) be finite at r = 0, one must set E = 0.

For very large r the round wire looks like a line source and we know the solution of that problem.
Using Ampere's Law that 2nrHg = I we find ( recall that Bg = - 0-Az)

He = [1/2w](1/1) = Be =1 [I2w](1/r) = Az=-[lw/2x]In(r)+D" . r>>a

Comparing this solution to our r>a round wire solution we conclude that D' =D and C = -[u;11/2@] . There
are still two unknown constants D and F :

Ag(r) = -[Ipa/2x] In(r) + D r>a region 1
Az(r)=- [Ipz/(4na2)] ?+F r<a region 2 . (G.2.4)

The potential A,(r) always has an additive constant which one is free to specify and which affects
nothing. We shall choose the zero point of A,(r) by setting D = 0 arbitrarily. This means that A,(r) has
the simple form K In(r) for r>a, and that choice implies that A(a) = - [In1/2x] In(a), so we have in effect
specified A,(r) on the wire surface to be this value. Notice for future reference that,

OrAz(r) = - [Ina/2m] (1/1) r>a region 1
OeA(r) = - [Ipa/(2ma®)] r r<a region 2 . (G.2.5)

Now, since our prescribed current J, does not specify a free surface current K, on the round wire surface,
which would have the form

_ free
Js ,surface — Kz S(a—r),

398



Appendix G: The DC vector potential of a round wire

we conclude that there is no free surface current on the round wire surface; there is only the bulk volume
current J, = I/(na2)9(r<a). Therefore the boundary condition (1.1.46) applies (though now in polar
coordinates) and we conclude that

(/p1) [(GzA) @] = (n2) [(0zAL)(@)]

In addition, we shall require that A, itself be continuous at the boundary, so here are our two boundary
conditions of interest (superscript 1 means region 1 which is r>a),

[Az(@)]" = [Ax(a)]®.
(1/p1) [((OxAL)@)]" = (1/12) [(BeA) @) . (G.2.6)

We now require that both these boundary conditions be met by the A, expressions of (G.2.4),

[Az(@)]' = [A(a)]? // (G.2.6) repeated
(/1) [@CeAD@]T" = (U/n2) [(0zAz)(@)])*
or
-[Iu1/27] In(a) =- [qu/(4na2)] a’?+F // insert expressions, setr=a
(1/pa){- [Ina/2n] (1/a)} = (1/u2){ - [Tnz/(2ma®)]a }
or
-[Iu1/27] In(a) = - [Iuo/(4m)] + F // simplify
1 =1

The second boundary condition is thus met automatically by our solution. The first says
F =[Iu2/(4m)] - [In1/2x] In(a) .

Finally all constants are determined, so the solution is,

Ag(r) = - [Ina/2x] In(r) r>a region 1
Aq(r) = - [luz/(4ma®)] r? + [Ipz/(4m)] - [lua/27] In(a) r<a region 2
or
Ag(r) = - [Ina/27] In(r) r>a region 1
Az(r)=- [Ipz/(47taz)] (rz—az) - [Ina/27] In(a) r<a region 2 . (G.2.7)

This then is the complete solution to the problem for the round wire,
V2,55 Ag(r) = - [I12/(na?)] O(r<a) B=Bed with Be = - 0;A, (G.1.7)
where the potential is "pinned" by the requirement that A, = K In(r) for r > a.

One may now compute the B field from the potential solution (G.2.7),
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Bo =-0:Az = [Ina/2w]0In(r) = [In1/2x](1/r) r>a regionl
Bo=-0.A, = [Ipz/(27taz)] r = [Ip2/2n](r/az) r<a region?2 .

(G.2.8)

Comment: Although only p, appears in the differential equation (G.1.7), once the equation is properly

solved with attention to boundary conditions, one finds that p; appears in Bg in region 1, while p, appears

in Bg in region 2! This is the main point of this Section G.2.
G.3 Instant solution for A using Ampere's Law, and computation of Jy,
For r > a Ampere's law (1.1.37) (converted to ® space with ® = 0) says 2nrHg = I so
Hg =1/(2mr) => Bo = p1l/(27r) [ 1 = dielectric ]
r>a region 1
=> - 0pA, = p1l/(2mr) = Az =-[p1l/2n)] In(r) + D .

For r <a Ampere's law says 2nrHg = I(nrz/naz) [ the "current enclosed" |

> Be = [Ip2/2n](r/az) [ 2 =wire |
r<a region 2

He = I(r?/a®)1/(2nr) = I r/(2ma®)

=> - 0:A; = [lu/2n](t/a®) => A,=- [luz/4n](t?/a®)+E .

(G.3.1)

(G.3.2)

We then set D = 0 to get A, = K In(r) for r > 0, as done previously, and then we must match atr=a :

- [ll/2m)] In(a) = - [Iuz/4n]+E =>  E= [Ipz/4n] - [u1l/(2m)] In(a)

so the potential solution is then,

Aq(r) = - [111/(2m)] In(r) r>a

Ag(r) = - [Ipz/Am)(r?/a®) + { [Inz/4n] - [pal/2m)] In(a) }  r<a
or

Ax(r) = - [11/(2m)] In(r) r>a

Ag(r)=- [qu/47taz]r2 + [Iug/4m] - [u1l/(2m)] In(a) r<a
or

Aq(r) = - [11/(2m)] In(r) r>a

Ay(r) = - [Ipz/dna®](r®-a®) - [nil/(2m)] In(a) <a

This result agrees with result (G.2.7) of the previous section.

(G.3.3)
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The Magnetization Current

It was mentioned in Section G.2 that there is no free surface current Kzfree at the wire surface. There is
in fact a bound magnetization current on this surface and inside the wire as well. Luckily, our Helmholtz
equation only "sees" conduction currents so we don't have to worry about the magnetization currents. The
magnetization current density is given by Jy = curl M where M = [p/po- 1] H as shown in (1.1.20-23).

Here then is the calculation of Jy, :
Me' = [ pa/po - 11He" = [ pa/o - 1] (1/27r) r>a
Me? = [ H2/pto - 11He® = [ p2/po - 1] (Ir/2ma’) r<a
or

Mpg(r) = [ pa/po - 1] (I727r) B(r>a) + [ po/po - 1] (Ir/27ta2)6(r<a) /1 B(r>a) = 0(r-a)

0etMg = -[p1/po - 1] (I/2nr2) 0(r>a) + [ pa/po - 1] (I/2mr) 6(r-a)
+ [ p2/to - 1] (I2ma?) 0(r<a) + [ pz/po - 1] (Ir/2ma’) )[ -3(r-a)]

=- [ pa/po - 17 (I22mr?) O(r>a) + [ pa/po - 1] (112ma®)0(r<a) + [ pa/po - pa/po] (I/2ma) 8(r-a)
Jmz = [curl M], =110, {tMg} =1"*[ Mg +10:Mp]= 1 *Mg + :Me

= na/po - 11 (12nr%) B(r>a) + [ pa/po - 1] (I/21a?)0(r<a)
- [ ma/po - 1] (1727r®) 6(>a) + [ pa/po - 1] (2ma®)0(r<a) + [ pa/po - pa/vio] (I/27a) 3(r-a)

= [ p2/po - 1] (I/Traz)e(r<a) + [ pa/wo - H2/po] (I/2mar) o(r-a) . (G.3.4)
constant inside wire surface current

It is the discontinuity of Mg(r) at the wire surface r = a which creates the surface current term in Jp;.
The simplest possible case to consider is the boundary at x = 0 between two half spaces of p; and pp
assuming there exists a uniform constant Hy, field everywhere. In this case, one would have

Myl(x) = [ pa/po - 1] Hy 0(x) // Hy is continuous at the boundary by (1.1.42)
My?(x) = [ pa/ito - 1] Hy 0(-x) (G.3.5)

O0xMy(x) = [ pa/po - p2/po] Hy 8(x)
Jnz = [curl M]z = 0xMy = [ pa/po - p2/po] Hy 8(x) . (G.3.6)

so here there is only a surface magnetization current and no bulk magnetization current on either side.
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G.4 Solution for A, using the 2D Helmholtz Integral

This method of finding A; is technically more difficult than the first two methods shown in Section G.2
(solving the ODE and adding a homogeneous solution to meet the boundary conditions) and Section G.3
(instant Ampere's Law solution). The method is important because our entire Chapter 4 is based on using
Helmholtz integrals to develop the theory of transmission lines, and this is one Helmholtz integral that we
can actually compute without too much effort. An important result we find is that, when pi#u2, the
Helmholtz integral by itself does not supply the complete solution, and one must add in some amount of
homogeneous solution of V?2p A4(r) = 0 to meet the required boundary conditions at r=a.

We really have a Laplace integral since B12 = 0, but the full Helmholtz integral works the same way
so we keep referring to it as a Helmholtz integral.

Recall from above:

V250 Ag(r) = - [In2/(ma?)] 0(r<a) B=Boh with B = - 0:A, . (G.1.7)
Using the 2D free-space Green's function (propagator) as reviewed in Appendix I equation (I.1.6),

g(x[x") = (1/27) In(1/R) = - (1/4m) In(R?) R=R=[xx' , (G4.1)

we may write the particular solution to (G.1.7) as the following "Helmholtz integral" [see (I.1.8)]

A = [dS [(1/47) In(R?) ] [Ipe/(na?)] 6(r<a)

foa r' dr' f_: do' [(1/4x) In(r?+ r'2- 2rr'cos(0-0")] [Inz/(na?)]

(1/4m) [Inz/(na®)] | : rdr[ 7 de In?+ r?- 2rr'cos(9-0)) ]

IJZI a \ \ \

=7z | , U dr2Qun ] (G.4.2)
where
- n 2, 42 T 2, 42
Q(',r) =(1/2) f do' In(r*+ r'"*- 2rr'cos(0-0")) = (1/2) f do" In(r*+ r'“- 2rr'cos(0"))
- -t
_ n 2, .2 '
= IO dx In(r*+ r'“- 2rr'cosx) . (G.4.3)

But we have already computed this A,*(r) in Appendix B where it was called A, ‘®(,0), see (B.7.3) and
(B.7.4). We may therefore borrow the solution (B.7.7) to obtain the results,
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Af(<a) =57 {(a®*1?)/2-a%lna} . (G.4.4)

The derivatives are

pal
arAzH(r>a) = - 2_7121'
I

0xA(<a) = 5oz T . (G.4.5)

Recall the two boundary conditions,

[Az(a)]* = [Aq(2)].
(1/p1) [(GxA)@]" = (1/12) [(B=A) (@) . (G.2.6)

For our particular Helmholtz integral A,"(r) we evaluate these boundary conditions to find

pol pol

o Ina =l { (az-a)/2 -a’lna }
Vi) [- 225 )= ()22,
() [- 5o 1= (Vo) 52 a]

or
1=1
(H2/pa) = 1. (G.4.6)

Thus, only in the case pu; = pp does the Helmholtz particular solution meet both boundary conditions. If
U1 # Mz, we must add to the particular solution some amount of homogeneous solution of VZ2p Ag(r,0) =
0. So we then write generally,

Az(1) = A1) + A1) (G.4.7)

where we know that A,"°™°(r) can only have terms o + B In r. We then write for the two regions

I
Ag(r) = -% In(r) + o+ pInr r>a
I
A(r) :ZMTzaZ {(@%r%)/2-a%lna} +a'+pB Inr r<a . (G.4.8)

As earlier, we choose the zero point for A,(r) by requiring that the large r behavior be K In(r) without a
constant added, which then means o = 0. And for r<a we must have ' = 0 to be finite at r = 0. So
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Ag(r) = In(r) +pB Inr

bl

“2n

pal 2 2 2 '
Ax(r) =ma? {(@°-r°)/2-alna} +a

1
GeAa(r) =[5 -B1 (1)

I
0rAL) =27 (20)

The boundary conditions are then

[Az(2)]" = [Az(2)]?

(/1) [(-8:A2)@]" = (1/p2) [(-0:Az)()]?

or

le

ln(a) +plna = { (a2-a?)/2 - azlna} +a'

(1/p2) [Z—f -B)(1/a) = (wz)%z (22)
or
[- Iuo/(2m) + Bl Ina = - Ipy/(2m) Ina + o
(1/po)[ In2/(2m) - B(1/a) = 1/(2ma)
or
Blna = a'
Iu2/(2m) - B = pal/(2m)

so we find that

P =1/(2m) (n2-p1)
o' =1/(27m) (u2-p1) Ina .

The full solution is then

Aq(r) = [- Ing/(2m) + B] Inr

Ag(r) =-Ipo/(ma®) { (1/4) (2-a®) + (1/2) a®lna } +a'

or
A(r) = [- Ing/2m) + {1/(2m) (pa-pa)}] Inr

r=a

r<a (G4.9)

r>a

r<a . (G.4.10)

(G.2.6)

// simplify

// simplify some more

(G.4.11)

r>a
r<a

r>a

Aq(r) = - Iug/(ma®) { (1/4) (%-a?) + (1/2) a%lna } + { U/(2n) ( pz-pz) Ina } r<a

or
A(r) = V2m) [- pz + (pz-po)] Inr

r>a

Aq(r) = - Iug/(na®) (1/4) (12-a?) - Ipa/(ma®) (1/2) a®Ina + 1/(2m) ( pz-p1) Ina r<a

or
Ag(r) =- [Ip1/2x] Inr
A(r) = - [Ipz/(4na®)] (r?-a?) - [Iu1/27] Ina

r>a
r<a . (G4.12)
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This result matches the results (G.2.7) and (G.3.3) of the previous two methods and then gives the usual B
field solution,

Bo =-0:Az = [Ina/2w]0In(r) = [Ip1/2x](1/r) r>a regionl
Bo=-0:Az = [qu/(27ta2)] r = [Iu2/2n](r/a2) r<a region2 . (G.2.8)

G.5 Comments on the low frequency solution for A,

In Chapter 2 we compute the E and B fields inside a round wire operating at frequency . The results are
rather complicated and involve Bessel functions (of unusual argument phase) whose real and imaginary
parts are called Kelvin functions. The vector potential was not used in that Chapter. Here we consider
computing A, using the true Helmholtz integral rather than its Laplace approximation, and see how the
derived results might compare with the Chapter 2 results.

Comments:

1. For sufficiently low frequencies (the transmission line limit) we imagine that the ansatz assumptions
made in Section G.1 are still pretty good. The current distribution will be nearly uniform. There will
likely be some small Ay and Ay fields which can be ignored, and we still assume roughly that B = Beé
with Bg = - 0:A;, and that we can ignore the z-dependence of A, though we know it must vary some

small amount in order to have a long-A wave passing down the wire. Therefore, our problem is basically
(G.1.5) for small 12,

(V220 + B12) A(r) = - [Ipz/(na?)] O(r<a) B=Be with B = - 0,A, . (G.5.1)

2. Since VZ5p = (1/r)0(r0¢), one could write out the above differential equation and repeat the work of
section G.2 above. The resulting B field obtained from Bg = - 0rA, should then agree with the low
frequency limit of (2.2.25) which applies inside the round wire,

J
Bol®) = Bo(0) (00 (2.2.25)

That low-frequency limit is

r- Blzr3/8 s 2
Be(r) = Be(a)a_—Blzm B1=on & . (G.5.2)

Certainly as @ — 0 (so B1— 0) the result Be(r) = Bg(a)(1/a) agrees with (G.2.8).

3. The 2D free-space Helmholtz propagator is shown in (I.1.7) to be

g(xx") = (j/4) Ho ‘" (B1R) R=R = [xx|
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where Ho ™ is a Hankel function. Thus, we may write the particular solution to (G.5.1) as the following
Helmbholtz integral [ see (1.1.9) |,

AR = [ dS [(/4) Ho ™ (kR) ] [Ino/(na?)] O(r<a) R =R=[x-x]|

= [Inz/(ma?)] G/4) [ 0“ rdr [ _" d6' Ho® (B1n/rP+ 1% 2rr'cos(6-0) ) . (G.5.3)

The d6' integral is actually doable with this result (making use of GR7 p 726 6.684 1 and 2)

J ™ 0 Ho ™ (Ban %+ 12- 21r'cos(0-0) )
-

= (1/2) { w Jo(B1r) Ho ™ (Bar)O(r">r) + m Jo(Par) Ho M (Bir)O(r'<r) } . (G.5.4)
The two dr' integrals can then be done (using GR7 p 629-630 Section 5.5) with the final result

A1) = [Ipa/(ma®)](j/4)2n (1/B1) *

rJi(fir) r<a
Jo(Bar) 0(a>r) [a H1 ™ (Bra) - r H ™ (Bar) 1+ Ho® (Bar) { al(r) a o (639
We leave it to the reader to determine the small 1 limit of this result and see if the resulting Bg = - 0:A,

agrees with (G.5.2) after homogeneous solutions are added to match boundary conditions. Remember that
we only expect this result to be meaningful for low ® since we have assumed the uniform current
distribution of (G.1.3).

If one makes the small-argument approximation Ho M (x) = (2j/m)In(x) directly in (G.5.3), the integral
replicates the Laplace result (G.4.2), so more expansion terms would be needed for this approach.

Reader Exercise: For general o, one can use the 3D PDE (V?+B12)A(x) = - [Ipz/(ma?)] 6(\/ X2+y2 <a)
in place of the 2D PDE (G.1.5). Assume ¢~ 7** for the z dependence and use (H.1.9) to show that,

Ag(x) = [ 3 [e7IP1R /4R ] [Ina/(na2)] O(x Ty 2 <a)] e I*=' R=|x-X]
= pa/ma®] ["dor [“dz [ oa ¢ dr' [e"IPIR /47R] ¢ I%=' (G.5.6)
- -00
where
RZ2=¢%+ (z—z’)2 s= \/ P 2rr'cos(0-0") .

Complete this calculation and try to obtain a closed form result for A,(x). The problem is difficult to set
up in the real world since J, is non-uniform in a real wire at ® > 0 (see Chapter 2), but one could imagine
constructing a special round wire from insulated thin filaments in order to create a uniform J, = I/(ma®) .
See Section 1.5 (e).
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Appendix H: Laplace and Helmholtz Propagators in 3D

Note: Appendix I deals with these propagators in 2D rather than 3D.

H.1 Overview and Meaning of Free-Space Propagators

This appendix proves the following Facts:

Fact1: -V?[1/47r] = &(r) (H.2.1) (H.1.1)
Fact 2 : -V2[h(r)/r] = 4m h(0) &(r) - h"(r)/r (H.3.1) (H.12)
Fact 3 : - (V24K?) (e77*%/4nr) = 5(r) (H.3.5) (H.1.3)

Throughout, V2 is the usual 3D Laplacian operator V2 = 9,2 + 8Y2 + 0,2 In the first and last results
above, if one replaces r — r-r' (a simple translational shift of origin) ones finds

-V?[1/47R] = (r-r") R=|r-r| (H.1.4)
- (V2HKP) [ *®/4nR] = §(r-1") 3(r-r') = 5(x-x") 8(y-y") 8(z-z') . (H.1.5)

The quantities in brackets are known as free-space Green's Functions (Green Functions) or propagators,
or as "fundamental solutions":

1/4nR = the Laplace 3D free-space propagator (H.1.6)
¢ I*®/47R = the Helmholtz 3D free-space propagator . (H.1.7)

The last item above is the w-domain 3D Helmholtz propagator, where K? = (nzus. See (A.7.4) for a
discussion of the time domain version of this propagator which is the 3D wave equation propagator.

The significance of these propagators is the following:

-v? f(x) = s(x) > fi(x) = fd3x' [1/4nR] s(x') + homogeneous solutions

The Poisson Equation (H.1.8)
- (V3KP) f(x) = s(x) => f(x) = fd3x' [e"3*®/4nR] s(x") + homogeneous solutions
The Helmholtz Equation (H.1.9)

The equations on the left are inhomogeneous partial differential equations driven by source function s(x).
If one is careful to include in s(x) all source contributions (such as those on boundary surfaces), one
generally does not have to add any homogeneous solutions on the right. A homogeneous solution refers to
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-V fu(x) = 0, for example. The solutions shown on the right above can be instantly verified as follows:

fix) = J d3x' [1/47R] s(x') + fn(x)

V2 f(x) = [ d3x (-V2 [1/47R] ) s(x') -V2 fa(x) = | d3x' 8(r-r") s(x') - 0 = s(x) (H.1.10)

and similarly for - (V2+K?) f= g.
A "free space" Green's Function gg in general is a solution of

Ly gr(r, r') = o(r-r"), gr(r,r') > 0asr — o (H.1.11)

where L, is some differential operator. The condition on the right says gg must vanish on the Great
Sphere. More generally one can define a full Green's function by,

Ly g(r, r'")= 6(r-r'), g(r, r') =0 for r on some closed surface
enclosing a region of interest (H.1.12)

This non-free-space Green's function is briefly discussed in the text surrounding (1.5.11). George Green
(1793-1841), by the way, was an English grain miller (his day job).

Looking at f(x) = fd3x' [1/4nR] s(x') = f gr(x,X'") [s(x") d3x'], one can say that the kernel Green's

Function gg(x,x") "propagates" a tiny piece of "source" [s(x")d3x'] from location x' to location x so that the
solution f(x) is then a sum of all such propagated contributions as the source ranges over the entire
volume of interest, which for us is all 3D space where the source is non-vanishing. See Fig 1.6.

H.2 Derivation of Fact 1: -V2[1/r] = 4md(r) (H.2.1)
Proof: Let volume V be all of 3D space. Carve out from V a small spherical cavity of radius a centered at

r = 0. If we call this spherical volume V, and then V' =V - V; is the original volume with the spherical
cavity carved out:

Vl

Fig H.1

In order to show that some function g(r) = 6(r), one has to show that
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limao J v+ dV g(r)=0 (H.2.22)
limao Jva dV gr) =1 . (H.2.2b)
This is basically the definition of 5(r). Since d(r) has units L3, g(r) = g(r) has units L3,
Our candidate function of interest is
g(r) = - (1/4m) V3[1/1]. (H.2.3)

Using V2 in spherical coordinates acting on a function of r, one finds that, since dz(1) = 0,

V2[1/r] = (1/1*)0:(r%0;) [1/4] =0 r>0 (H.2.4)
so that
g(r) = - (1/4m) V2[1/r] = 0 r>0 . (H.2.5)

Thus, condition (H.2.2a) is trivially satisfied since r > 0 everywhere in volume V'.

It remains to verify condition (H.2.2b). Consider the integral appearing on the left side of (H.2.2b)

fVa dV g(r) =- (1/4m) fVa dv V2[1] = - (1/4n) JlVa dVVeV[ln] . (H.2.6)
The divergence theorem (1.1.30) says,

[vdvdivF=[sdseF (H2.7)

where V is any closed volume whose surface is S, and dS points out. Using
V=V, and F=V[li]=0o(1/r) = 12 ¢

we find that

LHS (H2.7) = Jva dV div V[1/1] = [va dV V2[1/1] = [ va dV [-4ng()] = -4n [ va dV @)
RHS (H2.7) = [sdS e V[1/]= [dQ[a2 #]e V[1r]F=2 = [ dQ[a? $]e [-a~2$] = -4

which tells us that IVa dV g(r) = 1 for any a. Thus,
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lima 0 f va dV g =1

and we have then verified (H.2.2b). Therefore we conclude that the candidate g(r) of (H.2.3) is in fact the
same as d(r) so

- (1/4m)V?[1/r] = 8(r) (H.2.8)
or

V2[1/r] = - 4nd(r) (H.2.9)
which is (H.2.1). QED
H.3 Derivation of Fact 2: Vz[h(r)/r] =-4n h(0) o(r) +h"(r)/r (H.3.1)

Proof: Start with this vector identity,
Vi(oy) = V2y + yVZ +2 Vg e Vy . (H.3.2)
This identity is valid in any number of dimensions (implied sum on i from 1 to N),
0:%(oy)= 03[ (B10)w + W(:9)] = (B:%Q)y + (8:9) (02y) + (@3 °y) + (810) (Bzy) -
So apply (H.3.2) to the case 9 =h and y =17,
VZhr Y =hv2@ ) +1r'v?h +2 Vhe V(1)
=-h4nd(r)+rV?h+2[h' £ e(-r'®)#]  // using (H.2.9)
=- 47 h(0) 8(r) +r*V?h - 2172 h'(r) . (H.3.3)
Algebra shows that, using spherical coordinates,
VZh= (1/r*)0:(r?0:)h(r) = h"(r) + (2/r)h'(r) (H.3.4)
so then
V2(h 1) =-47h(0) 8(r) +1r 1 [h"(@) + 2/D)h'(r) -2 2 h'(r)
=-4mh(0) 8(r) +h"(@)/

which is the claim of (H.3.1). QED
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Fact 3: - (V2+K?) (73 /4nr) = §(r) (H.3.5)
This Fact is just an application of Fact 2 to the case h(r) = ¢” 3% :

h=e™3%* h(0) =1 h'=-jk e™3** h" = -k? e73**

V2[h(r)/r] = -4 h(0) 8(r) +h"(r)/r (H.3.1)
SO

V(e /) =-4n18(r) +[-k2e ¥ ]/

= -473(r) - k%(e7I*/r)

Thus,

( VZ+k?) (e73%%/r) = - 4nd(r)
or

- (V3P (e7 3% /4nr) = §(r)
as claimed.
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Appendix I: Laplace and Helmholtz Propagators in 2D

Note: Appendix H deals with these propagators in 3D rather than 2D. Sections 1.1 and 1.2 below are
basically "cut, paste and edit" versions of Sections H.1 and H.2, and we have made equation numbers
match. However, Section 1.3 is something new since it involves a "special function".

I.1 Overview and Meaning of Free-Space Propagators

This appendix proves two Facts: (Ho ‘*’ is a Hankel function )
Fact1: -V2[In(1/r)2n] = &(r) (1.2.1) (L1.1)
Fact 2 : - (V2+K?) [(j/4) Ho ) (kr)] = 8(r) . (1.3.1) (I1.1.2)
Throughout this Appendix, v? is the usual 2D Laplacian operator,
VZ=0,2 + 8,2 and 8(r) = 8(x) 3(y) . (1.1.3)
In the two Facts above, if one replaces r — r-r' (a simple translational shift of origin) ones finds
-VZ[In(1/R)/2x] = 8(r-r") R=|r-r| (1.1.4)
- (V3+K®) [(5/4) Ho M) (KR)] = 8(r-1") 3(r-r") = §(x-x') 8(y-y") . (I.1.5)

The quantities in brackets are known as free-space Green's Functions (Green Functions) or propagators,
or as "fundamental solutions" :

1
n In(1/R) = the Laplace 2D free-space propagator = - In(R)/2n (I1.1.6)

(j/4) Ho 1) (kR) = the Helmholtz 2D free-space propagator . (L.1.7)

The last item above is the w-domain 2D Helmholtz propagator, where k* = w?ue. See (A.7.7) for a
discussion of the time domain version of this propagator which is the 2D wave equation propagator.

The significance of these propagators is the following:

-VZ f(x) = s(x) => fix) = fdzx' [In(1/R)/2w] s(x') + homogeneous solutions
The Poisson Equation (I.1.8)

- (V2+k2) f(x) = s(x) > f(x) = fdzx’ [(G/4) Ho M (kR)] s(x') + homogeneous solutions
The Helmholtz Equation (I1.1.9)
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The equations on the left are inhomogeneous partial differential equations driven by source function s(x).
If one is careful to include in s(x) all source contributions (such as those on boundary curves), one
generally does not have to add any homogeneous solutions on the right. A homogeneous solution refers to
-V fu(x) = 0, for example. The solutions shown on the right above can be instantly verified as follows:

fx) = [ d?x' [In(1/R)2x] s(x') + fn(x)

V2 f(x) = | d®x' (-V2 [In(1/R)21] ) s(x') -V2 fu(x) = J d3x §(r-r") s(x) - 0 = 5(x) (I.1.10)

and similarly for - (V2+K?) f= g.
A "free space" Green's Function gg in general is a solution of

D gg(r, r') = &(r-r'), gr(r,r') > 0asr — o (I.1.11)

where D is some differential operator. The condition on the right says gr must vanish on the Great Circle.
More generally one can define a full Green's function by,

D g(r, r') = o(r-r"), g(r, r') =0 for r on some closed curve
enclosing a region of interest (I1.1.12)

This non-free-space Green's function is briefly discussed in the text surrounding (1.5.11).

Looking at f(x) = fdzx' [In(1/R)/2w] s(x') = f gr(x,x") [s(x') dzx'], one can say that the kernel Green's

Function gg(x,x') "propagates" a tiny piece of "source" [s(x)d?x'] from location X' to location x so that the
solution f(x) is then a sum of all such propagated contributions as the source ranges over the entire area of
interest, which for us is all 2D space where the source is non-vanishing.

1.2 Derivation of Fact 1: Vz[ln( 1/r)] =-2nd(r) (1.2.1)

Proof: Let area A be all of 2D space. Cut out from A a small circular hole of radius a centered at r = 0. If
we call this circular area A, and then A' = A - A, is the original area with the circular hole cut out:

Al

Fig L1

In order to show that some function g(r) = (r), one has to show that
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limao J a+dA g(r) =0 (1.2.2a)

lima o [ a,dA g(r)=1. (1.2.2b)
This is basically the definition of 5(r). Since d(r) has units L2, g(r) has units L2
Comment: When any differential operator like V or v2is applied to In(ro/r), the result is independent of
ro so we can always take ro = 1. For example, Ox [In(ro/r)] = Ox [ Inrg + In(1/r)] = Ox In(1/r). In what
follows, In(r) and In(1/r) are always acted upon by differential operators, so we can interpret these objects
as dimensionless quantities In(r/rg) and In(ro/r) for any ro. Then it is clear below that dim [g(r)] = L2
Our candidate function of interest is

g(r)= - (1/2m) V?[In(1/r)] =+(172n) V*[In(r)] . (1.2.3)

Using vZ in polar (cylindrical without the z) coordinates acting on a function of r, one finds that, since
0-(1)=0,

V2[In(r)] = (1/1)0x(rdy) [In(r)] =0 r>0 (1.2.4)
so that
g(r) = - (1/27) V?[In(1/r)] = 0 r>0 . (1.2.5)

Thus, condition (I.2.2a) is trivially satisfied since r> 0 everywhere in area A' for any a > 0.

It remains to verify condition (I.2.2b). Consider the integral appearing in the left side of (1.2.2b)

J 2 dA gr) =- (1/4m) [ o, dA V(1] = - (1/4m) [a,dAV e V[14] . (1.2.6)
The divergence theorem (1.1.30) says, in 2D,

[adadivE=§cdseF 1.2.7)

where A is any closed area whose bounding curve is C, and where ds = ds fi where fi is normal to C at
any given point on C. Notice that this closed area is necessarily planar since everything is 2D here. Using

A=A, =disk of radiusa and F = V[In(1/r)] = 0(In(1/r)) = - to(Inr) = [ ¢

we find that
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LHS (1.2.7) = | a,dA div V[In(1/)] = | ,dA V*[In(1/)] = J a_dA [-2ng(r)] = 27 [ a,dA dA g(r)

RHS (12.7) = [cds e V[ In(1/r)] = J [ad0 #] e V[ In(1/r)]=2 = [ d6 [a #]e [-a 28] = -2x

which tells us that f aa dA g(r) =1 for any a. Thus,

limao | aa dA g(r)=1

and we have then verified (I.2.2b). Therefore we conclude that the candidate g(r) of (I.2.3) is in fact the

same as o(r) so
- (12m)V3[In(1/r)] = 8(r)
or

V2[In(1/r)] = - 2md(r)

which is (1.2.1).

(1.2.8)
(1.2.9)

QED

1.3 Derivation of Fact 2: - (V33 [(j/4) Ho M (kr)] = (1)

We seek the solution E(r) of this equation

- (V3® ) E(r) = 8(r) where E(r—o0) =0
which we write as

V2E+Kk2E =- §(r).
In polar coordinates this says

1 20.(t0:E) + K’E = - §(r)
or
E"+1'E'+k%E = - §(r)
or
2 ' 212 _
r“E"(r) + rE'(r) + r°k“E(r) = - 6(r) .

Writing E(r) = F(kr) we get

r?k?F"(kr) + rk F'(kr) + r2k?F(kr) = - 8(r)
or

(rk)2F"(kr) + (k) F'(kr) +(rk)*F(kr) = - 3(r)
or

7°F"(2) + 2 F'(z) + 2°F(z) = - &(r) where z=kr .

(1.3.1)

(13.2)

(1.3.3)

(L3.4)
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Away from r = z = 0, this is Bessel's equation of index 0 (NIST 10.2.1) so solutions are Bessel functions
like these,

F(2) = Jo(2), Yo(z), Ho ™ (z), Ho ® (2). z=kr (1.3.5)
which are Bessel functions of the first, second and third kind. The third kind functions (the H's) are called
Hankel Functions. If we assume that k has a tiny positive imaginary part (see Comments later), then of all

the functions just listed, only Ho*(kr) has decaying behavior for large r (NIST 10.2.5, more on this
below). We therefore put forward the following candidate for a delta function

g(r)=- (V?+k?)C Ho M (kr) . (1.3.6)

Recall from Section 1.2 that a successful 3(r) candidate must satisfy these two conditions (same as in the
previous section, and same figure),

limao | a-dA g(r) =0 (1.2.2a)

lima o [ a,dA g(r) =1 (1.2.2b)
Al

Fig 1.1

Our candidate g(r) vanishes within any region A' no matter how small the hole because g(r) = 0 for any
r > 0, so the first condition is already met. It remains only to show that the second condition is also met.
We must then show that

limao | a, dA {- (VAHK®) CHo M (kr)} =1. (1.3.7)

Since A, is a very small disk as we approach the limit, we may use the small argument behavior of our
candidate g(r) in studying the situation. We know that

Ho M (kr) = (2j/m) In(kr) // NIST 10.7.2 (1.3.8)

so what we need to show is that
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lima .o [ a,dA {- (V2+K?) C 2j/m) In(ke)} = 1

or
- C (2j/m) lima_yo J a dA { (VP+K3) In(kr)} =1
or
. . a 2,12
- C (2j/m)2m lima—o fo rdr{ (V°+k®) In(kr)} =1 /l fd@ =2n
or
e a 2,12
C (4/j) lima_9 fo rdr{ (V°+k®) In(kr)} =1 . (1.3.9)

Now consider :
lima o [ foa rdr In(kr)] = lima_yg [(1/4)a®{2In(ka)-1}] =0. (1.3.10)
Thus, the k? In(kr) term in (1.3.9) makes no contribution in the limit, so we then have to show that
o qe a 2
C (4/j) limao fo rdr V2 [Intkr)] =1 . (13.11)

But (1.2.9) says that

V2[In(r)] = 2m8(r) . (1.2.9)
Now

3(r) = 8(x)3(y) = 8(r)/2mr (13.12)
since

1= [ [dxdy 808(y) = [rdr [ do s(ry2mr = 21 [ vdr s(ry2mr = [dromy =1 .

Therefore

V2[In(r)] =8(r)/r (1.3.13)
and then

V?[In(kr)] = V3[In(k) + In(r)] = V?[In(r)] = 8(r)/r . (1.3.14)

Inserting this last result into (1.3.11) then gives,
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N a 2
C (4/j) limao fo rdr V2 [ Inkr)] = 1
a
C (4/j) lima_o fo rdr 3(r)r = 1

o q- a
C (4/j) limaso fo dra@) =1

C (4/j) limaso 1 =1
C @) =1.

Thus, we have a solution if we select constant C = (j/4). Therefore, the solution to (1.3.2) is

E(r) = C Ho ™ (kr) = (j/4) Ho " (kr) . (L3.15)

Stakgold Vol II page 55 (5.120) confirms this result where \/i =k.
Therefore we have shown that

- (V3K?) [(/4) Ho P (kr)] = 8(r) (13.16)
which is the Fact stated as (1.3.1). QED

On page 54 Stakgold gives the solution to - (V2+k2 ) E(r) = 8(r) for n >2 dimensions as (5.118):

. 1 (n—2)/2 -
E(r; 1) =El (%:) HOy_ /2, n=2.  (5.118)

Comments:

1. Complex Helmholtz Parameter and H, (7). Stakgold considers the Helmholtz parameter to be A
which is our k%. He regards A as a complex variable which can lie anywhere in the complex A plane. If we
consider the function k(A) = A2 we find that it has a branch point at A = 0. If we take the branch cut to
the right, then one of the two Riemann sheets in A-space for this function maps to the upper half k-plane
as shown. This is the branch of A*/2 that Stakgold selects and that is why we think of k and therefore k?

as having a tiny positive imaginary part when k is "real". The point is that we approach the positive real k
axis from above, not from below. It is this assumption that causes the large-r-decaying solution to our
problem to be Hg () (kr) instead of Ho (2) (kr) .

k(x) = M2 IL

AT
]/

Fig1.2
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As shown on NIST p 229 10.17.5,6, expansions of the Hankel functions for large argument are,

Hy, M (2) = \[2/n 272 =20/ 3 0 F () ag(v) 27
H, ¥ (z) = \/2/7: 7712 g i(z-va/2-n/4) 5 ()" ax(v) z7*

where ax(v) are some real coefficients shown in 10.17.1 which we don't care about right now. The
differences are highlighted in red. Here one sees that Hy (*)(z) ~ e%3% = ¢7™™2 ¢3®eZ Thys H, M (kr) ~

-rImk eerek

e and as long as k is in the upper half plane as shown in the right, Hy, ‘*)(kr) decays

exponentially (whereas H,, ‘?? (kr) blows up).

2. Helmholtz morphs into Laplace. We have shown that

- (V24HK3) [(§/4) Ho P (kn)] = 8(r) . (1.3.16)
In the limit that k << 1, it was shown above that

Ho M (kr) = (2j/x) In(kr) // A&S 10.7.2 (1.3.8)
In this limit we then have

- (V2+K?) [(j/4)) 2j/m) In(kr) ] = 8(r)
or

- (V3 [(1/2m) In(kr) ] = 8(r)

and this is in agreement with the Laplace result (I.1.1). So as the Helmholtz equation morphs into the
Laplace equation as k — 0, the Helmholtz propagator morphs into the Laplace propagator.
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Appendix J: The 3D—2D Propagator Transition
Infinitely long transmission lines are -- in the transmission line limit of long wavelength -- basically 2D
objects rather than 3D objects. We see that fact appearing in various Chapters and Appendices of this
document. Here we wish to focus on this single fact.

Case 1

In Chapter 1 we presented the natural 3D view of transmission lines with equations like the following
taken from (1.5.3), (1.5.4) and (1.5.23), where we used the King gauge,

-3BgR
1 e’
(V24 BDo=-(l/e) Zips < o(x,0) = Anta Zi J. pei(X,0) —x—dV'

-JBaR
1 €
(VZ4BadA= -Zuldi & AXo)=- ZifuiJi(x',co) R dv'. d.1)

The Helmholtz integrals on the right are particular solutions of the PDEs on the left. The equations on the
right are derived from those on the left as shown in Appendix H where we had the more generic statement
that

- (V2+k2) f(x) = s(x) => f(x) = fd3x' [e”I*R/47R] s(x") + homogeneous solutions

The 3D Helmbholtz Equation particular solution (H.1.9)

The object [e 3*®/4nR] is the 3D free-space Helmholtz propagator as discussed in Appendix H.

If it happens that f(x) = f(x,y) in this last equation, then d,°f = 0 and we find ourselves looking at a 2D
Helmholtz equation which has a completely different-looking particular solution, where V2= V2D2 + 622,

- (V2D2+k2) f(x) = s(x) => f(x) = fdzx' [(5/4) Ho (1) (kR)] s(x') + homogeneous solutions
The 2D Helmholtz Equation particular solution (1.1.9)

This is the most abrupt and simple way the transition from 3D to 2D can occur.

If k is small, meaning the corresponding wavelength A = 2w/k is large, one can take the small k limit of
the above two particular integrals. The limit of [e”3*®/4nR] is completely obvious,

[e"3*R/47R] — [1/47R] J.2)
whereas the limit of the 2D propagator [(j/4) Ho (1) (kR)] is less obvious:
Ho ) (kr) = (2j/n) In(kr) // NIST 10.7.2 (1.3.8)

so that
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[(i/4) Ho Y (kR)] = - (1/2n) In(kR) = [- (1/27) In(R)] - (1/27) In(K) . (1.3)
Momentarily ignoring the inconvenient constant - (1/2w) In(k), one can say that

2D Helmholtz propagator = [ﬁ Ho M (kR)] — [-ﬁ In(R)] = [-ﬁ In(R?)] = [ﬁ In(1/R)] . (J.4)

The objects on the right of (J.2) and (J.4) and are in fact the 2D Laplace propagators which belong to this
pair of PDE's and their particular solutions,

-V2 f(x) = s(x) > fx)= [ d3¢ [1/4nR] s(x') + homogeneous solutions

The 3D Poisson Equation particular solution (H.1.8)

> f(x) = fdzx' [In(1/R)/2w] s(x') + homogeneous solutions
The 2D Poisson Equation particular solution (1.1.8)

'V202 f(x) = s(x)

Since in our applications f(x) is always a potential like ¢ or A , and since

B=curl A =-grad ¢ - OtA (1.3.1)
we see that a constant like - (1/2m) In(k) added to a potential has no effect on the physical fields E and B,
so we can just ignore such constants. Another way to say this is that the zero level of a potential is always
arbitrary so additive constants are meaningless. In Chapter 4 we are only really concerned with the

potential difference V(z) or W(z) between conductors.

We can now examine some of the 3D/2D "transitions" that occurred in other parts of the document.
Case 2

In Section 4.4 we had

V(z) = @12(X1) - p12(X2)

1 ” ! ! ! ' ! L ' ' ' ' L
:4n§d q(z) f_oo dz'{ fcl dx1' dy1' a1(x1'y1") Ry fcz dxz' dy2' 02(x2',y2") R }

1 ® 1 A\l 1 1 ] A\l 1 1 1 L
~ ey q(z) f_oo dz'{ fcl dxi'dy:' oa(xa'y1) - fcz dxz'dy2' az(x2'y2) o b (44.1)

which we obtained by assuming a separated form (4.1.2) for the charge density and by assuming a small
Helmholtz parameter . The 1/4nR factors here are in fact the 3D Laplace free-space propagators. This
propagator has the less glamorous name of being the electrostatic potential of a (1/¢)-size point charge (in
"free space" of course), so by assuming the transmission line limit of small Helmholtz parameter 3, we
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arrive at this electrostatics Laplace propagator appearing in the integrals. These propagators are
"propagating" the effect of charges on the conductor surfaces to their destinations x; and x5 in Fig 4.2 .

We then did the dz' integral over (-o0,00) making use of integral (4.4.5),
[ % dr (5=-=1=) = In(sz22/s122) (4.4.5)
-0 Ri2 Ra2z 22 P12 o
and arrived at

1
V(2)=q(2) 3 { f dxy' dy1' ax(x1'y1") In(s21%/s11%) - f dxz' dy2' 02(x2y2") In(s22%/s12%) } .
T C1 C2
(4.4.6)
1 1
This is really four terms and one recognizes I ln(Rz) in the form I ln(sijz) as the 2D Laplace

propagator just discussed above, and the s; 5 are the 2D transverse distances shown in Fig 4.3. So here we
see a very clear example of doing the 3D — 2D transition.

Case 3

Another transition example is the "scaling boundary condition" of Section 5.3 (b). We started there with
o) = [ a2y J o dxi'dyy oa(xy! Y1')L* | dxa' dyz' aa(x2ly2) = § (5.12)
-0 C1 ’ R1 C2o ’ R2

and we moved the observation point x far away from the transmission line. The result in this limit was
found to be

0e(x) = ln(szz/slz) // limiting form as point x = (x,y) moves far from the conductors

(5.3.13)
In this case, we had earlier done the following separation of the full potential
(p(XaY9Z) - 47[8d q(Z) (pt(XaY) ( il )
so the limit shown for @+ says
1 2, 2 a L 2 1 2
0(x%y,2) = (q/ea) 77 In(s27/51%) = (q/e”) 7 In(s2) — (9/ea) 3 In(51%) (d.5)

and we interpret this as being the sum of the 2D free-space propagations of charges £q(z)dz to our distant
point. We are so far from the transmission line that these charges appear as 2D point charges which form
a little electric dipole as shown in Section 5.4 (b).
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Case 4

As a third example, we consider a simple generic situation alluded to above as our "abrupt" transition.
Start again with

- (V2+k2) f(x) = h(x) => f(x) = Jld3x' [e"¥*®/47R] h(x') + homogeneous solutions
The Helmholtz Equation particular solution (H.1.9)

We changed the source name from s(x) to h(x) to avoid confusion with distance s below. Assume now
that f(x) = f(x,y). What happens to the Helmholtz integral on the right?

f(x) = J.d3X' [e_ij/4TER] h(x') = fdx' J.dy' J*-oo dz' h(X',y') [e_ij/4TER]

where
s= \/ (x-x)* + (y-y')* and R= \/sz +2z2 .
Then
1 - o~IkR
fl — dx' | dv' h(x'.v") — dz' R = + 7
W= Jax Jaynayyzz [ ar =g Tz
The dZ' integral can be done as follows:
R? = g%+ 2?2 => RdR =2z'dz'
)
00 € J 00 e_JkR 00 e_ij 00
[P arS— = [7RR - [ &R = [ ar SR
- R o Z R -0 \[Rz—s2 -0 \/Rz—s2
oy [ 7R CBER) (1.6)
0 \/Rz-s2
Take note of the following integral in GR7 3.754.2 page 435,
4]
cos{ax) dx . .
2. % = Ky(a3) a0, Rejd=n0
Joo o\ 4 2
which then says
o kR
) T ar i/%n:l — Ko(kn/-s2 ) = Ko(-jks) 2 = -jks phase (z) = -n/2 (.7)
(ze"/?) = zj = ks

But NIST p 250 says
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10.27.8
K,(z)
B %:rr-ie””z Hi”(zem'/z), —7 < phz < El,ﬂ',
| —imie v 2 B (ze™2), —lp <phz<aw
so that
Ko(-jks) = n(j/2)Ho "' (ks) (1.8)
and then
o e_ij OS(kR) . (1)
| =2 f drR 2 jnHo ™ (ks) . (1.9)
Finally
| o~ IkR
fw= Jax [ayhey) g [ 7 dz R=A[Z+7
D)
= Jax' [y neey) 7 jnHo ™ (ks)
= Jax Jdy hexy)l /4) Ho ™ (k)] $2 (x-x)? + (y-y')?
-3kR

and once again we have transitioned from the 3D propagator R to the 2D one (j/4) Ho *? (ks).
Case 5

1
In the k = 0 limit the above Case becomes a transition from 3D propagator ' to 2D propagator -5 ln(s)

as follows :
fix) = [ a3 [1/4nR] h(x') = (1/4x) [ dx' [ dy' hix'y') I \/-2+—Zz

But now the dz' integral is logarithmically divergent so we install a very large cutoff A and write

f A2 dz' J- A2

L — 1 ' A/2
f (S'2_Z+Z ,—2—28 2 0 R 2In[z -i-\/zz-i-s2 11 %0
=2In[A2 +A[(A2)Z +s2] - 2Ins
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=~ 2In(A) - 2lns = -2In(s/A) . J.10)

Now we apply the argument above about ignoring constants to get,

J‘ o dZt - 2lns // ignoring constants
-0 A\ ’ S + Z' g g

fix) = Jdx' [y hexyy') (1/4m) (2ins) = [ dx' [ dy' hx'y") [-i In(s)]

and so we have transitioned in this case from the 3D Laplace propagator to the 2D propagator.
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Appendix K: The Network Model: Comparison of Network and Maxwell Views
(a) The Network Model

The usual network model of a 2-conductor transmission line is an infinite repetition of differentially small
R,L,C,G segments as shown here between the vertical red lines,

R L
163 TC
R2 LZ

/\/\/\/\_KYY'YY\__

Fig K.1

If some load Zy, is put on the right end of Fig K.1, the impedance seen from the left end is unchanged if
the segment circuit is replaced by the following equivalent circuit,

— R=R; +R L=I;+L
1/G c i ol M

Fig K.2

where R =R; + Ry and L = L; + Ly. In the circuit diagrams, it is implied that R,L,C,G are all quantities
per unit length of the transmission line. Thus, if the distance between the two red lines is 8, the values of
the lumped parameters in Fig K.2 are R3,L5,C0,Gd. For example, if & doubles, the total conductance of
the segment doubles since it is a measure of current flowing between the conductors. The model implied
by the picture is then the limit as 6—0.

We wish to compare this "network model" to our Maxwell equation results. To start, we note that the
impedance of a capacitor C and inductor L operating at frequency o are determined by

Q=CV => 1=0:.Q=C 0oV => I=joCV => Zc=V/1=1/(juC)
V=L0d => V =joLl => Z1=V/1=joL . (K.1)
Note that the "admittance" of a capacitor is Y¢ = 1/Z¢ = joC. We can then combine the G and C elements

together into a single element having y = G+joC, since parallel admittances are additive. Similarly, we
combine the two series elements R and L into impedance z = R+joL. The network picture is then,
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z=R+joL
Z(z+dz) —» Iy . Z(z)—»
y=GHoC
z+dz z z

Fig K.3
We use King's bolded symbols y and z and of course z is unrelated to distance z. Here we arbitrarily have
the z axis pointing to the left (1), and the vertical red lines are placed at z and z+dz so that 6 = dz. The
impedance looking into the transmission line from the left is Z(z+dz) at z+dz and is Z(z) at z.

(b) Network Model Characteristic Impedance

Since the impedance 1/y is in parallel with the impedance z + Z(z) one has

(ydz)™* (zdz + Z(2))
(ydz)™' + (zdz + Z(2))

Z(z+dz) = (ydz)_1 || (zdz + Z(z)) = product over sum =

_ (zdz + Z(z))
1 + (ydz) (zdz + Z(2))

~ [Z(z) + zdz] [1 - (ydz)(z dz + Z(z)]

~[Z(z) + zdz] [1 - (ydz) Z(z)] // dropping order (dz)2
~Z(z) + [z - yZ3(z)] dz . // dropping order (dz)? again

Therefore Z(z) must solve this non-linear first order differential equation,

%ﬁ =z-yZ%(2) or %ﬁ +yZ%(z) =z . (K.2)

The most general solution to this equation is

Z(z) = \/% th(fzy z +C) C = constant (K.3)

since

z+C)]

827 = ?*\/z_y sechz(\/% 2 +C) =z [1-th¥

z
y
=2 [1-322@) =2-yZ%() .

If the transmission line is of finite length running from z = L (left end ) to z = 0 (right end), and if the line
is terminated at z = 0 by some impedance Z¢, we must have Z(0) = Z+ so that
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Ze =7(0)= \/% th(\fzy 0 +C) =\/% th(C)
=> C= th‘l(\/g Z¢)

so then the solution is

Z(z) = V% th [\/zy z +th‘1(\/§ AN

and at the left end we find

Z(L) = \/% th[/zy L +th'1(\/g Zy) ] .

If we take L — oo (line becomes infinitely long) , then th [...] — 1 and we find

Z(0) =\/%,

so the impedance looking into the left end of the infinite transmission line is independent of the
termination value Z¢ at z = 0. This infinite line impedance is called the characteristic impedance Z and

we have shown then that

_ z R+joL
Zo= vy~ \/GHeC - (K.4)

Since this is the same result obtained from Maxwell's equations in (4.12.18), one is motivated to regard
the network transmission line model as a correct model, and then the network model parameters R,L,G,C
can be identified with the parameters obtained from Maxwell's equations.

Reader Exercise: Consider this purely resistive finite ladder network shorted at the right end,

R(z+dz) R(E
& |

AA AN ANWA
R(L) —» 1/G
R>
ANV AN AN
z=L Z €— zZ+dz z z=0

Fig K.4

428



Appendix K : The Network Model

(1) Using the results above, show that

R(L) = \/R3/G tanh \/R3G L) where Rs =R1+R» .
(2) Show that

R(L) =+/R3/G if L>>1A/R3G .
Thus, for large L the fact that the line is shorted at the right end makes no difference.
(3) Show that for finite L :

R(L) — RsL asG—0 no conductance
R(L)— 0 as R3— 0 no wire resistance

Both limits should seem obvious.
(¢) Network Model Transmission Line Equations

We now switch the z axis back to its usual direction (increasing to the right), and we label currents and
voltages on our transmission line section,

i(z)—» +/\/\/\/\ i(z+dz) 5
T * z=R+joL T+

V(z 1/
() y ¥ = GHjoC V(z+dz)

z—>
z ztdz  pieks

Staring at the picture, it seems clear that

i(z) - i(z+dz) = current going down through impedance 1/(ydz) = %}% =vydz V(z)

and therefore

di
-%ZQ =y V(z) .

Meanwhile, the voltage across the impedance z is V(z) - V(z+dz) so
V(z) - V(z+dz) =i(z) z

and therefore
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M\(;ZZZ =zi(z) .

Thus we have shown that

dV(z) . di(z)
dz ~ % i(z) dz 7Y V(2)
with
z=R+joL y=GHoC. (K.5)

Differentiating these equations with respect to z, we find that

d*V(z) i)
BT A V(z)=0 iz W i(z)=0 (K.6)

But (K.5) and (K.6) are the same transmission line equations obtained from Maxwell's equations as
shown in (4.11.15) and (4.11.17). Thus we are further encouraged in our use of the network model to
represent a transmission line. Since the equations found from Maxwell's equations were qualified as being
questionable at very low frequencies, the network model is also suspect at very low o.

The solutions of equations (K.6) naturally have the same form as shown in Chapter 4, for example,

V(z) = V(0) e” 7%= K2=-zy k=-j\zy = -j \J(R+joL)(G+nC) (K.7)
(d) Network Model Parameters obtained from Maxwell's Equations

The main results of Chapter 4 appear in summary box (4.12.24) from which we quote in part,

42

%Zl =-7i(z) (d_zz -zy)V(z)=0 z=R+joL  transmission line equations
di 42

%ZQ = W@ (7 i =0 y=G+oC  (4.12.1516 and 17)
z=7s1 tZs2 +jole (4.12.16) Xr=o0le , Xc=1/(0C)

y =joC'=joC + (c4/eq)C (4.12.16) G = (04/eq)C (4.11.15)

R = Re(Zs1+ Zs2)
L=Le+ (/o) Im(Zs1+ Zs2)

Le = (ug/4m)K (4.10.8) and (4.12.20)
C =4neg/K (4.4.7) and (4.11.9a) and
G =4nog/K above and (4.4.10) (K.8)
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Thus, we make the connection between the network parameters and the Maxwell calculation parameters
as follows:

R =Re(Zs1+ Zs2)

L=Le+ (l/0) Im(Zs1+ Zs2)

Le = (ne/4mK

G =4noqa/K

C =4neg/K (K.9)

where K is the dimensionless real integral in Chapter 4, see (4.4.8). Recall that this integral requires
knowledge of both the conductor geometry as well as the normalized transverse surface charge
distributions on the conductors. Here €4, g and o4 are for the dielectric between the conductors. The
effective 64 appearing in G is often frequency dependent as shown in (3.3.4) [see Appendix R for an
example]. The Zs; are always frequency dependent, as discussed below.

(e) Low frequency case for round conductors (no skin effect)

At low frequencies, when conductors are not extremely close together, the current densities are close to
uniform (see for example Fig 6.16), so that J, = I/area for each conductor. This uniformity is exact for a
conductor which is the central conductor of a coaxial cable, as studied in Chapter 2. There we found at
low frequency that

1 .M -
Zs1(®) = opma? tjo g // low frequency limit (2.4.12)
— Re(Zq1) = 1 d  Im(Z<)= B K.10
= e( 51)_—201na an m(Zs1) = 7 - (K.10)

From (K.9) we then find that for low frequencies and parallel round conductors,

1 1
= ouma? T ogmag? ~ Raer tRaco (K.11)
M1 = M2
L=Le+(7g-*t7g) =Le +(Liz+Li2) . (K.12)

In this case parameter R is just the sum of the DC resistances of the conductors (per unit length), and
parameter L is the sum of the external inductance Le and the internal inductances of the two wires. Here

o and p; are for the material from which conductor C; is constructed. The external inductance Le can be
interpreted as the inductance associated with the red wire loop below,
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( G )

loop with inductance d L—7

<€ length d ' g
J c )

The sides of the red loop make contact on any line on the conductor surfaces, though here we show it
having its minimal size. The red loop may in fact be replaced by any loop, possibly non-planar, which
captures all the external magnetic flux passing between the conductors. See Fig 4.11 and discussion there.

FigK.6

Note that Le is not the self-inductance of a rectangular thin wire loop in isolation occupying the red
outline above, but rather Le = (ua/4m)K as in (K.9) above, where K is related to the capacitance between
the conductors. If both conductors are round and very thin and separated by distance b, we know from

(4.5.7) that K = 4 In(bAfaiaz ) and then Le = (ua/n) In(b/Afaiaz ).

Although we have not formally proven it, it seems clear that for arbitrary conductor cross sections (not
too closely spaced) the following equations will apply at low frequency :

1 1 .
R = o1A; + 02As Aj; = cross section area of C; (K.13)

L =L + (Lil +Li2) . (K14)

Appendix C computes the DC L; for various conductor cross section shapes. One result quoted there
from the literature is that for a square conductor,

L; = (ni/8m) [0.96639] . (C4.12)
Thus the L; for a square cross-section conductor is barely different from that of a round conductor.
(f) High frequency case for round conductors (strong skin effect)

At high frequencies there is a pronounced skin effect. In Chapter 2 for a round conductor C; at high
frequency (and with a symmetric current distribution) we found that

1 :
Zs1(®) zm (1+9) 01 << 4ay (2.4.16)

Re(Zo) = Tz B 1 1 M1
e( Sl)_ m( Sl) - 61(27'[31)81 N 27[31 201

where 81 =1/2/(wp101) is the skin depth and a; the wire radius.

SO
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From (K.9) we find that for high frequencies and round conductors,

1 1
T 51(2ma1)d; | 02(2maz)d;

L="Le+ (1/®) Im(Zs1+ Zs2) =Le + (/0) R . (K.15)

In this case, we recognize 2ma;01 as the effective current carrying cross-sectional area of round conductor
C1 (the area of the current sheath), so the expression for R is quite intuitive. Since,

8 =/2/opc => 1/61 = \/(wulcl)/2 and 1o =po018:%/2 (K.16)

we may write

_ _ _ . __1 Ha

Li(0) = (/o) Im(Zs) = (1/m) c1Qmar)dy (1/w) Gl(znal)\/(wulcl)ﬁ = omay 26010
(K.17)
so Li(w) ~ 1/\/6 . Expressing L; instead in terms of 61 we find
Li(31) = (1) Im(Ze) = (1) —m— = 812/2) — A = 1 (1/dm) (33/
i(61) = (Vo) Im(Zs) = (l/w) 61(27ma1)d; = n161(01 )61(27531)51 = (1/4m) (81/2a1)
Mi
=g [2@van)] . (K.18)

The DC internal inductance of a thin shell of radius a and thickness d is shown in Appendix C.6 to be

1 i . .
Li= s on (d/a) = g_n [ (4/3)(d/a) ] thin shell, wvalid for d <<a (C.6.8)

so the high frequency internal inductance of a round wire is the same as the DC internal inductance a shell
of thickness d = (3/2)0 which seems fairly reasonable. The above expression (C.6.8) shows that the
inductance of a thin cylindrical shell is linear in the shell thickness d, so we expect that the high frequency
L; of a round wire should be linear in 9, and thus proportional to 1/\/6 .

Section 2.5 shows how to handle non-round conductors and non-symmetric current distributions by
replacing 2ma by an effective active perimeter p. Chapter 4.12 (b) formalizes this notion, giving the
effective perimeter in (4.12.10).

In Section D.10 and D.11 the claims made in the last two sections regarding surface impedance are

vindicated when one uses the surface impedance averaged over the round wire surface: see (D.10.17) for
large © and (D.11.17) for small .
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Appendix L: Point and Line Charges in Dielectrics

Chapter 1 states in (1.1.19) through (1.1.24) various equations concerning the magnetization of a
magnetic medium. These equation are "exercised" somewhat in Section G.3 and also in Appendix B
concerning how the transmission line theory is altered when the dielectric and conductors have different p
values.

Chapter 1 also states in (1.1.9) through (1.1.15) corresponding equations concerning the polarization of a
dielectric medium. Although the transmission line theory assumes a dielectric between the conductors,
and in fact allows for a complex dielectric constant &, there has been no "exercise" of the polarization
equations, so in this Appendix some simple examples are provided.

The examples presented here are rarely presented in E&M texts perhaps because they are too simple. The
spherical problem appears in the 2nd edition of Corson and Lorrain (p 111-113) but it got replaced by a
short comment in the 3rd edition (Corson and two Lorrains) p 186.

The examples are useful to the author in that they provide a physical picture of how the potential and field
of a point or line charge are affected by the presence of a dielectric medium. In Sections L.1 and L.2 the
3D problem is solved and limits are taken of the solution. Two of these limits involve a full embedding of
the charge in the dielectric where dielectric charge shielding is exhibited. Sections L.3 and L.4 briefly
repeat the solution in two dimensions, so the results then apply to the extruded cross section.

L.1 The potential of a point charge inside a thick dielectric spherical shell.

A positive point charge q lies at the center of a spherical shell of radii b>a as follows,

+

region 0

FigL.1

Inside and outside the shell of dielectric constant g7 is empty space with &o.
Whatever the potential ¢ is for the above picture, it is obviously spherically symmetric and is then
o(r). This in turn means that the E field is just E = E.f where Ex = -0.¢ (in each region), so the E field is
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radial. This radial E field polarizes the dielectric in the shell as suggested by the three symbolic polarized
molecules shown in the figure. If the total bound charge on the r = a surface is -Q, then the total charge on
the r = b surface must be +Q, as one would conclude imagining the entire dielectric having the form of the
three molecules shown.

One implication of this fact is that for a sphere of r > b, the total charge enclosed is just q. Applying
Gauss's law to a spherical Gaussian box of radius r > b

q= fv pdV = .[s e EedS =80[_[d£2] 2 E o drf = godn r?E; (1.1.33)

= Ero = ( 1/4ne0) g/t* .
The corresponding potential is
¢@o(r) = (1/4meo) g/t r>b region 0

since then Erg = -0r@o(1r) = (1/4nso)q/r2. This is a special case of the fact that any spherical distribution of
charge appears outside that distribution as a point charge at the center, so @o(r) is just the potential of a
point charge q at the origin. We then at least know ¢ in one of the three regions.

In regions 1 and 2 as an ansatz we assume these forms with constants a, C and D to be determined,

@1(r) = (1/4ma ) g/r + C
@2(r) = (1/4mgp) g/r + D .

In a spherically symmetric geometry the Laplace equation only allows harmonics that are powers ™ and
each term above is one such power times a constant. A motivation for the ¢ form is that for r very close
to r = 0, the potential must be that of the point charge since everything else is then relatively far away.

We now determine constants a, C and D from boundary conditions. The three potentials and fields are

@o(r) = (1/4megp) g/t Ero(r) = (1/4meo) q/r2 region 0
¢1(r)=(1/4n0 ) g/r + C Er1(r) = (1/4n0.) g/t region 1
@2(r) = (1/4mep) g/r + D Era(r) = (1/4meo) q/r2 region 2 . (L.1.1)

The electrostatic potential must be continuous at all values of r. Why? Consider:
b b
Er=- 0:0 J"a E.dr =-fa 0:0 dr =-[o(b)- 9(a) ] .
The physical electric field at any point must have a well-defined finite single value. Then for small ¢
ate .
f Erdr =Er(a)e=-[ o(ate) - o(a) ] => ¢ continuous ata . (L.1.2)
a

As ¢ — 0, we must have @(ate) — ¢(a) so ¢(r) must be continuous at r = a.
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Apply this rule at our two boundaries to find that,

(1/4meo) q/b =(1/4na) g/b+ C region 0/1 boundary, r=>b
(1/4meg) g/a+ D = (1/4na ) g/a+ C region 2/1 boundary, r=a (L.1.3)

which is two conditions on the unknown constants o,C,D.
Meanwhile, the normal electric field boundary condition from Chapter 1 is

[€1En1 - €2En2] = Nfree - (1.1.47)

Although there exists bound charge at each of our two boundaries, there is no free charge, so

€0Ero(b) = €1Er1(b) region 0/1 boundary, r=b

goEr2(a) = e1Er1(a) region 2/1 boundary, r=a
or

g0 q/ [4neob?] = &1 (1/4ma ) q/b> = 1=¢1/a

€0 q/ [4neoa?] = &1 (1/4m0) q/a2 > 1=¢/0 . (L.1.4)
The right side equations are the same and tell us that a = 9. The boundary conditions (L.1.3) then say,

(1/4meg) g/b = (1/4me1) g/b+C region 0/1 boundary, r=">b
(1/4meo) g/a+ D = (1/4me1) g/a+ C region 2/1 boundary, r=a. (L.1.5)

Subtract the first from the second to cancel the C,

D + (1/4neg) q(1/a-1/b) = (1/4meq)q (1/a-1/b)
S0

D = (1/a-1/b)(q/4m)(1/e1-1/g0) = - (b/a-1)(q/4nb)(1/€0-1/e1) .
From the first of (L.1.5) we find

C = (q/4nb) (1/ep-1/e7) .

Thus the boundary conditions have determined our three constants

o=¢&g
C = (g/4mb) (1/e9-1/€1)
D = (q/4mb)(1/ep-1/g1) (1-b/a) . (L.1.6)
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The potentials in the three regions are then

0o(r) = (1/4mep) g/t
01(r) = (1/4meq) g/t + (q/4mb)(1/e0-1/g1)
@2(r) = (1/4meg) q/r + (q/4nb)(1/e0-1/e1) (1-b/a) (L.1.7)

while the fields are

Exo = (1/4meo) q/r2
Er1 = (1/4me1) g/r?
Er2 = (1/47e0) q/r? . (L.1.8)

We know that a spherical shell of charge has no effect on E, inside the shell, verifying the E,, result. We
also know that a spherical shell acts as a point charge at the origin when viewed from outside the shell,

thus verifying Ero which then sees a charge of q + Q - Q = q at the origin.

The following Maple plots show the continuity of ¢ and the jumps in E. at the boundaries

phi := piecewise(r>=0 and r<a,phi?,r>=a and r<b,phil,r>=b,phil):
Er := piecewise(r>=0 and r<a,Er?,r>=a and r<b,Erl,r>=b,Er0):
phi0 := gq/(4*Pi*el*r):

phil := gq/(4*Pi*el*r) + q/(4*Pi*b)*(1/e0-1/el):

phi2? := q/(4*Pi*el*r) + q/(4*Pi*b)*(1/e0-1/el)*(1-b/a):

Er0 := q/(4*Pi*eld*r"2):

Erl := q/(4*Pi*el*r"2):

Er? := q/(4*Pi*e0*r"2):

gq :=1: a :=1: b = 2: el := 1: el := 2:

plot([phi,Exr], r=0.5..5, color = [red,6 blue]);

0.32

0.3
0.23
0.26
0.24
0.22

0.2
0.1a
0.16
0.14
012

0.1
0.03
0.06
0.04

0.02 — -

1 ’ = 4 2 Fig .2

o(r) [red] and E.(r) [blue] for r in (0.5, 5)

What about the bound charge densities at r =a and r = b?
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One must first compute polarization P, and for a region with g, P is given by
P =¢o)cE // polarization assumed proportional to the polarizing E field (1.1.12)

)
P = goyeE:T Ye = (€/€0 - 1) => P =¢o(e/go - 1)E<T = (g-80)ELl .

Obviously P = 0 in regions 0 and 2, while in region 1 we have

Pr1(r) = (€1-80)Er1(r) 0(r>a)0(r<b) . // points radially outward since €1 > gg (L.1.9)
From (1.1.11) the polarization charge density is then

Ppo1 =-div P (1.1.11)
so in spherical coordinates,

ppo1(t) = - [1720.(1?Py) + [rsinB] *0g[sinOPg] + [rsin®] *0Py]

- I'_zar(rzprl)

- r'zar(rz[(sl-so)Erl(r) 0(r>a)0(r<b)]) // from (L.1.9)

- r_26r( [(e1-€0)(1/4me1) q O(r>2)0(r<b)] ) // from (L.1.8)

= - q(e1-€0)(1/4me1) r™202( [B(r>a)0(r<b)] )

But
Ox[0(r>2)0(r<b)] = 0:[0(r-2)0(b-1)] = 5(r-a) O(b-r) + 6(r-a) [-5(r-b)]
= 8(r-a) O(b-a) - O(b-a) 5(r-b) = [3(r-a) - (r-b)]
K Ppor(r) = - q(e1-go)(1/4mer) 1”2 [3(r-a) - (r-b)]
= - q(e1-€0) (1/4mer) { 8(r-a)/a® - §(r-b)/b?} . (L.1.10)
We may then read off the bound surface charge densities at r = a and b,
Cinner = - (81-€0) (1/47e1)(q/a%)

Gouter = (€1-€0) (1/4me1)(q/b?) (L.1.11)
SO

Qinner = J dS Ginner = - (61-80) (1/4me1)(q/a?) * 4ma = - (1-go/e1) q

Qouter = J dS Gouter = (e1-60) (1/4me1)(q/b?) * 4nb2 = (l-go/e1) q - L.1.12)
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Thus the outer boundary has total charge
Q=(1-e0/e1) q // ranges from 0 to q (L.1.13)

and the inner boundary has -Q. If the dielectric were a conductor, we would replace €1 — &; as in (1.5.1¢)
and then a perfect conductor has &; = o0 and so Q = q, as one would expect looking at Fig L.1.

L.2 Limits of the Previous Problem
(a) Point charge in a spherical cavity in a dielectric

Taking b—oo in the previous problem removes outer region 0 and leaves us with this picture of a point
charge at the center of a spherical hole in an infinite medium of &; :

region 1

FigL.3
The potentials and fields shown in (L.1.7) and (L.1.8) are then, taking b—oo,

¢1(r) = (1/4ne1) q/r
¢@2(r) = (1/4meo) g/t - (q/4ma)(1/ep-1/€1) (L.2.1)

while the fields are

Er1 = (1/4me1) g/r?
Er2 = (1/47e0) q/r? . (L.2.2)

The induced bound charge density ¢ at r = a, and the total charge there, are still given by

6 = - (e1-80) (1/4me1)(q/a?)
-Q=(1-e0/e1) q - (L.2.3)
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(b) Point charge embedded in a dielectric sphere

Here we take the limit a—0 so that region 2 of Fig L.1 goes away. Looking at (L.1.12), the total inner
surface bound charge continues to be - (1-g9/€1) ¢ = - Q in this limit. It just crowds around the point
charge and of course the surface density Ginner — 0. Here is a suggestive drawing of a piece of region 1
in this limit:

FigL.4
The limiting picture of Fig L.1 is then the following,
+
region 0
region 1
+
* FigL.5
The potentials and fields shown in (L.1.7) and (L.1.8) are then, taking a— 0,
0o(r) = (1/4mep) g/t
¢01(r) = (1/4me1) q/r + (q/4nb)(1/e0-1/€1) (L.2.4)
while the fields are
Ero = (1/4meo) q/r?
Er1 = (1/47e1) q/r? . (L.2.5)
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Inside the dielectric the E field is Ex1 = (1/4me;) q/r2 where €3 takes into account both the point charge q
and the bound charge crowding around it which is - (1-g¢/€1) q. One could interpret this as saying that the
total charge at the origin is q - (1-go/€1) @ = q(eo/e1) and then E = (1/4mgp) [q(so/sl)]/rz. Remember
from (1.1.15) that E sees both free and bound charge. In this last interpretation, the dielectric is shielding
the point charge, reducing it from q to q(go/€1).

Outside the sphere, the E field is Exy = (1/47e0) q/r%, just as if the sphere were not there. The reason of
course is that the surface charge at r = b still cancels the crowded surface charge at r = 0, so outside one
sees in effect just the point charge q.

(c¢) Point charge embedded in an infinite dielectric medium

We now take b—oo in Fig L.5 to remove outer region 0, with this result:

region 1

&1 DA ®
'_: 4949

XN

g>0
FigL.6
There is only one region left and from (L.2.4) and (L.2.5) we get
¢1(r) = (1/4meq) g/t (L.2.6)
while the field is
Er1 = (1/4neq) q/r? . (L.2.7)

The presence of the dielectric g1 is then completely accounted for by the (1/4me;) factor. As before, one
could interpret this as a shielded charge [q(go/e1)] and E = (1/47meg) [q(so/sl)]/rz. The crowded-around
polarization charge is still -Q = - (1-go/€1) q, and the positive Q that was on the r = b surface is still
present, but at r = co.
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L.3 The potential of a line charge inside a thick dielectric cylindrical shell

In this section, we repeat everything done in Section L.1 in the 2D world instead of the 3D world. The 3D
Laplace propagator (1/4meg)(1/r) becomes (1/2mep) In(1/r) as discussed in Appendix J. We reuse the same
drawings, the first of which is

region 0

Fig L.1'

This is now a cross section of an infinite uniform cylindrical hollow dielectric pipe. Quantity q is now a
linear charge density with dimensions Coulombs/m. Rather that copy, paste and edit Section L.1, here we
just show the altered equations and skip most of the words. The equation numbers are those of Section
L.1 with a prime added. One difference encountered is that we must take b—R (a large value) rather than
b—. As noted in Appendix J, a constant in a potential can be ignored even if it is infinite, and such
constants do not appear in the field E = -V¢.

Ansatz potential forms: (to-be-determined constants are o, C, D)

©o(r) = (1/2mep) q In(1/r) Ero(r) = (1/2mg) g/t region 0
¢1(r)=(12n0 ) q In(1/r) + C Er1(r) = (1270 ) g/t region 1
¢2(r) = (1/21gp) q In(1/r) + D Er2(r) = (1/2meg) g/t region 2 . (L.1.1)

Continuity of ¢ at r=a and b:

(12meo) q In(1/b) =(12na ) q In(1/b) + C region 0/1 boundary, r=>b
(1/2meg) q In(1/2) + D = (1/2ma. ) q In(1/a) + C region 2/1 boundary, r=a . (L.1.3)'

Rule for E field normal components at a boundary:

€oEro(b) = €1Er1(b) region 0/1 boundary, r=>b
€oEr2(a) = e1Er1(a) region 2/1 boundary, r=a
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or
€0 q/ [2megb] = €1 (1/2ma ) g/b => 1 =¢1/0
€0 q/ [2meoa] = €1 (127 ) g/a => l=¢/a . (L.1.4)
Restated continuity of ¢ with o = €;:
(1/2meg) q In(1/b) =(1/2ne1 ) q In(1/b) + C region 0/1 boundary, r=b
(1/2mep) q In(1/a) + D = (1/2me1 ) q In(1/2) + C region 2/1 boundary, r=a. (L.1.5)

Second equation minus first above:

D + (1/2meg) q(In(1/a)- In(1/b)) = (1/2me1)q (In(1/a)- In(1/b))
=> D + (1/2ngp) q In(b/a) = (1/2me1) q In(b/a) .

Solution for the three constants:
a=¢g
C =qIn(1/b)(1/2w) (1/g0-1/€1)
D =q In(a/b)(1/21) (1/go-1/e1) . (L.1.6)

The potentials in the three regions are then

@o(r) = (1/2mep) q In(1/1)
¢1(r) = (1/2me1) q In(1/r) + (q/27) In(1/b) (1/€0-1/€1)
02(r) = (1/21ep) q In(1/r) + (g/27) In(a/b) (1/ep-1/€1) (L.1.7)

while the fields are
Ero = (12mep) g/t
Er1 = (12me1) g/t
Ero = (12mgo) q/r . (L.1.8)'

The following Maple plots show the continuity of ¢ and the jumps in E. at the boundaries

phi := piecewise(r>=0 and r<a,phi2,r>»=a and r<b,phil,r>=b,phi0}:
Er := piecewise(r>=0 and r<a,Er?2?,r>=a and r<b,Erl,r>=b,Er0):
phi0 = q/(2*Pi*e0)*1In(1l/r):

phil := q/(2*Pi*el)*In(l/r) + g/ (2*Pi)*1In(l/b)*(1l/el0-1/el):

phi2 = q/(2*Pi*e0)*1In(l/r) + q/(2*Pi)*1ln(a/b)*(1l/el0-1/el):

Er0 := q/(2*Pi*el%*r):

Erl := q/(2*Pi*el*r):

Exr2 := q/(2%Pi%*el*r):

gq :=1: a :=1: b = 2: e := 1: el := 2:

plot{ [phi,Er], r=0.5..5, color = [red,blue]);
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0.3

0.2

0.17

-0.14

-0.2

o(r) [red] and E.(r) [blue] for r in (0.5, 5)
What about the (now linear) bound charge densities at r = a and r = b?
P = (e-g0)E. T
Pr1(r) = (e1-€0)Er1(r) 0(r>2)0(r<b) // points radially outward since g1 > gg
From (1.1.11) the polarization charge density is then
Ppo1 = - div P
so in cylindrical coordinates,
Ppo1(r) = - [17*0x(tPz) + 1 9ePg + 0,P;]
=- 17 0:(Px)
= - 1 10x(r[(e1-€0)Ex1(r) B(r>a)0(r<b)])
=- r'lﬁr(r[(sl—so) (1/2meq) g/t 0(r>a)0(r<b)]) // from (L.1.8)'

- q(e1-€0) (1/2me1) 170:[0(1-2)0(b-1)]

=-q(e1-€0) (12me1)r™t [ 8(r-a) -0(r-b) ] // from above (L.1.10)

- q(e1-€0) (1/2meq) [ O(r-a)/a - 6(r-b)/b ] .

We may then read off the bound linear charge densities atr=a and b

FigL.2'

(L.1.9)

(1.1.11)

(L.1.10)'
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Cinner = - (€1-€0) (1/2me1)(q/a) // Coulombs/m

Couter = (€1-€0) (1/2%81)((1/]3) (L.l.l 1)'
SO

Qinner = Ef ds Ginner = - (€1-€0) (1/2me1)(q/a) * 2ma = - (1-go/€1) q
Qouter = § ds Couter = (£1-€0) (1/2n81)(q/bb) *2mb = (l-go/e1) q (L.1.12)
Q=(1-g0/e1) q // exactly the same equation as in the 3D case (L.1.13)

Here Q is the total charge/m on the outer surface of the cylindrical shell at r = b, and -Q is the same thing
at r = a. Recall that q is the charge/m of the central linear line charge.

L.4 Limits of the Previous Problem

(a) Line charge in an infinite cylindrical hole in a dielectric

region 1

Fig L.3'

The potentials and fields shown in (L.1.7)" and (L.1.8)" are then, taking b—R (some large value)

@1(r) = (1/2me1) q In(1/r) + (g/2m) In(1/R) (1/g9-1/€1)

02(r) = (1/4meg) g/t - (q/4ma)(1/ep-1/€1) (L.2.1)
while the fields are

Er1 = (12me1) g/t

Ero = (12mgo) q/r . (L.2.2)
The induced bound charge density o at r = a, and the total charge there, are still given by

o =- (g1-80) (1/2me1)(q/a)

-Q=(1-g0/e1) q . (L.2.3)
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(b) Line charge embedded in an infinite dielectric cylinder

region 0

Fig L.5'
The potentials and fields shown in (L.1.7)' and (L.1.8)" are then, taking a— 0

@o(r) = (1/2mep) q In(1/r)
01(r) = (1/2me1) q In(1/r) + (g/27) In(1/b) (1/e0-1/€1) (L.2.4)

while the fields are

Ero = (1/2mgp) g/t
Er1=(12me1) qg/vr = (1/2meo) [q(eo/e1)] /T (L.2.5)

where the last expression shows the "shielded charge interpretation".
Outside the cylinder, the E field is Ex1 = (1/2me0) g/r, just as if the cylinder were not there.

(¢) Line charge embedded in an infinite dielectric medium

We now take b—R (a large value) in Fig L.5' to remove outer region 0, with this result:

Fig L.¢6'
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There is only one region left and from (L.2.4)' and (L.2.5') we get

¢1(r) = (1/2me1) q In(1/r) + (q/27) In(1/R) (1/e0-1/€1) (L.2.6)'
while the field is
Er1=(172me1) qg/r = (1/2meo) [q(eo/e1)] /T (L.2.7)

where the last expression shows the "shielded charge interpretation". As usual, we can ignore the infinite
constant in the potential @1(r).
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Appendix M: Why the transverse vector potential A. is small for a transmission line

Claim: In the King gauge, the transverse vector potential Ay may be neglected for frequencies in the
range 0 to 500 GHz. (M.1)

Overview: The vector potential is written below as Ay = fconductors dxdy Je(x,y) * (stuff).

We shall make the following claims:

o |Je| <1073 |1, for f=0to 500 GHz (which is to say: "transverse currents are small

inside the conductors") Observation 1
e in the At integral there is a cancellation effect not present in the A, integral

which in effect reduces A by a factor of 10 (ballpark) relative to A . Observation 2
e the net ballpark result is that [A¢| < 107% [A,| for f= 0 to 500 GHz

which is the opening claim (M.1) above. (M.16)

The conclusions of this Appendix are stated as three observations which we gather here:

Observation (1): The transverse currents J, and Jg are very small compared to J. (M.6)
Observation (2): In the Helmholtz integration (M.3) there is a large amount of cancellation. (M.8)
Observation (3): As o decreases, OxAx grows in size relative to 0,A . (M.17)

According to (1.5.9) one can express the King gauge vector potential at all points in space in terms of the
currents in the transmission line conductors in this manner,
| o~ JBaR
A(x,m) = i )Y f pi Ji(x',0) R dav' R=|x-x'| (1.5.9)

where X; is a sum over all the conductors, and g is the wavenumber in the dielectric. Therefore, the
transverse part A may be written as an integral of the transverse conductor currents J 5 :

1 e JBaR
Ac(x) = i Zi W f Je,1(xLy'2' R dx'dy'dz' . M.2)

Transverse refers to the x and y directions, where the infinite conductors are aligned in the z direction.
The main current in a transmission line conductor is the longitudinal one J, . When the above equation is

processed in the manner of Chapter 4, and one assumes the transmission line limit, the result is
_ L f S NP 2_ . N2 2
Ae(X) =-77 Zini ) Je,a(xLy) In(s7) dx' dy' . $7 = (x-x)" + (y-y") (M.3)

As discussed in Section 4.3, in the transmission line limit both B4 and k are small (long wavelength), so
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e PR ~ | and e7I*® = 1. We assume the standard wave functional form such that Je,i(X,y,2) = g Ikz

J¢,i(x,y) and then set ¢ 32 =~ 1 for the contributing portion of the dz' integration and that integration
produces —ln(sz) as in Ch 4 or (J.10).

Meanwhile, Appendix D computes the E fields inside a round conductor (radius a) for each partial wave
m, and here we multiply them each by o to get the current density components,

Current Densities in a Round Wire: Rec =—=2 B2=p2-Kk? (D.9.37)
Im(X) Jn(X) ' s
Jot1(Xa) ~ Jm-1(Xa) ] x= P Xa =fP'a

_ Jm+1(X) Jm—1(X)
en = Jmt1(Xa) " Jm-1(Xa) ]
Jm+1(X) Jm_l(X)
Jm+1(Xa) ) Jm_]_(Xa)]

Jz(r,m) =(1/4) 6 N B (wa) (B/k) f fm =1

Je(r,m) = (j/4) 6 Nm B (02) g B = (Ea/ea) CV Rac

Jo(r,m) = (1/4) 6 N B (0a) hy, hp = [ G>0

The currents are expressed in terms of a cylindrical coordinate system whose z axis runs down the center
of the round conductor. Coefficient 1y is the "surface charge moment" of the m*™ partial wave, and the 6-
space currents are given by (D.1.3a),

o0
Jr,0)= > J@rm)eI™ . // partial wave expansion (M.4)

m = -oo

The moments 1, may be obtained by solving the transmission line "capacitor problem" as outlined in
Section 6.5 (a). One finds potential @, then E, then surface charge n(8), and finally 1.

The current components are,

J=12 +1,8+J60 = 1,2 +J¢ Je =J R +Je0 . (M.5)
Rather than study these round wire internal solutions in detail, we make two observations:
Observation (1): The transverse currents J and Jg are very small compared to J. (M.6)

We examine this issue first for large m, and then for small .

For large o (skin effect regime) the partial wave fields shown above in (D.2.33) have these limiting
forms:
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Large o limits of the E field solutions : Rge = G—nlaz (D.10.13)
Ea(tm) =+ (/2) fin 8 (02) (B/Pao) "\ [ e**9) =7)/2 x= Br
Ex(tm) = (j/2) i B (w2) \E e(1+3) (x-2)/8 xa= Pa
Eg(r,m)=0 B = CV Rye

Multiplying by o and squaring, one finds using (1.5.1a) and (1.5.1d) that

Jr 5 Ba’ HaEq0? UgEd
el = | oo | = 1o o = (e40)®.

If we arbitrarily require that | J./J,| < 1073, then ® must be less than
_de 2 -6
oni = |7~ 7 (o/eq) =107" (o/eq) .

For a copper conductor and polyethylene dielectric, we find
opi = 1076 % (5.81x107) /(2.3 *8.85x 107*?) =28 x 10**
fni = 0ni/(2m) 4.5 x 10** ~ 500 GHz

Thus, for high frequencies we conclude that |Jz/Jz| < 1073 for f < ~500 GHz which is beyond the
frequency used in any normal transmission line.

What about small ®? In this case the limiting forms of the fields are given by

E.(r,m) = (1/2) Nm B (0/k) (1/2)" (m+1) (D.11.7)
Ex(t;m) = (/4) nm B (wa) [(/2)™" + (r/a)™]

Eo(r,m) = (1/4) N B (wa) [(r/a)™* - (r/a)" ] m>0

E.(r,0) = B (w/k) B = (Eg/eq) CV Rae

Ex(r,0) =(j/2) B (wr)

Ee(r,0)=0 m=0 G>0

In this low o situation we find that, for any partial wave m,

J
RELE
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The wavenumber k is given by

k = -iNzy = 4\ (R+joL)(GHwC) . (5.3.5) (K.7)

As o— 0, we showed in (D.11.1) that for G > 0, k — - jA\(RgcGac , while for G=0 k — 0, so the worst
case is the first situation where |k| — 1/RqcGqac . But this is always a very small number, and we showed
that for our Belden 8281 example \|RacGac = 1078 and then Je/Jz| =alk] = 5x 10712,

Our conclusion so far is that [J/J| < 1072 for both high frequencies and low frequencies. Showing this is
also true in the middle frequency range requires much more work, but we appeal to the general smooth
and monotonic nature of k as illustrated in Fig Q.5.7 to argue that the worst case will still be at high
frequency and thus our conclusion stands for all frequencies:

Conclusion: For frequencies from 0 to 500 GHz,

[Jz| <1073 |1, |
1Jo| <1073 14| f=0to 500 GHz (M.7)

The conclusion then is that the transverse currents are less than 1/1000th of the size of the longitudinal
currents for the round copper conductor at all frequencies of interest below 500 GHz, and we can
reasonably assume that a similar conclusion applies to a conductor of any cross sectional shape (while
maintaining the transmission line limit). This then concludes our "proof" of the claim that "transverse
currents are very small" inside the conductors of a transmission line.

Observation (2): In the Helmholtz integration (M.3) there is a large amount of cancellation. (M.8)

Let us consider the nature of this integration in the illustrative case of a two round conductors,

(x.y)

xl ) '
(X1, 1) . (X2, ¥'2)

L r's

Cl Cz '

I‘1' HI]_ U‘Q

NP\

< >

o

Fig M.1

Consider the contribution to the transverse vector potential component Ay from the right conductor Ca,
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U

Ax(0) = - [ Iu(x'2y'2) In(s2?) dx'z dy'z 527 = (xx'2)% + (y-'2 (M.9)
or

_ E J' ' Y] AN ' '\ D A 2 ' '

Ax(X)=-4- ) x(1'2,02) T'2 @ X + Jo(1'2,0'2) 8'2 @ X | In(s2”) [a2d0'2] dr'2 (M.10)

or
M .
Ax(x) =- ﬁ f [J2(1'2,0'2) cos'2 - Jo(r'2,0'2) sind'2] In(s2?) [a2d0'2] dr'z . (M.11)

The transverse currents in conductor Cy have this partial wave expansion from (M.4),

o8]
Je(r'2,02) = Y Ji(r',m) eI™'2 (M.12)
m = -0

and similarly for Jg . Thus we get

2 - |l
Ax(xy)= -4z Zn | o2 drz Jx(t'2.m) J 0“ d0 'z €32 cosh'; In(s2?)
Ua

!
47 22

2 = Al
pI IZZ dr'y Je(r'2,m) fon do'; 3™ 25ind'; In(sx?) (M.13)

where, from (D.2.33) quoted above,

Jm+1(X) n Jm—l(X)

Je(r,m) =06(/4) Nm [ Rac (aBa) [ Jmt1(Xa)  Jm-1(Xa) x= fr
Jm+ Jm—
Jo(tm) = 6(14) i I R (o) (72205 - Ty Xa=Pa .

It is in theory possible to first do the df'; integration in (M.13) and then do the dr'; integration and get an
analytic result for Ax(x,y). We have dealt with similar angle integrations elsewhere in this document.
Rather then attempt this task, we instead consider the portion of the 2D integration represented by the red
ring in Fig M.1. On this ring, r'; is constant, and our interest is the 0'; integration. For any value of m
(except for £1) the trigonometric functions like e3™ 2 cos0'; integrate to 0, for example,

f := cos(3*x)*cos(x);

F=ros{3x)cos{x)
plot(f,x = 0..2*%Pi),

g AN
Eavaveavav;

int(f,x = 0..2%Pi);

0 FigM.2
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For these values of m, were it not for the fact that sp? varies around the red circle, Ax(x,y) would be
identically 0. Although s, does vary on the red circle, In(s?) varies very little, and we expect to still have
this strong cancellation in the 0'> integral so Ax(x,y) is then small. It is true that if x and x'; were to
approach the conductor boundary from opposite sides, then In(s®) would vary a lot more and the

cancellation would be less, but we ignore this detail in our qualitative argument.
For m = + 1 this smallness argument fails since for example cos?(0'2) does not average to 0 around

the red ring. Ignoring the 0', variation in s, we get in this case (setting ¢392 cosb'2)
l'l’d \ \J Zn 1 '
Ax(x,y) = - 4 22 >n IZZ dr'y J(r'2,m) ln(szz) fO do ', cos20 2
. Ha a2 ., ' 2
3282 In fo dr'y To(r'2,£1) In(s2?) m (M.14)

Now we make a different argument which concerns the behavior of the complex Bessel functions as a
function of 1'2. As studied in Chapter 2, these functions have a dramatically oscillating phase even in the
soft skin depth limit, and we expect then to get cancellation due to this phase as we integrate on the radial
blue segment in Fig M.1, and again ln(szz) varies slowly on this ray due to the nature of In.

The arguments made above for Ax(X,y) also apply to Ay(x,y), and it seems reasonable to assume that
the arguments are generally valid for an arbitrary conductor cross section.

Admittedly our analysis here is imprecise and qualitative, but we think it is convincing that there is in
fact much cancellation when the transverse currents are integrated over the conductors.

This stands in stark contrast to the longitudinal situation where A,, being the Helmholtz integral of J,,
involves a generally non-cancelling integration (per conductor) over a generally large current component.

We now wish to compare the following two integrals, where we pick component A, to represent a
transverse component of A,

1

Ar(¥)=-7- % uier,i(x',y') In(s?) dx' dy' . $? = (x-x)2 + (y-y?) (M.3)
1

Ax)=-7- % pisz,i(x',y') In(s?) dx' dy' . $? = (x-x)2 + (y-y?) (M.15)

We have shown in (M.7) that | J | < 1073 | Jz |. Without any mathematical rigor, and allowing a factor of
10 "gain" from the cancellation effect of Observation (2), we make the following ballpark estimate,

Ae] <107 |A,| f=0to 500 GHz. (M.16)

It is assumed that as o increases, the transmission line geometry is appropriately shrunk so the
transmission line limit remains operative.
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Observation (3): As o decreases, OxAx grows in size relative to 0zA; . (M.17)
Notice that the Claim (M. 1) says nothing about derivatives of At and A..

Observation (3) relates to the discussion of Section 7.5 and the presence of T(z) in Appendix S. In Section
7.5 we present two arguments for OxAx growing in size relative to 0,A, as ® decreases. Here we present a

third argument. We imagine that at large @, we have | 0,Az | >> | OxAx | just because |Az| is so much
larger than |Ay |. But we then argue that as ® decreases, | OxAx | increases in size and becomes more
important relative to | 0,A; |.

From (M.2) we may write, using the ansatz ¢”3*% behavior for J,i(x,y,2),

| _ e JBaR
02Az(X,0) =7~ zifui Jas(X,y'\0) €3 o[ 1AV R = [x-X|
1 _ e JBaR
OxAx(X,0) =7~ Zijlui Txs(Xy'\0) €3 o 1dV' . (M.18)

Since (0,R) = (z-z')/R and (0xR) = (x-x")/R it is not hard to show that

e B4R _
ol 1 =- (z7) (14jBaR) e P /R
e JBaR _
Oulmg ] =- (xx) (14jBaR) e PR R® (M.19)

It follows then that one can write

1
O0zAz(X,0) = - i 25 f pi Jzi(xLy',o) I1(x,y") dx'dy'

1
OxAx(X,0) = - i

n ) f i Jxi(xXLy',o) Ix(xy") (x-x') dx' dy' (M.20)

where

L o= [ dz e eIPR (14B4R)R? * (z-7)
-0
= [ * 4,0 o-3kz' -3BaR (14: 3
L= [ dz e e (1+iBaR)/R> . (M.21)
-0

2 n2

Writing z" = z-z' and then replacing e*3**" = cos(kz") + jsin(kz") and noting that R? =52 + 2" which is

even in z", one finds that
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I3 =+ g k= f ” dz" [z" sin(kz")] (1+jBaR) e IPaR/R3 R?= (x—x')2 + (y-y')2 +27"2
-00

L=e 3 [ 7 dz" [cos(kz")] (1+jBaR)e IPRR3 . (M.22)

One could evaluate these integrals, but we just make the following observations. We expect both integrals
to be dominated by the region near z" = 0 since R is smallest at that point. In that region, the factor
7" sin(kz") is small if k = 0 or if k is large, so I3 is not very sensitive to the value of k. But I is sensitive

to k. For large ®, meaning large k, the I, integrand is chopped up by cos(kz") and I is small. As ® — 0
and k — 0 or some very small value, cos(kz") = 1 so I5 is large. Thus, we argue that the size of I, relative
to I3 increases as @ — 0, and this then suggests that the size of OxAx increases relative to 0,A..
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Appendix N: Drude, Magnetic Ohm's Law, Regular Hall Effect, Radial Hall Effect

The first sections of this Appendix follow the general outline of notes prepared by Pengra et. al. for a
Laboratory Class at the University of Washington.

N.1 The Drude Model of Conduction
The current due to carriers of charge q and density n with drift velocity v is easily shown to be
J=nqv. dim RHS = m™ * Coul * m/sec = amp/m? (N.1.1)

In the classical 1900 Drude/Lorentz model (which of course predates quantum mechanics), the charges
are assumed to be electrons with charge q = - |e| and mass m = me. At this time there was no band-gap

theory, no holes, no effective mass, none of that good stuff. The density n is one electron per atom for a
metal like copper. Here are some basic numbers :
n=28.5x 10?® electrons/m> // for copper
le| = 1.6 x 107° Coul . (N.1.2)
If a relatively large current of 1000 Amps flows through a wire of 1 cm? cross sectional area, one has
J=1000 amps/ 10*m? =10’ amp/m2 .
The drift velocity is then

1000
1.6*8.5

v=1J/(nq) = x 10%+19728 = 74 %107 m/sec =0.74 mm/sec ~ 1 mm/sec .

In this same classical vein, if the electron has thermal energy (1/2) mven? = (3/2) kT, one can solve for
the thermal electron velocity at room temperature,

Ven ~ 100,000 m/sec .

Although this number is wrong from a quantum view, the fact that it is very much larger than the drift
velocity is correct. In the Drude theory, these fast-moving electrons are colliding with copper ions at a
high rate, and every collision results in a complete redirection of the electron. In copper the effective
mean collision time is on the order of T = 10™** sec. It is only between these closely spaced collisions
that the electrons have time to drift a little in the presence of an electric field. Since F = qE = dp/dt, one
concludes that Ap = qEAt or just p = qEt where p is the amount of drift momentum an electron picks up
between collisions. Since on average an electron on each collision dumps this momentum into the lattice,
the lattice can be regarded as a frictional or drag force acting against the electron's flow, and that force is

- Ap/At=-p/t. So,

Fg =-p/t =-(m/1) v . (N.1.3)
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This frictional force is proportional to velocity, as is typical for low-velocity fluid drag, and is naturally in
a direction opposite the velocity. When combined with the Lorentz force,

F=qE + qvxB (N.1.4)

and F = ma, one obtains a fairly reasonable equation describing the motion of a conduction electron,
dv
mge = qE +qvxB - (m/1) v . (N.1.5)

If B = 0 and the conduction is in steady-state, this says

0=qE-(m/t)v
or

v=(qum)E . (N.1.6)
The constant appearing here is called the carrier mobility p, so then

v=uE u=(qt/m) . // units of p are tesla™* (N.1.7)
Officially mobility is (Jq|t/m) > 0, but we shall use the signed mobility shown above.
Warning: p is the same symbol used for magnetic permeability.
If one now installs the drift velocity (N.1.6) into (N.1.1), one gets

J=nqv = (ng*t/m)E =cE . o = conductivity (N.1.8)

The coefficient appearing in (N.1.8) is known as the conductivity of the medium, as we well know by
now, so the classical Drude theory is predicting that

6= (nq*t/m). //6 = nqp (N.1.9)

If one measures ¢ for copper, one can deduce the value of t for the Drude model of conduction:

7= mo/(nq?) (N.1.10)
We know that

m=9.109x 103 kg // electron mass

6=75.81x 10" mho/m /I conductivity of copper (N.1.11)

so that, along with the numbers stated earlier in (N.1.2),

1= mo/(ng?) = 243x 107 ~ 107 (N.1.12)
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as claimed earlier.
If the electrons are moving with time dependence e7%, the left side of the equation of motion (N.1.5)
becomes jom v. We then get

jomv =qE- (m/t) v

(m/7)(1+jot) v=qE

1 1
V= —1+joor (qt/m)E Hac = THor mn (N.1.13)
2 1
J=nqv = Haor (ng“t/m)E =ocscE Cac = ot c . (N.1.14)

In our analysis of transmission lines, ot << 1, so we may neglect this AC adjustment of the mobility and
conductivity. Roughly ot =~ 1 when

o =2nf =1/t =10 = f= 16,000 GHz (N.1.15)
so for f < 160 GHz there will be < 1% change in p or ¢ in the Drude Model.
N.2 A Theory of the Hall Effect

All theories and models are deficient in some way but might still deliver a reasonable result. The Drude
model above is generally "reasonable" in this regard, though it fails to match reality in various ways. Here
we present an instant theory of the Hall Effect which correctly predicts the main result to within about
30%, but has an annoying theoretical defect noted at the end of the section.

Using the traditional directions x, y, and z, here is the classical Hall Effect picture, where we put the
origin at the center of a rectangular sample block,

- A
I y I
—> R
—> X W
q Vx z Bz
B =B,2
\ 4

Fig N.1

The idea is that current flows through a sample in the presence of an externally applied uniform
transverse magnetic field which in this case is B = B;Z with B, > 0. Semiconductors have much lower

carrier densities than copper, and one can imagine for a semiconductor sample that the block above is
placed between two copper plates (gray on right) to cause the applied current to be spread out evenly in
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the sample. This is one of several technical details we shall ignore, and we just assume the current is
spread out evenly. Typically the thickness T is made very small because this boosts the Hall voltage as we
shall see below in (N.2.6).

We imagine the two wires from the sample being connected to a battery with + on the left and - on
the right, so that I > 0, but we allow the charge carriers q to have either sign. Since the apparatus forces
1> 0, we must have sign(vy) = sign(q) so qvx > 0.

The Lorentz force acting on a carrier of charge q, along with the friction term, was shown in (N.1.5),

F=qE+qvxB -(m/t)v . (N.1.5)
Applying this to the Hall apparatus of Fig N.1 one finds that.

F=qE +q [vxX] x[Bz2] - (/1) [vxX] =qE - (qvx) Bz § - (m/1) [vxX] (N.2.1)
Since qvx > 0, the carriers are deflected downward regardless of their sign. After a short while, this

vertical carrier deflection causes equal and opposite surface charges to pile up on the upper and lower
plates, and this in turn creates an electric field Ey which neutralizes the deflecting force and then the

carriers move only horizontally. In (N.2.1) one then must have E = + v,B,¥ so then only the horizontal
drag force is left and F = - (m/1) [vxX]. Therefore,

Ey=vxBz . // the Hall field (N.2.2)

If q > 0, then vx > 0 and the Ey field points up, indicating positive charge on the lower plate.
If q <0, then vx < 0 and the Ey field points down, indicating positive charge on the upper plate.

From (N.1.1) we have Jx = nqvy and also Jx = [/(WT) so

I IB,
Vx = nqWT and then Ey= nqW (N.2.3)
One usually then defines
1
Ry = n_q // the Hall coefficient (N.2.4)
so (N.2.3) becomes
I 1B,
vx =Ry WT and Ey =Ry WT // the Hall field (N.2.5)

Note that sign(Rg) = sign(q). The Ey field produces a potential (a voltage) between the top and bottom
faces, and since E =- VYV,
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wdVv
Vi = Veop - Veor = V(W) -V(0) = [ "5

w IB;
dy =— fo Eydy =-Ey W =-Rg v * W

SO
1B,
T

Vg= —Rg* // the Hall voltage (N.2.6)

Fact: The sign of the Hall voltage Vg indicates the sign of Ry and thus the sign of the charge carriers! If
for some metal the carriers are holes ( in the quantum theory of metals), Ry will be positive. Pre-quantum
researchers were indeed surprised when they found different signs of Ry for different metals.

Using the numbers in (N.1.2), the Drude theory for copper predicts that

1 }
R ~pogy = -73x10 10 // Drude theory (N.2.7)

as shown by this Maple calculation where we have included units,

BH := 1/(n*q);
L
n := B.he28%m"(-3):
q = —-1l.6e-19%cou:
RH/,
3
-10 =2
= 7352941175 10 —
con

This is not too far from the measured and quantum-correct value of -0.55 x 1071° (though the literature
seems a bit unsure of this number). This is an impressive success of the classical Drude theory.

As claimed earlier, and as seen in (N.2.6), making thickness T very small makes Vg larger so it can be
measured with a voltmeter one can afford to place in a student lab. Typical numbers for a student lab
experiment might be

T =18 microns =18x 10"®m // a thin film of copper

W=1cm=1x10"m

B, =5000 gauss=0.5T

I=10 amps (N.2.8)

so that, according to the Drude theory,
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T := 1Be-6%*m;
T=.00001% s
W = le-2%m: Ey := RH*T*Bz/ (W*T) ;
_ vt
W=01m By =— 002042483660 ——
Bz := 0.5*%tes; e
Bz = Sies VH := -Ey*W/
I := 10%amp; FH = 00002042483660 volf
£ =10 app vx := RH/(W*T);
R - e
amp := cou/sec v =— 0004024967319 ——
tes := wolt*sec/m"2: Co

so we end up for this experiment with

Ey =-2mV/m Hall field
Vg = 20 pv Hall voltage
vx = - 0.4 mm/sec drift velocity (N.2.9)

Recall that Ry = n_q Since the carrier density n in a semiconductor is much smaller than in a metal, Ry

and Vy are much larger, so practical Hall devices become more feasible. But our theory has to first be
generalized to two types of carriers (electrons and holes), and this is done in Section N.6 below.

A Hall effect sensor exists in almost every fan in every personal computer in the world. Since the fan has
some rotating permanent magnets, the Hall sensor can detect the rotational position and speed of the
blades and most importantly detects when the fan has stopped rotating altogether (pulses stop). In general,
Hall sensors are used to measure magnetic fields, and can be used as simple magnetic switches.

And now comes the "theoretical defect" of our Hall effect analysis. Assuming that Ohm's Law J = ¢ E is
operative in the Hall sample, and since there is an internal field Ey in the sample, there should be a
corresponding and uniform current density Jy; = o Ey in the sample. Unfortunately, at the top face (for

example) this current has no place to go, so something is wrong. This problem will be dealt with in
Section N.5 below.
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N.3 The Cyclotron Frequency

When a charged particle travels through an empty region of space having a uniform B field and no E
field, the equation of motion (N.1.5) becomes (dot means time derivative),

mv = qvxB . (N.1.5)
Assume that B = B2 so then

q vxB = [viX + Vy§l +vz2] x [qBZ] =-vxqB¥y + quBﬁ
SO

mvy = vyqB => Vi = WcVy => V= —(ngzvx

mvy = -vxqB Vy = - OcVx Vy = -0civy

mv, =0 Vz=0 where e = (qB/m) . (N.3.1)

Looking at the 2nd order ODE for v, we may write the general solution for vy in terms of two constants R
and ¢ in this way

vx = -Roesin(wet + @) => vy = (l/oc) Vx = - Roccos(wet + ¢)
so that

V= \[szJrVyz =Rw: = (RgB/m) (N.3.2)

vx = - Rocsin(wct + 0) = x = R cos(wct + @) + X1

vy = - Roccos(oct + ¢) > y =-R sin(oct + @) +y1

Vz = Vg => Z=Vyt+ 2z (N.3.3)
SO

(x-x1) = R cos(wct+ @)

(y-y1) = - R sin(wet + ¢) = (xx)?+ (yy2)? =R?

(z-20) =vgt. (N.3.4)

In the x,y dimension the particle goes around in a circle of radius R at rate o (clockwise if w¢ > 0), while
in the z direction of B it moves at some constant velocity, resulting in a circular or slinky spiral trajectory.

The angular frequency we is known as the cyclotron frequency, named after a charged-particle
accelerator invented in 1932 by Lawrence known as a cyclotron, see wiki and left drawing below. In this
machine particles traverse an outward-going spiral (different from the one just mentioned) because they
are accelerated by an AC electric field driving two hollow D-shaped conductors of a capacitor enclosing
the particle beam. As v increases, R must increase as shown above in (N.3.2). The capacitor is driven at
the cyclotron frequency wc so the accelerating E field is in sync with the circular particle motion. Since
®e = (qB/m), this frequency has to be reduced if the charged particle bunch being accelerated reaches
relativistic speeds and m increases.
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The circular motion of charged particles in a uniform B field is also used to identify particles
produced in high energy collisions inside particle accelerator detectors. Since v = RqB/m from (N.3.2), if
the particle m and q is known, the speed v and hence energy can be determined from R, and the sign of q
can be found from the CW or CCW nature of the particle path. Alternatively, if the energy and speed are
known from "calorimetry" and a charge q is assumed, the mass m of the particle can be found from R.

Magnetic field bends
path of charged particle.

Square wave
electric field
accelerates
charge at
each gap
crossing.

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/cyclot.html CERN

The Cyclotron Particle Tracks (B field out of paper) Fig N.2

N.4 Steady-state Electron Motion with E and B fields: Magnetic Ohm's Law

We start again with the motion equation for an electron in copper,
dv
g = gE +qvxB - (m/1) v . (N.1.5)

We now seek a steady-state solution, so the equation becomes

(m/t)yv=qE +qvxB. (N.4.1)
Making use of the signed mobility p = qt/m shown in (N.1.7), we can write (N.4.1) as

v=uE + pvxB
or

v -uvxB =puE . (N.4.2)

The plan is to solve this equation for v and then to obtain the current density using J = nqv from (N.1.1).
Recall that Ohm's Law says J = ¢ E, but with B present, Ohm's Law will be different. For simplicity, we
again assume B =B 2. Then

LVXB = [vyX + Vy§\7 +v2]x[uBZ] = - vxuBy + VyuBﬁ
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so that (N.4.2) becomes

[VeX + Vyfr +vz2] - [- vxkuBY + VypBﬁ ]=[MExX + pEyfr +uE.2Z ]
which may be decomposed into the following three equations,

Vx - UBvy = uEy

vy T uBvy = pEy

vz =uBz . (N43)

The first two equations may be expressed in matrix form

1 -I.LB)(Vx) _ (Ex)
(uB 1 J\vy) " HUEy (N.4.4)
and then
Vx . 1 -HB) _1 (Ex)
(vy) —H (uB 1 Ey) - (N.4.5)
Maple tells us
M := matrix(2,2,[1,-mu*B,mu*B,1]);
b
M=
[ 1
inverse (M) ;
1 ]
1+pf80 1R
[ 1
1+u232 1+|_L232
so then
Vx) __ 1 pB) (Ex) o p (Ex+uBEy)
(Vy) ~ 1+(uB) (-uB 1 Ey /) 1+HuB)* \ Ey - uBEy /) ° (N.4.6)

But using (N.3.1) that ®c = (qB/m) one finds that
uB = (qt/m)B = (gB/m)t = .t (N.4.7)

so the solutions above, combined with the known third solution v, = pE,, become
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1
Ve = H(Ex +0cT By) T,

1
vy = W (By - 0cT Ey) THwow)?
vz=uEz . (N.4.8)
We have found our solution for v! To find J, use (N.1.1) that J = nqv and the fact that

nqu = nq(qr/m) = (ng’t/m)=o // from (N.1.7) and (N.1.9) (N.4.9)

to find that (in agreement with (10) of Pengra),

1
Jx= 0 (Ex + 0ct Ey) THoD)? we = (qB/m)
1
Jy= o (By - 0ot Bx) T2 B=B2%
Jz=cE, . 6= (nqt/m) (N.4.10)

The is the "Magnetic Ohm's Law" which, in the presence of B =B 2 , replaces the usual Ohm's Law,

Jx = oEx
Jy =ocEy
J,=0oE, (1.1.7)

In matrix notation one can express (N.4.10) as

Ty [ oC 6Cc ®etT 0 J Ex .
Jy| =| -ococt o 0 || Ey where c=7 72 (N.4.11)
J’_
I, 0 0 o J\E, o)
or
oc oc 0T 0
J=XE Y=| -ocwet o O (N.4.12)

0 0 o

Since J and E are 3-vectors, the matrix X is a rank-2 tensor under rotations.

Fortunately, as will be shown below, the magnetic field strength in a transmission line is small enough so
that wct << 1, which means that the normal Ohm's Law is justified despite the presence of B fields.
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N.5 Theory of the Hall Effect Revisited

We replicate the Hall geometry from above, where recall that B = B, 2 :

z z
B=Bz% l
Fig N.1

Looking at the drawing, and recalling the small "defect" in the theory of Section N.3, and staring at the
Magnetic Ohm's Law (N.4.10), we insist that J; = 0 at least at the top and bottom faces, since as noted
earlier, this current "has nowhere to go" in the steady state. Since things are generally uniform in this slab
of material, we make the ansatz that J, = 0 everywhere in the sample. The second equation of (N.4.10)
then says

Ey-octEx =0 => Ey = 0ct Ex (N.5.1)

When this is inserted into the first equation we find, along with the other two equations of (N.4.10),

1
Jx= 0 (Ex + 0cT [0cT Ex]) THow)? Ex
Jy=10
Jz=0E; . (N.5.2)

There is no reason to have E, # 0 since the electrons are only deflected up and down. Moreover, we
would like to have J, = 0 on the front and back face, so E; = 0 is the obvious choice.

Then from (N.5.1) we must have (the last three factors on the line below are each unity ),

0T Jx . I . gBz/m w_ O

Ey = 0ct Ex = ot [Jx/c] = pn T.TW P~ nqzr/m
1 1B,

= n_q *W . (N.5.3)

This is the Hall field ! The Hall voltage is then

1 _IB; IB, 1

VH:iEyW:n_q*T =—Ry T Ru=—". (N54)
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This is the same as the Hall field and voltage obtained in our previous derivation, as shown in (N.2.5) and
(N.2.6). But now we end up with J; = 0 so there is no vertical current having nowhere to go, nor is there
front-back current, and we also have Jx doing the regular Ohm's Law as shown in (N.5.2)

Jx = ocEx
Jy=0
J.=0. (N.5.5)

This seems a more complete solution to the Hall problem than that of Section N.2.
N.6 Theory of the Hall Effect with Multiple Carrier Types

Let index i label the types of carriers. The developments of Sections N.1 through Section N.4 carry
through as is, but everything now has an i index. For example, we now have

J=%in;qivi (N.1.1) (N.6.1)
vi =(qiti/mi)E =p; E Wi = (qiTi/m;) = signed mobility (N.1.7) (N.6.2)
0i =N3iqi pi = Niq (qiTi/ms) = (n3qs°Ta/my) (N.1.9) (N.6.3)
vi - nivixB = E . (N.4.2) (N.6.4)

This leads to solutions for velocities v; ,

1
Vxi = MHi( Ex + 0ciTs Ey) 1+( (DciTi)z ®ei = (qiB/mjy)
1
Vyi = Hi (Ey - @ciTi Ex) 1+ wests)? Hi = (qiTi/m;)
Vzi = Wi Eg (N.4.8) (N.6.5)

and we can define the total conductivity as
c =% 0; . (N66)

The current densities from (N.6.1) and (N.6.5) are then, using also (N.6.3) that 6; =n3;q; M ,

1
Jx=2ioi [(Ext+0ciTi Ey) 1+( (DciTi)2 ] Wei = (qiB/my)
1
Jy =23 01 [ (By - @ciTi Ex) m] ©ciTi = (qiTiB/my) = Bpy
Jz=2-1 Oji Ez :Ez Zi Oji :EZG . (N67)
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At this point it is useful to define objects o and  having the dimensions of conductivity, and a third
object whichisy =/B :

1

¢ 5% T (0an)?
_ WeiTi _ Hi
b =20 I+ 0eiT1)” BZi04 1+( ©ciTi)
=By Y= Z2io; TH vt )? (N.6.8)
In terms of o and B we rewrite (N.6.7) as
Jx=0aEx+ l?)Ey
Jy=aEy - BEx
Jz=Ez(Zi0:) =E;0 . (N.6.9)

Our Hall effect geometry again requires that Jy = 0 and that J; =0 ("nowhere to go"),

z z
B= Bz%
Fig N.1
so the second equation of (N.6.9) says
a By = BEx
or
Ey = (B/o) Ex /I = the Hall field (N.6.10)

and this Ey is the Hall-effect electric field in the case of multiple carrier types. Inserting this into the first
equation of (N.6.9) gives

Jx=0Ex+PBEy =aEx+PB(B/a) Ex =[a+p%a]Ex (N.6.11)
so our triplet of current densities is now

Jx = [+ p%/a] Ex

Jy=0

J,=0. (N.6.12)

The conductivity appearing in the J, equation we define as Gpy so that

Jx = Omr Ex ome = o + %0 = a(B) + B2 y(B)*/a(B) (N.6.13)
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where we must remember that o, B and y all depend on B through each wc37t; = Buj. In general, we have
Oomr # O, s0 the Hall sample has a conductivity in the main current direction x which depends in a
complicated manner on field B. This effect is called magnetoresistance. However, if there is only one
carrier type, one finds that ony = o (see below) and there is then no magnetoresistance effect, as we

already saw in the first equation of (N.5.2).
The Hall field can be written

Ey=(B/a) Ex = Bla) [a+P%a]™ Jx =B/a) [o+p%a]™ 1/ (WT)

B
=z /(WD) :EZTBY? 1/(WT) =Ezf]3—yz B1/(WT) (N.6.14)

and then the Hall voltage is
Vg=-E,W=- Ez:%z?z BI/T (N.6.15)

and the Hall coefficient is

Ry =l = —=HBL__ (N.6.16)

o+ [a(B)]"+{[B(B)]

Unlike the single-carrier case, Rg now depends on B in a complicated manner. Just to verify the single
carrier case we evaluate:

1 et 1
%= O T wor)? B= o T om?! = T (o)

1 c
o + % = o 1+ 1) Ry = aTlLBZ = gkzl = wo = (qu/m) / (ng®t/m) = 1/(nq)

Ome = 0+ P2l = (1/o)( o+ p?) =c’/o=0 . // no magnetoresistance (N.6.17)

If we take the magnetic field B small enough so that wcit; << 1 for all carrier types (a normal situation),
where recall that mc; = (q31B/m;), there is considerable simplification. One finds that,

1
=Y. o= ~ .6 =
o =2%; 05 TH 0t )2 H(0oity) 2i0i =0
WeiTi WeiTi
=3.0; = 7 R Yio0: o << X:o0; <<
B=ZX; o3 1+ we1ts) Yi 0f 1 Yi0: 1 o

a2+B2 :a2z62

Yy=2Xi0; H(cgl—lr)z ~ Xioilli . // signed mobilities ! (N.6.18)
cit‘i
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Then,

B _XiOilli  XiOilli
Ry —az‘;%z = T Ee (N.6.19)

For two charge carrier types this gives [recall (N.6.3) thato; =niqi pi],

O1f1 T O2p2  N1qa Ma Wi T N2q2 p2 U2

Ra = (01t02)°  (n1qz p1 +N2qz p2)° (N-6.20)
Now suppose 1 = hole and 2 = electron so q1 = -q2 = |e|. Then,

Ry = Lt -nzie” J/ signed mobilities 1 = (qt/m), weak B field (N.6.21)

e N ——1 = 6.
B Jel (n1pa - nap) & B =iqut,
or
2 2
1 n -n
Ry = oot b2 J/ unsigned mobilities, 1 = (qlt/m), weak B field (N.6.22)

==
le| (n1p1 + n2p2)

The last result is in agreement with Eq. (13) of our Pengra et. al. reference. The Hall coefficient could
have either sign!

N.7 The Radial Hall Effect in a Round Wire
The author has had difficulty finding a treatment of this subject, but it must exist somewhere.

Consider an "isolated" infinitely long round wire of radius a carrying static current I. We use cylindrical
coordinates r,0,z with the symmetry axis along the wire center line. It is often casually claimed that the
current density J, in such a wire is uniform throughout the cross section and that there is no charge
density on the surface. Here we wish to explore these claims.

In cross section, the situation is as follows:

B field positive current | flows out of the plane of paper
electron flows into the plane of paper

direction of v x B

direction of Lorentz force -le| v x B

electrons are deflected toward the center line

must be balanced by inward directed radial E field
which exerts a radial outward force on the electron

Fig N.2

Each electron sees the magnetic field B created by all the other flowing electrons. At any azimuthal
location 0, the electrons are deflected toward the center line by this B field, causing a free charge
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distribution inside the wire which results in a radial field component E,. This radial Hall field then offsets
the deflection resulting in all electrons flowing exactly in the z direction.

This problem differs from the regular Hall effect problem studied in Sections N.2 and N.5 in two
major ways: (1) The magnetic field is generated by the flowing current under study, it is not externally
applied; (2) the magnetic field is non-uniform and in fact is a function of r.

We shall use the method of Section N.5 to determine the E. field and the associated charge

distribution. The three unit vectors X, ¥, Z of that section can be replaced by the cylindrical unit vectors t,

A . . . . :
0, 2 where the usual cyclic sense of unit vector cross products is then maintained. In a cross section of the
round wire, r and 0 are then "the usual" polar coordinates, while the z axis comes out of the plane of

paper.
Since the situation is static, one must have curl E =0 . But in cylindrical coordinates,

curl E = [ 1 236E, - 0gEe] + 0 [02Ey - 0xE4] + 2 [ 1 *0x(tEo) - r 06Ez | .
1 2 3 4 5 6

We certainly expect to have Eg = 0 at r = a since the round wire surface should be an electrostatic
equipotential, and it seems reasonable to have Eg = 0 everywhere inside the wire, so we set Eg= 0 as an
ansatz in a search for a Maxwell-Equations solution, and this knocks out terms 2 and 5 Any term with 0,

must also vanish since the wire is static and infinite in length, killing off terms 2 and 3. Since the wire is
in isolation, the field pattern must be azimuthally symmetric, so J¢ terms vanish, killing off land 6.
Having thus removed terms 1,2,3,5,6, we are left only with term 4 so

curl E= 0 [- 0,E,] . (N.7.1)
Since the static situation requires curl E = 0, we end up with
OrEx(1,0,2) = OLEx(r) =0 => E.(r) = constant . (N.7.2)

Recalling from Section N.4 that Ohm's Law can be affected by magnetic fields, we now make a second
ansatz which is that the regular Ohm's Law applies in the z direction. We then obtain

J2(r) = o E(r) = constant Jz =uniform (N.7.3)

and in this way we arrive at a uniform J, in the wire, but we need to verify that our assumptions made so
far are consistent with other requirements. Given then that J, is constant in r and 6, we can compute the
magnetic field inside the wire from Ampere's Law in the usual fashion,

i 1 ol A A
27r H(r) =2 I = H(@) =5 (r/a) = B(r)= a (r/a)® = B(r) 0 (N.7.4)

Here we make a third ansatz that the other two B field components are 0. Note that po is magnetic
permeability, while p to appear below is the (signed) electron mobility.

At this point, we recall the static equation (N.4.2) arising from the Lorentz force and collision friction,
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v -uvxB =pE (N.4.2) (N.7.5)

and we solve for v using the method of Section N.4. First,
pn vxB =[Vr?+veﬁ+vzﬁ]x[u86] =veuBZ-vuB ¢t

V= Vri'\-i-veﬁ-i-vz 2
Then (N.7.5) becomes

[Vrf\+V96+Vzﬁ] -[Vrl.J,B/Z\-Vz].LB f'\] =uEr/l\+uE96+uEzﬁ
which may be decomposed into the following three equations ( here in z,r,6 order),

Vg - WBvy=pE,
vetuB v, =puE,
Ve = },lEe . (N76)

We note that the first two equations of (N.7.6) have the same form as the first two equations in (N.4.3)
which were

Vx - UBvy = uEx
vy + uBvx = uEy (N.4.3)

Taking then the previous solution with (x,y) — (z,r) we find from (N.4.8) that

1
v = HEe 06t ) T, 7

1
ve= W(Er- 0T Ey) THo)?

Ve = },lEe (N.7.7)

where we have carried down the third equation from above. Recall that the cyclotron frequency wc enters
the picture since uB = .t as shown in (N.4.7). However, now since B = B(r), we have ©c = 0c(r) =
gB(r)/m. Nothing in the development of Section N.4 precluded the B field from having spatial
dependence because no spatial derivatives (like curl or div) were involved.

The next step is to use (N.1.1) that J = nqv and the fact (N.4.9) that nqu = o to obtain,

1
Jz= 6 (Ez+ ot Ey) THow)? oc = (qB/m)
1
Jr=c(Er—cocth)mz B-B#o
Jo=0cEse . 6= (nq?t/m) (N.7.8)
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Since the radial current at the surface "has nowhere to go" we set J = 0 just as we set Jy = 0 in the Hall
effect analysis of Section N.5. One then finds

Er =0ctE, (N.7.9)

where E is a radial Hall field. Insertion of (N.7.9) into the first line of (N.7.8) gives

1
Jz= 6 (Ez + 0t [0cT EZ)) Tmcr)z = oE, (N.7.10)

and then our current components are

Jz.=0cE,
J.=0
Joe=0 (N.7.11)

where in the last line we have applied our ansatz that Eg = 0. Our earlier assumption that the regular

Ohm's Law applies in the z direction is now self-consistently born out.
The radial Hall field from (N.7.9) is

Er(r) = oc(r)t E; =(gB(r)/m) T E, =(qt/m) B(r) E, = p B(r) E, /I (N.1.7) for p
Hol Jz
=u* e (r/a) * — /" (N.7.4) for B(r) and (N.7.11) for E,
na o
wo, Mol I 1 uol?
=5 * ma (r/a) *Ez = n_q *W (r/a) // (N.1.9) for wWo
2
L N.7.12
= TZanq W) = Es () (N.7.12)
where
pol? :
Es =E.(a)= m volts/m . // Eg <0 since q = -|¢e| (N.7.13)

The three electric field components are then

E, =1/ (na?)
Er =Es (r/a)
Ee=0 . (N.7.14)

We may then compute div E,
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div E = 1720, (tEy) + 1 *0¢Ee + ,E; = 1 10(1Ey)
=110(1[Es(1/a)]) = (Es/a) r 10:(1?) = (Es/a) 1 *2r = (2Eg/a) (N.7.15)
Since div E = p/gg , we conclude that there must be a constant free charge density inside the wire,
p = go(2Eg/a) . (N.7.16)
In a slice of the round wire of length dz, the total internal charge is
Q =p * (area) * dz = p ma? dz = £9(2Es/a) ma® dz = go(2naEq)dz . (N.7.17)

Since this charge had to come from somewhere, we conclude that the outer surface of the wire slice has
charge - Q and surface charge density ng

ng =-Q/(2nadz) = - go(2maEgs)dz / (2madz) =-goEs (N.7.18)
a result one could also obtain from a gaussian box at the surface. Outside the wire, each charge density

acts as a line charge at the wire center and they cancel out, so there is no external Hall field.
There exists a Hall voltage between the wire surface and the wire's center line,

Vi = V(a) - V(0) = Oa%—\r’ dor=- [ Oa Ex(r)dr =— (Bg/a) | Oa rdr
2
pol 1 . Mol 1 1 I
= -(a2)Es = (ai2) 2n%a°nq nq " oma >l<Zna ~ Tnq * Bo(a) * 2na (N.7.19)
SO
1
Vi = — Ry [Be(a)21] I Ra=po (N.7.20)

which we compare to the normal Hall effect result (N.2.6)

Vu=—RgB,1/T . // the Hall voltage (N.2.5)

The Ry is the same in both geometries, but the thickness T is replaced by radius a, and the uniform Hall B
field is replaced by Bg(a)/2n. We make this arbitrary partitioning of the factors since radius a seems the
distance that most corresponds to thickness T of the normal Hall effect.

It is certainly unclear how one would measure this radial Hall voltage, since it is rather difficult to
place one of the voltmeter probes on the center line of a round copper wire, but doubtless this could be
managed in some manner.
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Radial Hall Effect Hypothetical Experiment

We have shown in (N.7.19) that

2 2
ol Kol Ko
Vu =-(a/2)Es =-(a/2) mPanq " 4nfa’nq  4nPng

(/a)? . (N.7.21)

We would like to maximize I/a in order to maximize Vg, but we don't want our wire to melt. According to

http://www.powerstream.com/wire-fusing-currents.htm, a fairly large I/a ratio of 45 (SI) is provided by an
AWG #16 copper wire having a diameter d = 1.29 mm and a fusing current of 117 amps, so we shall run
this lab experiment optimistically with I = 100 amps. What voltage Vg might one observe? We have
Maple evaluate these quantities:

2

Hol
Es= m volts/m

Vi = -(a/2)Es volts
ve=Jz/nq =( /naz) (I/nq) = I/(naznq) m/sec

Es = u0*I"2/(2*%pPi"2*a"3*n*q) I := 100%*amp:

1 u0f2 a = (1/2)*1.2%9e-3*m:

HFe=—— evalf(Es)
2 23
M a "G valf
hen := volt*sec/amp: —0001744464238 o
amp := cou/sec: VH := evalf(-Es*a/2);
far := coun/fvolt: 7
n := 8. 5923*]“/(_3) : VH = 5625857169 10 vali
q := -1l.6e-19*cou: vx = I/(Ri*a”2¥n*q);
ud := 4*pi*le-T*hen/m:
=—01767427721

el := 8.8he-12*far/m: vE sec 7T

The results are then

Er(a-¢) =Eg=-0.17 mV/m
Vg = 56 nV
vx = -18 mm/sec (N.7.22)

which can be compared with the results of our "regular" Hall effect experiment shown in (N.2.9). The
Hall field is about 10x smaller, the Hall voltage about 350x smaller, and the drift velocity 45x larger.

The Hall field just below the surface is Ex(a) = Es = - 174 pV/m and decreases linearly to 0O at the
wire center. Just outside the surface the field is zero since it is cancelled by the surface charge.

The internal charge density p and the surface charge density n are then,
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ns = evalf{-e0*Es) ;
rho := evalf(e0*2*Es/a) ; _14 cou
sz = 1543850850 10
_11 o
p =-47E7134420 10 — m
- ns/q;
rho/q; 1
g 1 —9649.06?813—2
2991959013 107 —— m
mB Ba := ul*I/(2%pi%*a) ;
{rho/q)/n; valf zec
Y Ba = 03100775124
3519951730 10 m

The internal constant negative charge density p is very small and represents an excess of about 1 electron
for every 102! conduction electrons. The positive surface charge ng is also tiny, being a deficiency of only
10,000 electrons per square meter.

One reason the radial Hall effect is small is that the self-created B field is relatively small. On the
right above Maple shows our lab example field is Bg(a) = .03T = 300 gauss, whereas in the Section N.2
the external B field was assumed to be 0.5 T = 5000 gauss.

So why were we allowed to ignore the self-generated B field in the regular Hall effect of Fig N.1?
Presumably the "radial" Hall effect due to the (not shown) self-generated B field will create an internal
and surface charge distribution pattern (and an internal Hall field) in Fig N.1 that is mirror-symmetric in
the y = 0 plane. Thus, the regular Hall field Ey gets equal and opposite radial Hall effect contributions
above and below this plane and is therefore not affected by superposing the two problems.

Reader Exercise: Calculate the "radial Hall effect" for a rectangular wire like that in Fig N.1

Conclusions. In the above analysis, we made certain assumptions (Eg = 0, J, = 6E,, and B = BO ) in
seeking a solution for the E and B fields of an isolated, axially symmetric infinite round wire carrying
static current I. We found a solution which satisfies all four Maxwell equations, and since solutions are
unique, that is the solution to the problem. The characteristics of this solution are:

1. There exist no radial or azimuthal current densities inside the wire, J» = Jg = 0. The only current
density is J, .

2. This current density J, is uniform over the wire cross section, so J; = I/(naz).
3. The regular Ohm's Law applies to J,, so that J, =6 E,.

I
4. The magnetic field inside the wire is given by B(r) = % (r/a) 0.

5. In order to balance internal radial Lorentz deflections of the current-carrying electrons, a very small
internal radial E, Hall field exists inside the wire which is directed toward the center line and has the

form
uol?
Ex(r) = Es (1/a) where Eg=- m . (N.7.12)
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6. Associated with this radial Hall field is a very small, negative, constant free charge distribution inside
the wire which is given by

p = £o(2Es/a) Q= pna®dz =¢o(2maEe)dz

7. This fact contradicts (but in a very small way) the claim of Section 3.1 that there can be no free charge
inside a conductor. That section did not include the possible effect of magnetic fields.

8. This negative volume charge is extracted from the wire surface which then has a positive surface
charge which is equal and opposite to Q shown above. Observed from outside the wire, the electric fields
of these two charge distributions exactly cancel, resulting in no external radial E field.

9. We refer to the last items 5,6,7,8 above as "the radial Hall effect", for want of a better term.

10. It is hard to imagine how would might measure this effect.

N.8 Magnetic Ohm's Law for Arbitrary B

Section N.4 developed a Magnetic Ohm's Law for B = BZ. Now allow B(x) to point in a general direction
with components B, B, and B3 and consider a DC static situation. Equation (N.4.2) then says,

kv=E +vxB where «=1/p /' w=(qt/m) from (N.1.7) (N.8.1)
or

kvi = Ej +v2B3 - v3B2

kva =Es +v3B1 -viB3

kv3 =E3+viBs -v2B1 . (N.8.2)

Notice that dim(k) = dim(B) = Tesla. Maple solves this vector equation for the velocity components v; :

[ eql := kappa*vl - B3*vZ2 + B2%v3 = E1;
I egl! =wvi - BivI+EBIvi=FR]
[ eq?2 := kappa*v2 - Bl*v3 + B3i*vl = EZ2;
i egd =wvd—Blvi+Bivi=FE2
[> eq3 := kappa*v3 - BZ2*vl + Bl*v2 = E3;
L el =wvi— B2yl +EBIvi=FE3
[ £ := solvei{{eql,eq2.,eq3},{vl,v2, v3})
BEBBES—EIB3K+K2E2+KB£E3+E2322+B£32E£
F=qvd = .
2 2 2 2
K827+ 87+ +837)
BEKEE—BfKE2‘+BEBSEE+BEE233+E3K2+E3332
b e =
K(322+Bf2+1c2+332)
—KBZE3+K2EI+B£2Ef+BIBEE2+B£E3B3+KE2.B3
wi=

2

W (B2°+ B1% v+ B39
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From (N.1.8) and (N.1.9) we know that J = nqv = (c/p)v = ko v . Extracting the v; from the above Maple
solution and multiplying by ko we get

J1l := kappa*sigma*Vl;
71 & (— B2 E.?+1c2 £ +BI2EI + Bl B2 EZ+ Bl B B+ B2 BY)
.822+B£2+1c2+332
J2 := kappa*sigma*VvZ;
2 (B2 EBIEI-El 33K+K252+K3f 53+52822+BI B2 ED
322+B£2+K2+B32
J3 := kappa*sigma*V3;

13— o(H2w Bl - BIvEZ+E] 33E£+£6‘2E233+E3K2+E3B32)

5‘22+B£2+1{2+332

(N.8.3)

which is our new and very complicated tensor Magnetic Ohm's Law in the presence of an arbitrary E and
B field. That is to say, we have J = £ E where X is a 3x3 matrix which is a function of the B;. If we could
ignore the three B; components (set them to zero in the above equations), the equations would reduce to
the regular Ohm's Law J; = oE;. This is in effect the case if |B;| << || for all three components of B. So
a condition for the tensor Ohm's Law reducing to the regular Ohm's law is this,

IBi| << [k k=1/p u = (qt/m) kK = (m/qr1) , (N.8.4)
so we need then
|Bi| << (m/|q|t) . //sameas |wc,it| <<1 where (®¢,it) = (qBi/m) (N.8.5)

For copper, we compute k = m/qt using numbers from Section N.1,

me := 9.109%9e-31* kg,
me = 9109 107" kg
tau := le-ld4d*sec;
T=.1 10_13$ec
kg := cou*volt*sec"2*m"2;
kg = cou volt sec2 m
kappa := me/{(g*tau) ;

K =-=569 3125000 valt sec m2

Our conclusion is that "regular Ohm's Law" is applicable as long as |Bs| << 569 Tesla. Even the largest
practical B fields are far below this number. From wiki:
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Examples [edit]

Main article: Qrders of magnitude (magnetic fiald)

e 31.869 pT (3.1 = 107° T) - strength of Earth's magnetic field at 0° latitude, 0° longitude

o 5 mT —the strength of a typical refrigerator magnet

o 0.3 T - the strength of solar sunspots

o 1.20 T — magnetic field intensity at the suface of a neodymium rmagnet

o 1 Tto 24 T - coil gap of a typical loudspeaker magnet

e 1.5 Tto 3 T - strength of medical magnetic resonance imaging systems in practice, experimentally up to 17 TF
e 4 T — strength of the superconducting magnet built around the CMS detector at CERMI

# O T —the strength of LHC magnets.

e 11.75 T —the strength of INUMAC magnets, largest MRI scanner !

« 13 T — strength of the superconducting ITER magnet systern [']

e 16 T — magnetic field strength reguired to levitate a frog, "' according to the 2000 |y Mobel Prize in Physics.['™

So even the Large Hadron Collider designers and frog levitators can use regular Ohm's Law (along with
the writer of Chapter 1 and Appendix D of this document).

So why do we need to use the Magnetic Ohm's Law when dealing with the Hall Effect which has a
relatively small B field? Recall (N.4.10),

1
Jx= 6 (Ex + 0cT Ey) —zl_l_(ch) 0c = (qB/m)
1
JYZG(Ey-mcrEx)W B=B%
J.=oE, . 6= (ng*t/m) (N.4.10)

In the Hall experiment of Fig N.1 we must have J; = 0 and that means we cannot ignore the second term
in the Jy expression above, which implies Ey = 0.t Ex as in (N.5.3). Were we to prematurely set oct = 0,
the Hall effect would go away since then Ey = 0. Although oct <<'1, Ey is still a finite value, albeit a
very small finite value.

One can repeat the above analysis to get a tensor Magnetic Ohm's Law for a monochromatic AC
situation by replacing k — k[ 1 + jot ] in (N.8.1), based on (N.1.5) with ¢ — jo. As shown at the end
of Section N.1, for copper ot << 1 for f << 16,000 GHz, so this k replacement has a miniscule effect and
our conclusions above still apply.
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Appendix O: How to plot 2D magnetic field lines

Maple 18 and earlier versions can plot field lines (flow lines) given a function and a starting point using a
certain vector calculus library package. Here we review the theory of such plots and show how the plots
can be made directly. The methods given here can easily be generalized to make 3D plots.

(a) Statement of the Problem

One is given two functions Hx(x,y) and Hy(x,y) which describe a 2D vector field H(x,y). This field can be
directly plotted in Maple in terms of little arrows as shown for example in Fig C.2 (code shown there)
using the Maple fieldplot command (this is for a rectangular conductor with a uniform current density),

B LW PRI =GR REAR R ] A
N R R A e W N R R T N AN S
W V242 12 b P G P B P BT, G 4
A VI @ 2 2 2 e )= B B B RATAT 4T €
ABAE 6w ¢ « -]~ = 5 5 & &G
IR o s e ?'?'?Egﬁﬁ
@Esbﬁﬁ%ﬂmwﬁﬁbmﬁﬁéﬁﬁﬁ' T
B Sy SasrsAsAsSe I B R R AT PO
D D Y IR D EDNED = I ST A R P PP
Y Y VDU DBDPYDDAIIAA R P PP

Fig O.1

But we want field lines, not field arrows. One can vaguely deduce the field lines from the above picture,

but we want a precise plot.

(b) The Brute Force Method

To track a field line, one can write a small spatial displacement dr in the direction of H,

dr =ds H(r) .

The field line plotting code is then (pseudo Maple syntax)

ds=.01

r[l]=r1

for n from 1 to 100 do
dr =ds * H(r[n])
r[n+1]=r[n] +dr

od

plot the list of points r[n]

(0.1)

// some small number relative to the problem at hand
// pick some starting point of interest for a field line

// compute a small displacement in the direction of H
/I update position for use in next iteration

// this is then a field line (listplot, pointplot, etc)

(0.2)

One might gussy up the code to prevent wasted computation in locations where H is very small, perhaps

computing A=H/ [H| in each iteration then doing dr = ds * fi . A different kind of improvement would
be to use some kind of quadratic Simpson's Rule affair.
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The code above works fine, but error can build up for any finite ds. When a field line is a closed
curve, the error can become visible where the line returns to its starting point, as in the drawing below
which shows some brute-force-method H fields lines corresponding to Fig O.1 above,

/(/’\>\>
N .
\\\//

The field lines may seem a little surprising given the look of Fig O.1, but here is a superposition with the
rectangles lined up,

Fig 0.2
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(¢) The ODE Method

We outline now an alternate (and doubtless well-known) method of plotting field lines. We imagine that
the description of our field H can be described by a pair of parametric equations (not yet known),

x = X(s)
y=Y(s) (0.3)

where s is a real parameter. It follows that

dx = (dX/ds)ds dr = (dX/ds)ds & + (dY/ds)ds §

dy= (dY/ds)ds . (0.4)

We alter (O.1) by adding a "speed function" a(s) just because this might simplify calculations later. This
function a is an arbitrary positive-definite function of parameter s. So,
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dr=a(s)ds H . (0.5)
Then (0.4) and (0O.5) give

a(s) ds H= (dX/ds)ds & + (dY/ds)ds

a(s) ds [Hx(x,y) & +Hy(x,y) ¥ 1 = (dX/ds)ds & + (dY/ds)ds §

a(s) Hx(x,y) = (dX/ds)
a(s) Hy(x,y) = (dY/ds) // component equations

(dX/ds) = a(s) Hx(X(s),Y(s))
(dY/ds) = a(s) Hy(X(s),Y(s)) . // using (O.3) (0.6)

This is a pair of coupled, non-linear, first order differential equations. Conveniently, Maple knows how to
numerically (and quickly) solve such a set of equations using its dsolve command (NDSolve in
Mathematica). Given the solutions X(s) and Y(s), it is then a simple matter to plot the field lines. This is
done in the following example.

Example: Magnetic field lines for a two-cylinder transmission line

In this example we assume that the current density in each conductor is uniform over the conductor cross
section. This assumption is incorrect for a properly terminated transmission line as shown in Section 6.5,
but is valid at DC and low o for a finite-length pair of parallel wires perhaps shorted at one end to form a
closed circuit. Nevertheless, we make the uniform current density approximation for a transmission line
just to have a simple plotting example.

Our first task is to derive expressions for the magnetic field components Hx and Hy. Consider this

drawing of the transmission line cross section (radii are a; and a,, center separation b) :

P

0,

y (x,y)

AN

<

/ 01 ( " X
N

o

Fig 0.4

Current I flows into the plane of paper for the left conductor, and out of the plane for the right. We must
do a vector addition of the two magnetic fields,
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H=Hi(r1) 81 + Ha(r2) 8, (O.7)
where

A .
01 =-sinfb; R + cos61§f

0, = -sin0, & + cos0,9 . (0.8)
From Ampere's Law for each conductor, as shown in (B.4.1) and (B.4.2), the field magnitudes are

Hi(r1) = (I/2m) [ 0(ry>a1) (1/r1) + B(az>r1) (ra/as?)]
Ha(rz) = -(I/2m) [ O(rz>a2) (1/r2) + O(az>r2) (r2/az’)] (0.9)

where 0(x>y) = H(x-y), the Heaviside step function. One then has from (0O.7),
H = Hy(r1) [-sinf; & + cos01¥] + Ha(r2)[ -sinf2 X + cos02¥]

=[ - sinf1Ha(r1) - sinf2 Ha(r2)] & + [cosO1 Hi(r1) + cosbz Ha(r2)] § .
But

cosBy = (x/r1) sinf; = (y/r1)

cosBz = ((x-b)/rz) sinBz = (y/r2) (0.10)
)

H = - (y/r1)Ha(r1) - (y/r2) Ha(r2)] & + [(x/r1) H1(r1) + ((x-b)/r2) Ha(r2)] §

and the magnetic component fields are then

Hy = - (y/r1) Ha(r1) - (y/r2) Ha(r2) r?=x*+y?
Hy = (x/r2) Ha(r1) + ((x-b)/r2) Ha(r2) r2? = (x-b)* +y* . (0.11)

We now enter the expressions (O.11) and (0.9) for the field components into Maple, setting the current
arbitrarily to I = 2m units. Both conductor radii are set to 0.5 unit with center separation 1.25 units :

restart; alias{(I=TI, j=sqrt(-1)): withi{plots):with({plottools):

K = I/(2%Pi}):

I := 2%pi:

Hx := - (¥/r1)*H1 - (v/r2)*HZ:

Hy := (x/r1)*H1 + ({x-b)/r2)*HZ:

Hl := E*({Heaviside(rl-al)*{l1l/rl1l) + Heavisidefal-r1)*(xrl/al"2)):
H? := -E*(Heaviside(r?-a2)*(1/r2) + Heaviside(aZ-r2)*{r2/a2"2)):
rl = sqrt{x"2+y"2):

r2 = sqrt{(x-b)"2+y"2):

b :=1.25: al := 0.5: a2 := 0.5h:

The conventional Maple "field plot" can then be done this way :
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circle{[0,0],al,color=red}:
1= circle([b,0],a2,color=red):

1= fieldplot{[Hx, Hy] ,x=-1.

[30,30]):
displayi{p,cl,c2);

cl =
o2
P

THICK, scaling=constrained,grid

=-1..1, arrows

.2,

where the two red circles show the conductor surfaces,
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Fig 0.5

Again, we get a vague feel for what the field lines might look like. We now compute these field lines

using the ODE method. So after the first block of code shown above we add instead the following:
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Hx := unapply(Hx,x,v):
Hy := unapply(Hy,x,¥):
eql = diff(X(s),s) = Hx_(X(s),Y(s)):
eq? = diff(¥(s),s) = Hy (X(s),Y(s)):
#f set Hocurves to plot
Hcurves := 16:
for J from 1 to Hcurwves do
print{("starting curve J = ", J);
#f find parametric curve described by x=X(s) and yv=Y(s)
ff := dsolve({eql,eq?,X(0)=0%b/{Hcurves+1)+.0001,Y{0)=0},{X({s),¥Y(s)},
type=numeric, method=gear, output=listprocedure)}:
Y = subs{ff,¥(s)):; fineeded to directly access the Y(s) data
#f find range for parameter s so each curve just closes with no owverlap
8 = 0;

it closure gqoes too high
while (Y (8) >= 0) and (Y (§) < b) do
8 :=8§8 +.1;

od:

PIJ] := odeplot(ff, [X(s),¥(s)],-8...8,scaling=constrained,numpoints=140):
od:
p2 := PLOT(CURY¥ES([[a,bk],[a,-k],[-a,-k]l,[-a,b],[a,k]],COLOR(RGE,0,0,0))):
display({p?,seq(pl[i],i=1. .Hcurwves) , axes=boxed,scaling = constrained, axes =
none,thickness = 2} ;

The two unapply commands formally make Hx and Hy functions of variables x and y.

The two equation lines define ODE's eql and eq2 which are none other than (O.6) with a(s) = 1.

We decide to plot Ncurves = 16 field lines indexed by J.

The Maple dsolve command numerically solves the ODE's with xo = J*b/(Ncurves+1) and yo = 0 as the
starting point for the curve J. Maple returns its solution as two numerically interpolated functions
X(s) and Y(s) which are just those functions we assumed we had in (0.3).

Special code finds an appropriate range for parameter s so curves just close on themselves, or get
truncated if they go beyond a set range.

Finally, the odeplot command plots the parametric functions X(s) and Y(s) to create the field lines in
certain display data structures called p[J] for J = 1 to 16. The PLOT command makes the rectangle in
p2 and finally the display command shows the results.

Even on an ancient PC, this code runs in about 15 seconds.

Here is the resulting plot where we have made the conductor perimeters black and the field lines red:
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.
Fig 0.6

Outside both conductors, the magnetic field is the same as it would be for conductors of a tiny radius, as
the reader can verify by staring at (0.9). Here is the same plot with a; = az = .01 :

Fig 0.7

Reader Exercise: Use H(x,y) as stated in (C.4.7), with F in (C.4.6), to plot field lines using the ODE
method. Compare with the brute force method results shown in Fig O.2.
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(d) The Analytic Method

The reader may notice a striking similarity between the last plot above and Fig 6.2 which displays some
Circles of Apollonius. The magnetic field lines of two parallel thin wires are indeed such circles, and this
can be shown using the following third method of plotting field lines.

From (O.5) that dr = o(s) ds H we may write

dy = a(s) ds Hy

dx = a(s) ds Hx (0.12)
)
(_1X : s : 1 n n ;
x = Hy/Hx // right side is ratio "rat" in the code below (0.13)
or
dy
Hx(%y) g = Hy(X%Y) - (0.14)

This is a first-order non-linear ODE for which Maple (or the reader) may be able to solve analytically for
the solution y(x) which is then an analytic expression for the field line. For two thin wires, here is Maple's
analytic solution using the dsolve command in its default analytic mode,

restart; alias(I=I, j=sqrt(-1)): with(plots):withi{plottools):

K := I/(2%pPi):
I := 2%pi:
Hx := - (y/rl1)*H1 - (y/r2)*H2:
Hy = (x/r1)*H1 + ((x-b)/r2)*H2:
H1 := K*(1/r1):
HZ2 := -K*(1/r2):
rl := sqrt(x"2+y*2):
r? := sqrt{{x-b)"2+y"2):
Hx := unapply(Hx,x,y):
Hy := unapply(Hy,x,¥y):
rat := simplifv{(Hv/Hx)
xz—xb—yz
raf =—-———————
yi2x—h)
ratl :=subs{y = v(x),rat);
x2—xb—y(x)2
rafd =———————————
ylxji2x—5)
ode = diff{vy(x),x) = ratl;
a3 xz—xb—y(x)2
ade = _—yx)l=————————
ax y(xi{2x—&)
s = dsolvei{ode);

1 1
s:=y(x):—\/8_CIx+2xb—4_Cfb—4x2—bz,y(x):——\/8_C£x+2xb—4_CIb—4x2—b2
2 2

Renaming the constant _C1 to be "c", and squaring the solutions shown above, one finds that
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(X‘Xc)z + y2 = I‘2

Xe = bld+c 12 =c? - be/2 - 3(b/4)? (0.15)

where recall that b is the separation of the two thin wires. Thus, the field lines are in fact circles with
centers on the x axis.

Reader Exercise :

1. Using the data presented in Bipolar Coordinates and the Two-Cylinder Capacitor , show that the set of
circles found above are Apollonian circles with these Apollonian parameters,

a=b/2
£ = ch ™ [(b/4+c)/( c? - be/2 - 3(b/4)?)] (0.16)

2. Why might one expect Apollonian Circles for the B field lines in this magnetostatics problem, knowing
that such circles also describe the potential contours of the electrostatics problem of two cylinders?

[ Hint: See (5.3.10) and (5.3.11) with Bz =k? and (3.7.19) concerning the relation between A, and the B
field lines.]
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Appendix P: Eddy Currents and the Proximity Effect

The Maxwell curl E equation (1.1.2) and its integral form are,
curl E = - 3:B o $cEeds =-0u[ ) sBedS] . (1.1.36)

The integral form is often written as €emg = -O¢[magnetic flux] and one says that a changing magnetic
flux through a loop induces a voltage Eepe (an "electro motive force") in that loop which then drives a
current around the loop if the loop lies in a conducting medium. This is Faraday's Law of Induction and
the loop of interest is usually a thin wire or coil of such wires inside, say, an electric generator. The wire
or coil of wires is attached to some Rioaq and some current I flows through the loop and load. There is
Ohmic loss IleooP in the generating loop(s), but if R1caq >> Rioop this loss is minimal in the context of
the generator.

When the loop lies inside an open conducting medium, things become more complicated and the
currents which are then driven around mathematical loops in that medium are called eddy currents. The
word eddy suggests the way water swirls around in a constrained environment when driven by wind or
water currents (see Fig P.4 below). Just as the water flow velocity can have no normal component at a
boundary (a steep river bank for example), an electrical eddy current generally has no normal component
at a boundary of the conductor. An exception to this rule occurs if the eddy current is feeding a charge
density on the outer surface of that boundary, and this exception would apply to water flow as well if a
bank were shallow and could act as a temporary reservoir of water. The analogy is not exact, but the word
eddy is apt.

In practical terms, eddy currents are normally seen as undesirable, as in a transformer core, since they
represent Ohmic loss which results in power waste and heating of the core (Ricag = 0). Sometimes,
however, eddy currents are useful, such as in non-destructive testing for internal cracks in metal parts, as
noted below. Other eddy current applications include induction heating, object movement and levitation,
and braking.

There are whole books on the subject of eddy currents, and the web reveals a plethora of papers and
theses on eddy current applications. However, simple analytic examples of eddy current problems are
hard to find. The general theory is quite complicated, and we present below a simplified approach which
suits are limited purposes.

In this Appendix we explore the nature of eddy currents and compute these currents for some simple
situations. We then show how one can interpret both the skin effect and the proximity effect (non-uniform
current densities in nearby conductors) in terms of eddy currents.
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P.1 Eddy Current Analysis

Consider this drawing,

Bext
External Apparatus

/!

Jext

Fig P.1

An external apparatus has time-varying current density Jext flowing in some wires and creates a time-
varying magnetic field Bext
We now bring in a Device Under Test (DUT) to obtain a new picture:

External Apparatus E Je ddy

puT
/

Jext

FigP.2
For simplicity we assume that the DUT is non-magnetic (u = o) and is a good conductor with
conductivity 6. We therefore ignore displacement currents inside the DUT, in accordance with the

discussion below (2.2.2). Permeability € applies to the region outside the DUT.

Iterative Interpretation

We now imagine the analysis of the E and B fields to take place in the following iterative sense, where
we alternately consider the two Maxwell curl equations:

E© =0 we assume no zeroth order electric field anywhere
curl Bext =0 because Jext = 0 outside the external apparatus
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curl E®) = -joBext
E:E(O)+E(1) :E(l)

(1) _ g g @
(1

Jeddy

1
curl Beagy " = weday
curl Beggy ) = jog E*)

1
B =Bext + Beddy( )

curl E¢®) = -j® Beady

E=E® +E®

(1)

(2) _ R @
(2

J eddy

curl Beddy 2)

) = lJ-Jeddy
curl Beddy(z) = joe E 2

Appendix P : Eddy Currents and the Proximity Effect

time-changing Bext creates E (1) everywhere (Faraday)
which is superposed onto the existing E (%) =0

E® inside the DUT creates Jeddy(l) in the DUT
Jeday () in the DUT creates Beaay (1) in the DUT (Ampere)
and Beady (1) a1s0 exists outside the DUT where Jeday = 0.

(1)

This new Beaay '~ 18 superposed onto the original Bext

(

Beagy 1 in turn results in a further adjustment to E (Faraday)

which is then superposed onto the existing E

This new adjustment to E causes an adjustment in Jegay
This in turn causes an adjustment to Beaay in the DUT
and outside the DUT

Bi1 = Bext + Beady 4 Beday 2) " which is then superposed onto the existing B field.

and so on. (P.1.1)
Eventually we arrive at this situation inside the DUT :
curl EM +E® + ) = jo (Bext + Beaay ) + Beagy ) +...)

curl (Bext + Beddy(l) -I-Beddy(z) +..) =uo (E(l) +E@ + )
=1t (Jeagy ™M +Jeaay B +..) (P.1.2)

which, when all is said and done, is just an iterative interpretation of Maxwell's curl equations inside the
DUT,

curl E = -joB
curl B=puJ = u(cE) (P.1.3)

B=Bext + Beddy(l) +Beddy(2) + ...
E=ED +E® +
J=Jeaay ™ +Jeaay @ +.. (P.1.4)

One hidden assumption above is that Jext is not affected by the eddy currents and their fields, and we
imagine this is implemented by some kind of current source control in the external apparatus.

Writing the solution of Maxwell's equations iteratively of course does not resolve the inherent
complexity of the problem. For example, in the step above where we imagine computing Beddy(l) , We
have to compute Begay () inside the DUT using curl Beaay 1) = W eddy (1) and then we have to compute
Beddy(l) outside the DUT using curl Beddy(l) = joe E(l), and then we have to match the values of
Beday () on the DUT boundary. This is a full-blown boundary problem that requires much effort to solve
for a general DUT and is further complicated if the DUT is made of magnetic material.
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Small ®

Looking at the above series of iterative steps, it would appear that if @ is in some sense "small", the series
shown above for B,E and J are highly convergent and can be well approximated by the first one or two
terms. In this situation, we have in essence a perturbation theory solution where ® is the smallness
parameter. For very low frequencies, the key steps in the above iterative sequence are these:

curl EM) = -joBext
Jeaay ' =c EWP (P.1.5)

which we combine to get
curl Jeagy V) = jooBext (P.1.6)

and this will be the basis for the quantitative calculations of our first two examples below. Since o is
small, Jeaay (1) is small. The next iterative step

curl Beddy(l) = uJeddy(l) (P.1.7)
then results in a small Begay S , and then
‘ Beddy(1)| << | Bext| . (P.1.8)

Although we present no formal proof, it seems likely that our simple perturbative eddy current analysis
can only be viable at a frequency low enough that the skin depth 3 is large compared to the dimensions of
the DUT.

Larger ®

If  is not small, we can still write (P.1.3) as

curl E = 'jm(Bext + Beddy)
curl (Bext + Beaay) = Wedaay = HOE (P.1.9)

but the perturbation series interpretations of Beady, Jeady and E are not meaningful since they (probably)
don't converge. In this case, we have a single monolithic problem that must be solved all at once by some
method other than our simple iterative eddy current analysis starting with (P.1.6). What happens at higher
frequencies is this: the external field Bexe still creates eddy currents in the DUT, but these currents in turn
generate Beaqgy fields which are large enough that they significantly alter Bext within the DUT and one
must then deal with B = Bext + Beaay as the true field which is causing those eddy currents. In this case,
one can combine the two Maxwell curl equations into a wave / Helmholtz equation as we have done in
(1.2.2) and later in (1.5.27) and (1.5.32), and then one must solve that Helmholtz equation subject to
appropriate boundary conditions, both inside and outside the DUT. In effect we did this for an isolated
round wire in Chapter 2 and the solution there involved rather complicated E and B fields (recall the
Kelvin functions) exhibiting skin effect and a rapidly winding phase as shown in Figure 2.9.

492



Appendix P : Eddy Currents and the Proximity Effect

Despite the difficulty of the solution for larger @, we know a solution exists, and we can make
qualitative observations about that solution based on the results of our simple low-® example solutions.
We shall do this below to provide an eddy current interpretation of both the skin effect in a round wire,
and the proximity effect in a transmission line.

ECT Application

In typical Eddy Current Testing (ECT) systems, the frequency used might range from 10Hz to 1500 Hz.
The idea of an ECT system is to try to detect Beagy using a sensitive Hall Effect or SQUID device, and
take note of the field pattern produced by a DUT which is "known good" (has no internal cracks in the
metal). An internal crack in a bad DUT will alter Jeqaqy in some way, which in turn causes an alteration in
Beagy Which can hopefully be detected. Due to the skin depth penetration issue, the useful depth of such
non-destructive testing systems might be up to 15 mm (ballpark). Higher ® generates a larger signal,
gives more accuracy on the defect size and location, but penetration depth is less, so there is always a
tradeoff. Often scans at different o values are optimal for different depths of the defect. ECT is a subject
of much current interest and many papers have been and are being written.

P.2 Eddy currents in a thin round plate in a uniform B field
To reduce symbol clutter, in this section we use the following notation in relation to Section P.1 :
B = Bext J= Jeaay ™ (P.2.1)

A thin round plate of radius a and thickness h lies centered in the z = 0 plane of a cylindrical coordinate
system. This plate is the Device Under Test (DUT) for this problem. An unseen external apparatus creates
a time-varying and spatially uniform magnetic field B =B 2 perpendicular to the plate. The problem is to
compute the electric field E in the plate, and the corresponding eddy currents J = cE. The region
surrounding the plate is assumed non-conducting, perhaps it is air.

Faraday's Law and symmetry imply circular closed electric field lines in the plate. We are perhaps more
used to magnetic field lines being closed since div B = 0, but here we have closed electric field lines since
div E = 0 inside the plate (since there is no free charge inside the plate, see Section 3.1). We assume

sufficiently low ® so skin depth 8 >> h ( recall § =/2/(opc) ) so the E field lines are uniform in the z
direction of the plate thickness. This is the implication of the word "thin" in discussing a "thin plate". In
this drawing, the plate is gray, and some of the circular closed E field lines are shown in red,
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>

0
&y E field line

FigP.3
The magnitude of the E field is constant on each circle due to symmetry. The field lines are drawn
clockwise since we know by Lenz's Law that the associated eddy currents produce a B field opposed to

the applied B field.
Since o is small, we may use our first perturbation theory expansion term (P.1.6),

(1

curl Jeaay ) = jooBext . (P.1.6)

Setting J = Jeddy(l) , B = Bext, J =0E, and jo — O, this says,

curl E =- 3:B = $oEeds =-0:[)sBeds] (P.2.2)

which we recognize as the Maxwell curl E equation and its integral form as shown in (1.1.36). Section P.1
has provided a context and an interpretation of the symbols B, E and J = oE appearing in (P.2.2).

Note: The last paragraphs of Appendix N explain why Ohm's Law is still valid despite the presence of
magnetic fields. We assume in Fig P.3 that B << 569 tesla.

Consider now a circle at radius r. We then have from the right equation of (P.2.2),
Eg * 2mr =- B mr? => Eo(r) = - B nr?/2nr = (—].3 2)r . (P.2.3)

The E field is linear in r, and is reminiscent of the result for the H field inside a round wire which carries a
DC current I,

H * 2nr =1 nr?/na® =< H(r) =11%/a? / 2nr = (12ma®)r . (C.3.9)

Notice that the E field-line circles continue outside the plate and under and over it, but there will only be
current in the plate. Here then is our result for E and J inside the plate:

E(r) =Ee()®  Ee(r) = (-B/2)r Je(®)= 6 (-B/2)r . (P.2.4)
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We digress momentarily to study the heat loss generated in the plate. Consider a thin cylindrical shell of
height dz and radius r and thickness dr. Think of this as a circular wire of rectangular cross section dA =
dzdr. The current in this wire is given by,

dl =Jg dA =Jg dzdr . (P.2.5)
The resistance of the wire is dR = p L/dA = p 2xnr/(dzdr) where p = 1/6. The power burned from P = IR is

dP = (d)2dR = [Jo dzdr]? * p 2nr/(dzdr) = Je? [dzdr] * p 2mr
=Jo? 2npdrdz =[oc (—].3z /2) r]2 2nrp drdz = (n/2)o ]§22 2 drdz . (P.2.6)
Now integrate over the plate thickness h to replace dz by h. Then integrate r from 0 to a to get

P= (n/2)c B2 h(a*/4) = (w/8)c B,%a’h . (P.2.7)

Dimensions:
RHS = [ohm ™ *m™*] sec™? [volt-sec/m?]> m® = ohm™*sec™? [volt-sec]? = volt?/ohm = watts

The total current going around the plate as observed through any azimuthal slice 6 = 07 1is,
a ° a ° 2 2.0
I=h fo dr Jo(r) =h o (-B; /2) fo rdr=ho (B /4)a® = -(1/4)hca’B, . (P.2.8)

To summarize our conclusions for eddy currents in the thin round plate of radius a, thickness h and
conductivity ¢ ,

Jo(r) = - (1/2)01.3 r (P.2.4) // the eddy current density
= - (1/4) cha®B (P.2.8)
P = (n/8) cha® B2 (P.2.7) (P.2.9)

These results are in agreement with equations (36), (37) and (38) of Siakavellas. Since B — joB, the
power loss is proportional to the square of the frequency of the external B field, and it is proportional to
the conductivity of the plate and its thickness. [Siakavellas also treats thin plates with polygonal
boundaries.]

It is a simple matter now to plot the eddy current vector inside the plate:

o =-Jo sin0 =-Jo(yr) = +(1/2)Boy = ky 0(r<a) k=(1/2) Bo
«(12)Box =-kx0(r<a) . (P.2.10)

>

Jx

Jo

Il
>
Il

Jy=Je 03\7 = Jg cosO = Jg (x/1)

With k =1 and a = 1 Maple produces the following plot of the eddy currents inside the plate:
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restart ;with(plots) :with(plottools):

k= 1:
a = 1:
Jx := k*y*Heaviside(a-r):

Jy := -k*x*Heaviside(a-T):

r = sqri(x"2+y"2):

pl = circle([0,0],a,color=red):

p2 := fieldplot([Jx,Jy], x=—-a..a, y = —-a..a, scaling=constrained, arrows=thick):
display(pl,p2)
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FigP4

With k = 1 we have assumed that B > 0 (out of plane of paper), and according to Lenz's Law, the eddy
current creates a B field whose flux cancels some of the applied B flux, hence the clockwise direction.

Why is the eddy current larger at a larger radius? The circular path over which Eepe is generated is
proportional to r (being 2ar), but the encircled magnetic flux is proportional to 12 (being nrzB), SO we
expect Eg to be proportional to r, which (P.2.4) confirms.[ Eg(27r) = Eems = -j® (nrzB). ]

Reader Exercise: Notice that the Eeqqy current arrows are largest near the edge of the plate according to
(P.2.4) which says Eg(r) = constant * r. Is it correct to interpret this as a 2D skin effect of the type

encountered in Chapter 2? In terms of the external B field penetrating the disk, since the disk is thin we
have assumed no skin effect in the z dimension and that B field penetrates fully and & >> h.
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P.3 Eddy currents in a thin round plate in a non-uniform B field

This example is the same as that of the previous section, except the B field is no longer spatially uniform
and for simplicity we assume it has the following simple linear form,

B(x)=Bg-ax. a>0 // B(x) larger for x < 0 (on the left) (P.3.1)

This is then a simple case where Bext(X) = B(X) has a gradient over the plate.

Even with this simple form, the problem is considerably more complicated that the previous problem
since we can no longer make use of azimuthal symmetry. First consider (P.2.2) now in the frequency
domain, where as before B = Bext and E = Jeaqy/c. (This equation is really (P.1.6) of Section P.1.)

curl E=-joB . (P.2.2) (P.3.2)

In cylindrical coordinates this says
£ [17206Ey, - 0gEe] + 0 [0,Fy - 0:E5] + 2 [ 1 202(tEe) - 1 *06E¢ | = - jo B2 . (P.3.3)

As in the previous example, we assume the plate is very thin and o is very small so 6 >> h, so fields are
constant in the z direction allowing us to replace 0, — 0. At the same time, we assume E, = 0 since E,
has no apparent source (and J, has nowhere to flow). Then the above vector curl equation boils down to
this scalar equation for the z component,

1 10.(tEg) - 1 *06Ez = - jo[Bo - @ x]
or
Or(tEg) - OgEy = - jo[Bg - o rcosO] r (P.3.4)

since x = rcos0. Since there is no charge inside the plate (as before), we know div E =0, or

div E =17 28.(tEy) + 1 *0¢Ee + B, =0 . (P.3.5)
Again we set E,= 0 (or 0,—0) which kills off the last term. Then (P.3.4) and (P.3.5) may be written

Or(tEg) - OgEx = - jo[Bg - o rcosO]r

Or(tEy) + OgEg =0 . (P.3.6)
These equations form a system of coupled first-order linear PDE's in variables r and 0 for functions
Er(r,0) and Eg(r,0). There is no z argument since we assumed 0, — 0 above, so basically we have a 2D
problem in polar coordinates. The first equation is inhomogeneous (has a driving term) while the second
is homogeneous.

We wish to emphasize how the addition of a simple linear external B field variation has converted the

trivial problem of Section P.2 to a non-trivial problem involving coupled partial differential equations.
There are of course associated boundary conditions, such as Ex(a,0) = 0 since J, can have no normal
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component at the rim of the plate. This complexity is typical of "eddy current problems". Below we shall
solve this problem using a potential method, and one can then show that the solutions so obtained do in
fact satisty (P.3.6).

(a) The stream function method in Cartesian Coordinates

In our treatment of transmission lines in Chapter 4, we used the fact that div B = 0 to describe the
magnetic field in terms of a magnetic vector potential A, where B = curl A (since div curl A = 0 for any
A). Under suitable conditions, it was then possible to ignore the "transverse" components of A and deal
only with the z component A,. This then replaced the complexity of three fields B; with one field A,.

In our current context of dealing with electric fields inside a conductor (where p = 0) we have div E =
0 and therefore div J = 0 since J = cE. We can then describe the current J in terms of a current vector
potential T, where J = curl T (since div curl T = 0 for any T). For a thin plate at low frequency ®, we will
argue that the transverse components of T may be neglected, and then the complexity of three fields J; is
replaced by one field T,. This field is known in incompressible fluid dynamics as a stream function
where J = nev is essentially the fluid flow velocity field v.

Here then is the stream function method presented in Cartesian coordinates. First,

J=curl T=28 (8yTz - 0;Ty) + 9 (02Tx - 0xT2) + 2 (0xTy - yTx)

Jx=0yTz - 0Ty

Jy = 0:Tx - 0xT,

Jz =0xTy - 0yTx . // components of the above (P.3.7)
The J we have in mind is Jeqay (1) appearing in (P.1.6). Using the symbols of (P.2.1), we have

curlJ =-joc B (P.1.6) (P.3.8)
where B=B, 2 [ = Bext] - Using a standard vector identity we find then that

curl J=curl curl T = grad(div T) - V3T . (P.3.9)
Just as we are allowed to work in the "Coulomb gauge" div A = 0 with the magnetic vector potential (see
Appendix A), here we can work in the div T = 0 gauge for the current vector potential. In this gauge, we
combine (P.3.8) and (P.3.9) to get

V2T = jooB (P.3.10)
where V? is the vector Laplacian operator. This equation can be compared with VA =- ud  which is

(1.3.5) for a magnetostatic situation where A has no time dependence. As shown in (H.1.9), equation
(P.3.10) has the solution

T(x) = -Id3x' [1/4nR][jocB] + possible homogeneous solutions R = |[x-X/| (P.3.11)
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where the integral is the "particular solution" of (P.3.10). Since B = Beyxt = B.(X) 2, the particular
solution is entirely in the z direction. There may be some homogeneous adder solutions which create
transverse components T and Ty, but we make the ansatz that

Te Ty << T . (P.3.12)

One motivation for this assumption is that then J, = 0xTy - 0yTx of (P.3.7) will be very small as we
expect for a "thin" plate (we already assumed E,= 0 above). Bypassing a detailed analysis of this issue,
we shall assume that Ty = Ty = 0 and only T is significant. Then (P.3.7) becomes

Iy = 8yT,
Jy =- axTz
J, =0 . (P.3.13)

Furthermore, we assume that T, = T,(x,y) with no z dependence, since then (P.3.13) will lead to currents
Jx and Jy which have no z dependence. With all these assumptions, (P.3.10) becomes a scalar equation

V2D2Tz(x,y) = jooB(x,y) (P.3.14)
where V2D2 = V3. 622 is the transverse component of the 3D scalar Laplacian.
Equation (P.3.14) is just the 2D Poisson equation of 2D potential theory [see (A.0.1) for the normal
Poisson equation in 3D ]. Many tools are available for solving this equation, and we shall use some of
these tools below in our solution of the thin plate problem.
(b) The stream function method in Cylindrical Coordinates
In cylindrical coordinates (really polar coordinates) one writes

Vap? Tz =1 10(18:T,) + 1 206° Ty,
so (P.3.14) becomes

17101 0:To(r,0)] + 12062 To(1,0) =jowo By(1,0) . (P.3.15)
The ansatz (P.3.12) becomes

Ty, To << Tp . (P.3.16)

The cylindrical replacement for (P.3.7) is
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J=curl T=1%[1r206Ty - 02Te] + 0 [05Tx - 0xTo] + 2 [ 17 20:(rTo) - r 206 Tz ]

Je=1"106T, - 6,Te

Jo =0,Ty-0,T,

J, = r'lar(rTe) - r'laeTr // components of the above (P.3.17)

which, using (P.3.16), we approximate as

Jr = I'_laeTz
Je =- 6rTz
J,=0. (P.3.18)

(c) Using the stream function method to solve the plate problem
From (P.3.1) we have B,(x) =Bg - a x =By - a2 rcosb, so (P.3.15) states that
Or[10rT2(1,0)] + r_lﬁesz(r,e) =jooc [Bg - o rcosf] r. (P.3.19)

Here we have a single second-order PDE in r,0 for a single function T,(r,0) [ the stream function]. One
can compare this with the pair of coupled first-order PDE's found earlier in (P.3.6).

Since the angle 6 has the full range (0,21) we can expand the various functions into "partial waves" as
shown in (D.1.5) for a scalar function, so

To(1,0) = Y Tu(r,m)e™ (D.1.5a)
m = -00
T(r,m) = (1/2n) f_" d T,(r,0) e™I™® (D.1.5b) (P.3.20)

where we use our usual overloaded notation for T,. Then (P.3.15) becomes, using 0g— +jm,
Oe[10T(r,m)] - 1" *m?T(r,m) = jooo Bo(r,m) r (P.3.21)

where

By(rm)=(12m) [ " d0By(r,0) e ™ = (1/2m) [ " dO [Bo - o rcosd] e 3™
-t -t
=Bo (1/2m) f Td0eIm gy (1/2m) f " 40 cosh eI
- -

=By (121) ’; d0 cos(m®) - ar (1/2m) [ ’; d cosd cos(mb)
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T T
=Bg (1/m) ‘[0 d6 cos(mb) - ar (1/m) fo dO cosO cos(mb)

=0m,0Bo (I/M)m-ar (1/m) dp,+1 W2
= sm,oBo - ((7./2) r 5m,:|:1 (P.3.22)

where we use the following integral for integers m and n,

0 m#n
T .
f d0 cos(mO)cos(nf) = y W2 m=n#0 . // Spiegel p 96 15.27
0 n m=n=0

Equations (P.3.21) become

Or(10,T4(1,0)) = joc Bo r m=0 (P.3.23)
Oe(r0: To(r£1)) - 1 2 Ty(r,21) = - joo (a/2) 12 m=+1 (P.3.24)
0e(r0: To(r,m)) - 1 *m2T,(r,m) = 0 m = other integers (P.3.25)

We assume the relevant solution to (P.3.25) is Tx(r,m) = 0. Maple tells us the general solutions to the first
two equations,

restart: alias(I=I, j=sqrt(-1));
J
eql := diff(r*diff(Tz(r),r),r) = j*omega*sigma*BO*r,

a 82
gl = [—Tz(r)] +r|—Te(r) |=jmcBOr
ar 2
ar
dsolve(eql) ;

1
Te(r) = 4—_;' o T B0 r2 + T4+ _C2 Ini#)

eq? = diff(r*diff(Tz(r),r),r)- (1/r)*T=z(r) = -(alpha/2)*j*omega*sigma*r"2
3 FE Te(r) 1 5
gl =| —Te(r) |+r| —Telr) |- =——jEOor
or 8r2 i 2
dsolve(eq2): simplifv(%): expand(%);
1 2 i oz
Telri=—-—jaocr +r_Cl+ +r C2-———
16 r r
We rename the constants to write these solutions as,
T2(r,0) =jo 6 Bo (1/4)r® + C1 In(r) + Cy
Ta(r,£1) =- (1/8) joo (w/2) 1 + D(r-1/r) + Da(r+1/r) . (P.3.26)
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To have T,(1,0) finite at r = 0 we must have C; = 0.
To have T,(r,£1) finite at r = 0 we must have D; = D,. The solution forms are then

T4(1,0) =joc Bo (1/4) 12 + C
To(r,21) =-(1/8) joo (a/2) >+ 2Dy r. (P.3.27)

Inserting these partial wave amplitudes into (P.3.20) gives
To(r,0) =Ty(r,0) + T(r,+1)e3® + T(r,-1)e™3® = Ty(r,0) + T(r,+1) 2 cosd
= [joo Bo (1/4) 12 + C2] + 2 cosh [- (1/8) joo (/2) 1> + 2D4 1]
= [joo Bo (1/4) 12 + C3] - cosOr [ (1/8) joo ar? - 4D1] . (P.3.28)

At the origin point r = 0 we arbitrarily set the potential T,(0,0) = 0 so Ca = 0. One always has this
freedom with a potential: since J = curl T, constants in T don't affect J. We then compute J, as shown in
(P.3.18) to obtain

Jo(r,0) =1 10T, = sind [(1/8) joo ar? - 4Dy ]. (P.3.29)

But at r = a, we must have J.(a,0) = 0 since there can be only tangential currents at the rim of our circular
plate, and this determines D; giving this final result for the stream function T, ,

To(r,0) = joo Bo (1/4)12 - (1/8) cosb r joo o (r2-a?)
= joo [ (1/4)Bo 1? - (0/8) cos® (r>-a’r)]. (P.3.30)
The eddy current components are then, again from (P.3.18),
J:(r,0) =1"20eT, = r ! joo (/8) sind (r*-a’r) = joo [(a/8) sind (r%-a?)]
Jo(r,0) =-0:Tz= joo [ - (1/2)Bor+ (a/8) cosd (3r*-a®)] . (P.3.31)

Here then is a summary of the solution for a circular plate of radius r and conductivity o in the presence
of an external magnetic field B(x) =Bp - a x :

T(r,0) = joo [ (1/4)Bg r? - (0/8) cosO r (r2—a2) ]

J2(1,0) = joo [(w/8) sind (r2-a?)]
Jo(r,0) =jwo [ - (1/2)Bo r + (a/8) cosh (3r*-a?) |

E(1,0) = jo [(a/8) sind (r*-a?)]
Eo(r,0) =jo [ - (1/2)Bo r + (a/8) cosd (3r%-a?) ] . (P.3.32)
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The eddy currents J and Jg are proportional to ® as expected from (P.1.6). Current J, vanishes at the
edge of the plate. When a = 0, we find J.(r,0) = 0 and Jo(1,0) =jwo [ - (1/2)Bo r | which replicates our

uniform-B solution (P.2.4) which was Jg(r) = © (-1.3 2)r.

We have verified using Maple that the stream function T,(r,0) shown in (P.3.32) satisfies (P.3.19) and

that the electric fields E.(r,0) and Eg(1,0) satisfy (P.3.6).
Finally, Maple will plot the resulting eddy currents. First write,

Je=J, FeR +Jg GOQ = J, cosb — Jg sinO
Jy=Jcte§ +1Jg 603\7 =J; sinf + Jg cosO

For plotting we set joc =1,a=1,Bo =1, and a = 1. Here is the plotting code,

Jr := (alpha/8B)*(r"2-a”2)*sin(theta) ;
1
Jr :=§05(r2—a2)sin(6)
Jth := ( -B0*r/2 + (alpha/B)*cos(theta)*(3*r"2-a"2) ),
1 1 o o
Jik :=—530r+§&cos(8) (3r-—a™)
Jx := Jr*cos(theta)-Jth*sin(theta):
Jy = Jr*sin(theta)+Jth*cos(theta):
Jx1 := subs([sin(theta)=y/r,cos(theta)=x/r] ,Jx):
Jyl := subs([sin(theta)=y/r,cos(theta)=x/r] ,Jv):
a :=1: BO := 1l:alpha := 1:
r := sqri(x"2+y"2):
Jx2 := Jxl*Heaviside(a-r):
Jy2 := Jyl*Heaviside(a-r):
pl := circle([0,0],a,color=red):

p2 := fieldplot([Jx2,Jv2],
X=-a..a,y=-a..a,scaling=constrained, arrows=thick):
display(pl,p2),

and here is the resulting plot,

(P.3.33)
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Fig P.5

which one can compare with the no-gradient plot of Fig P.4. As expected, the eddy currents are larger on
the left side because the external B field is larger there. One can imagine the E field lines being a set of
distorted circles which shrink down about a point to the left of the origin.

The main point of this example is to demonstrate the fact that a gradient in the external B field results
in an asymmetry in the eddy current distribution such that the larger eddy current vectors are in the region
in which the external B field is largest. We shall see below in a different geometry how this fact accounts
for the so-called proximity effect in a transmission line.

Reader Exercise: Use one of the methods of Appendix O to plot the E field lines for Fig P.5.
P.4 Self-induced eddy currents in a round wire

We now reconsider our well-studied axially symmetric radius-a round wire of Chapter 2. In this eddy
current example, the "external apparatus" and the "device under test" (DUT) are one in the same! In the
zeroth order of the Section P.1 perturbation theory (very low ), the current density in the wire is

Jext(X,®) which is perfectly uniform across the wire cross section and flows in the 2 direction. This

current density creates a magnetic field Bext in the 0 direction which is obtained from Ampere's Law,

7II‘2 7'[1‘2 2 2
2nr Bext(r) = 71232 Wlene = naz B Jext ma® = mrplext
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=> Bext(r) =(1/2) ur Jext - (P.4.1)
In this problem the "external" current density Jext is generated by the round wire itself, as if it were
somehow its own "external apparatus". A better notation would be Jgc since this is the ® = 0 current

distribution, but we continue to use Jex+ to maintain contact with the Section P.1. Similarly, Bext = Bac -

If the skin depth § is large compared to the wire radius a, we expect the perturbation eddy current analysis
of Section P.1 to be viable, and we write (P.1.6) as

curl Jeaay = - jooBext where Bext = (1/2) urJext 6 = Bext(r) 6 (P.4.2)
In cylindrical coordinates one writes for an arbitrary vector field F,
curl F = £ [ 17 206F, - 05Fo] + 0 [0,Fy - 9:F4] + 2 [ 1 20x(tFe) - 1 *0eFy | . (P.4.3)

For a vector field F which is a function only of r this reduces to,

curl F= 0 [- 0.F,] + 2 [ 20:(tF) ] . (P.4.4)
Thus (P.4.2) becomes these two equations,

r_lar[r(Jeddy)e] =0

- Or(Jeddy)z = -J00 Bext(r) = -joo (1/2) prlexe . (P.4.5)
The first equation of (P.4.5) may be written as

Oc[t(Jeaday)e] =0
or

[r(Jeddy)e] =C
or

(Jeaay)e(r) = Cy/r

from which we must conclude that C; = 0 and then (Jeaay)e(r) = 0, so there is no azimuthal eddy current
in the wire.

The second equation of (P.4.5) may be integrated from r=0 to r=r to obtain
. r .
(Jeddy)z(r) - Jeddy)z(0) = joo (1/2) pJext J‘O dr't' =joo (1/4) uJext 2. (P.4.6)

Thus, the total current density in the wire obtained from eddy current analysis is in the z direction and is
given by
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Jz = Jext + (Jeddy)z = Jext + (Jeddy)z(o) + j(DG (1/4) u Jext r2

J z O
e [ 1+ Leaane(®) = )t( ) 4 ouo (1/4) 12 ]
ex

~ Jexe [1 +jopo (1/4)r%]. /I since |(Jeddy)z(0)| << |Jext| at low ® (P.4.7)
Recall from (2.2.20) and (2.2.21) that
iB2=opc =2/8% =|p?| // jopuo = -p> (P.4.8)
where f is the complex Helmholtz parameter of (1.5.1c). Therefore we have shown that
Jo= Jexe [1 +jopo (1/4) r? 1=Jexe [ 1 - B2(1/4) 12 ]. (P.4.9)

Notice that the eddy current contribution is /2 out of phase with Jext. Since we have assumed & >> a, it
follows that

Ba =(2/8)a =2 (a/5) <<1 (P.4.10)

so then |Br| << 1 and the eddy current contribution is very small, as required to use the first term in the
perturbation expansion of Section P.1 as we have done. Defining

k = wop (1/4)r2 = (ip?) (1/4) r* = | B3 (1/4)? <<1

joop (1/4)% = -p%(1/4) r? (P.4.11)

JjK
one finds

Jz = Jext [ 1- (52/4)1'2] = Jext [ 1+jK]
I2% = Pextl* (1+j1)(1-j)

2l = [Jexe | NAHO10) =] Jexe | 1+ = Jexe| [ 1+ (1/2)%] (P.4.12)

so that
T S =1+ (1) £ ()2 1)
= 1+%{(2/52) (/422 = 1+%{(1/82)(1/2)r2}2
_1 +%(r/8)4 (P.4.13)

which then exhibits a very slight skin effect and has the same r dependence as (2.3.10), see Fig 2.7.
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In Chapter 2 we found in (2.2.30) the following exact result for J, in a round wire operating at m,

J
To(t) = 2%3 % B . (2.2.30)

For small o, since |Pr| << 1, one has for small arguments [ Spiegel 24.5 and 24.6 ]

Jo(x)= 1 -x%/4

he) = 2)(1-x38) = () =2k (1 +x28) = (2/) (P.4.14)
SO
J
Ji’ggg ~ (2/Ba) (1-B?r2/4) (P4.15)
and then
1) = 3= [21Ba) (1-B*24) B =3z [(2fa) (1-B%24)] = =z [ (1-B24)]
= Jext (1-p3r?/4) (P.4.16)

in agreement with our eddy current analysis result (P.4.9).

At higher frequencies where we no longer have 6 >> a, the eddy current perturbation expansion diverges
and becomes meaningless and one must instead solve the Helmholtz equation stated at the end of Section
P.1. In Chapter 2 this task was in essence carried out and the skin effect was observed. One can then
interpret the skin effect by saying that the eddy currents cancel the DC current density in the interior of
the round wire, allowing a net current to exist only at the periphery. In other words, the skin effect is
caused by eddy currents. But this is just a manner of speaking, and is like saying that the skin effect is
"caused by Maxwell's Equations", which it is.

For a moderate skin effect, we can illustrate the eddy currents in a round wire by crudely plotting
them just in the central gray plane of the following drawing :

Fig P.6

Theses qualitative-only plots are for some particular instant in time. We know that the phase of J varies as
shown in Fig 2.8, so we attempt to illustrate only the real part of the currents:
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The closed red curves in Fig P.7 (b) represent the Jeaqy field lines, and these then represent the actual
induced "eddies" of current. One could write Jeady = 6 Eeday and then they are electric field lines. The
lines close on themselves because they have no sources: inside the wire p = 0 so div Jeqay = 0 and div
Ecagy = 0. Recall that a field in general does not have a constant magnitude along a field line. In the
geometry of a round wire, the field lines in fact loop around at the ends of the wire.
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P.5 Eddy currents induced in a quiet round-wire by an external B field

Uniform Bﬁ

In this example, we start with our Device Under Test (DUT) which is a straight round wire which carries
no current. Some "external apparatus" creates a time-changing magnetic field Bext = Bext¥ as shown in
the figure below, where Bext(X,®) is for the moment constant in space. At the instant in time shown, the

time-domain field Bext(X,t) is increasing in the -§ direction so that - ﬁext(x,t) points in the +§ direction,

out of the plane of paper.

X 0
@ = Bext

y Ll
@ =Bext

FigP.8

The time-domain eddy current equation (P.1.6) ( we assume small ®) and its integral form are
(P.5.1)

curl Jegay = o [- Bext] fﬁ cJeday®ds = o f s [- Bexe] © dS

The integral form implies that the flux change through any math loop in the gray rectangle is positive at
our time instant, so according to the right hand rule, the eddy currents in the gray rectangle have the

following general shape,

I."f G/ e /e e /e /e /e e/ </ <= )

|I <= <= <= <= <= <= <= <= <= = |

II [ == <= <= <= <= <= <= <= <= o= \ |

|‘I f — - - - - o g - g - \ \
e )}
\ - . . - a - - - b /

‘ \ \\ - — — - — — — — — — _/’ | |
|| II". = — — — —s —_— — = =9 — ."‘ |
N e S e N
II"-.‘ I:;> r;'> |:;>- I::> |=> |:I> |=> |:;> => |::>

This figure is analogous to Fig P.4 above which shows the eddy current in a thin round plate for a uniform

external B field.
To justify the linear variation with x (vertical), if we assume that away from the ends of the wire nothing

varies with z, and if we write Jeaay as J, we find that
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curl J =8 (8yJz - 02Jy) +§ (O2)x - Oxlz) + 2 (Oxly - Oylx) = - 6 Bextd
or

R @yglz) +9 (- 0xda) + 2 (Bxdy - Bylx) =- 0 Bext? (P.5.2)

which produces the three equations

Oxlz = © }.Bext =>J,(x) = 0].33xt X // " linear in x
Oylz=0 =>]J, =J,(X) only
Oxly - Oylx =0 satisfied if Jx and J, =0 (P.5.3)

The eddy pattern in the round wire would have the same general appearance in any slice of the wire
parallel to the slice shown as the gray rectangle in Fig P.8. The current of course drops to 0 at the wire
surface since we assume the wire is surrounded by an insulating medium. Conversely, in any planar slice
of the wire which is perpendicular to the gray plane (and still parallel to the z axis), there are no eddy
currents because any math loop in such a plane sees no flux.

Non-uniform Bext

Suppose now that the field Bext has a positive linear gradient in the x direction. We can write,

J© Bext(X,0) = jo[ Bexto + ax] = Bext(xat) = ].Bexto +a x (P.5.4)
Then,
Bext(%,t) = Bexe(®) + &) x = jo e3°% [ Bexe(0) + a(0) x ] . (P.5.5)

We assume a(0) > 0 so the B field magnitude is larger at the top of Fig P.8 than at the bottom at t = 0.

Below we shall assume a time such that e3°% = -1 so then both ﬁext(t) and a(t) are negative. Then the first
equation of (P.5.3) becomes,

Oxlz = Géext = G[].gexto"'&x] => Jz(X):G[éext0X+(1/2)(.1X2 -(1/6)(.1]
or

J.x)=-0o[ | éext0| x+ (12) | &|x%- (1/6) | &] ] // for our time of interest (P.5.6)
1
where we have added a constant such that f . dx Jz(x) = 0 for a wire of radius a = 1. Jeqay = Jz is now

larger in the upper half of the gray rectangle than in the lower half, and we would expect then a pattern
having this general shape,
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Fig P.10

The eddy currents are now larger on the side of the wire where the external field Bext is larger. In

addition, one sees the eddy current in general to be larger near the surface of the wire and small in the
interior. Figure P.10 is analogous to Fig P.5 above which shows the eddy current in a thin round plate for

a non-uniform external B field.
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P.6 Eddy currents induced in an current-carrying wire by an external B field

We start with the self-induced eddy current pattern in a round wire shown in Fig P.7 (b),
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e e I I R e e Ei P7(b)
ig P.

We then turn on a uniform external B field which induces an additional eddy current pattern in the same

round wire, as shown in Fig P.9,
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Fig P.9

We assume the external B field has the proper phase relative to the current in the wire such that the
patterns look as shown above. When a small amount of the lower pattern is superposed on the upper
pattern, there is partial cancellation on the top edge, and reinforcement on the lower edge, resulting in the

following eddy current pattern,
—_ = =l =l =tr =r =tr =I> =—i> —I>
o= = = = = = = = = ==
<— < <— <— < < = G G =
<— < e <= <= = <= = <= =
<= Rt == R Rt = = <= = =
< — o — — e — o - =
=t = —t = = =t — — — —

Thus we arrive at another mechanism for the eddy current to be larger on one side of a wire than on the
other side. Notice that Bext has no gradient in this example, and also that we are not showing the

underlying DC uniform current pattern of Fig P.7 (a).
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P.7 Summary of Round Wire Examples

1. The eddy currents which a current-carrying round wire induces into itself vary with radius inside the
wire, but are azimuthally symmetric. These eddy currents are interpreted as causing the skin effect. This
situation is depicted in Fig P.7 (c).

2. A quiet round wire in the presence of a spatially-uniform external B field will have induced eddy
currents which are oppositely directed on the two sides of the wire, but the absolute value of the current is
symmetric on the two sides, as in Fig P.9.

3. If this quiet wire is placed in an external Bext field which has a gradient, then the absolute value of the
current density will be larger on the side of the wire where Begt is larger, as shown in Fig P.10.

4. When a current-carrying round wire is placed in a uniform external Bext field, even though that field
is uniform, the absolute value of the current density is larger on one side of the wire compared to the other
side, as shown in Fig P.11.

5 When a current-carrying round wire is placed in a external Bext field which has a gradient, we again
expect to have a side-to-side eddy current asymmetry which is a combination of the effects of items 3 and
4 above. The asymmetry will depend on the direction of the current in the wire and on the size and
polarity of Bext.
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P.8 Eddy currents in Transmission Lines: The Proximity Effect

We consider a transmission line composed of two round wires and focus our attention on wire #1 as our
Device Under Test. If wire #2 is far away, as in a wide-spaced twin-line, then Bext created by wire #2 is
roughly uniform at the location of wire #1, and we then have the current asymmetry of Case 4 above. If
wire #2 is close to wire #1, then Bext created by wire #2 will have a gradient over wire #1, and then we
have the asymmetry combination Case 5 above where both effects must be considered. In the following
drawing, we show in cross section two round wires both of which carry current I in the same direction,
out of the plane of paper :

left side has

more current right side

less

wire #2

Fig P.12

The field Bext created by wire #2 is slightly stronger on the right side of wire #1 than on the left side,
which of itself would argue for more eddy current on the right side of wire #1. However this effect is
swamped by the Case 4 effect where we have cancellation of B fields on the right side of wire #1 and
addition on the left side, so the total B field is stronger on the left side of wire #1 and thus the eddy
current (and hence the total current density) is larger there, as indicated by the lighter coloration. The
current asymmetry increases as the two conductors get closer together because both the B field
cancellation and reinforcement are enhanced as Bext becomes larger and more comparable to the internal
B field. The asymmetry also increases as o increases, since the eddy currents increase, and at @ = 0 there
is no asymmetry because there are no eddy currents.

If we imagine positive charge carriers coming out of the plane of paper in wire #1, the ones on the left
side of wire #1 feel a Lorentz force q v x B pushing them to the right, while those on right side of wire #1
feel an oppositely directed force pushing them to the left. This is so because the net B in general points
down on the left side of the center line of wire #1, and up on the right side (see Fig P.16 below). But the
charge carriers on the right are in a smaller B field and travel at a smaller velocity v since J, = nqv is
smaller (although at ® = 0 this second fact is not true). The net effect is that for any ® > 0 the charge
carriers in wire #1 feel an overall force to the right and this force is transferred to the conductor ion lattice
to maintain p = 0 causing the entire wire #1 to be pushed to the right. The opposite happens inside wire #2
and the result is that wires with currents in the same direction attract each other for any @ > 0.

The fact that (for @ > 0) the current distribution in each wire is skewed away from the other wire is
sometimes called the proximity effect, or current crowding. One effect of having a non-uniform J,
distribution is that the wires have resistance larger than their DC values (see Section P.10 below). If the
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above two wires were two strands of a power transmission line cable carrying current in the same
direction, the Ohmic loss in the strands is enhanced by this crowding effect.

The coloration patterns in Fig P.12 don't really illustrate the skin effect which is of course always
present at any ® > 0, more strongly of course when 6 < a (see Fig 6.12.). Even in power lines at 60 Hz
where & ~ 1 cm the skin effect does cause a waste of the wire interior since less current flows there. If a
large round conductor is replaced by a set off smaller insulated round wires, this waste is reduced since
the smaller wires each have more uniform current (see Litz wire).

In a transmission line the currents are of course oppositely directed and the picture is different:

right side
more

left side has
less current

wire #1 wire #2

Fig P.13

Now the B field is larger on the right side of wire #1 so the eddy current is larger there causing the total
current density J, to be larger there compared to the left side. The currents are now crowded on the side
of each wire facing the other wire (® > 0). The Lorentz force now causes the two wires to repel each
other, reversing the argument given above (o > 0). There is still extra Ohmic loss compared to DC since
J is non-uniform. Closer wire spacing again results in increased asymmetry.

Companies like "Monster Cables" advocate using their low-ohm expensive cables for driving audio
speakers in order to offset the resistance increase due to both proximity and skin effects.

As support for the comments above concerning the strength of the B fields at various locations, here are
plots of the DC B field along the horizontal line shown in Fig P.12 and Fig P.13. In these plots we show
IBy(x,y=0)| (red) as a function of x in the y = 0 plane. The wires have radius 1/2 unit and center separation
3 units (the straight-looking red curve segments are not exactly straight). The math for these plots appears
in the Example in Appendix O (c), where J, is uniform in each conductor.
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Currents in same direction: [ horizontal line in Fig P.12 ] IBy(x,y=0)|
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If we plot By(x,y=0) instead of [By(x,y=0)|, these plots have the following form,
Currents in same direction: [ horizontal line in Fig P.12 ]_ By(x,y=0)
: /7<\ S
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Fig P.16
Currents in opposite direction: [ horizontal line in Fig P.13 ]
1
0
z—\*lé%/;’ {773 }va P
Fig P.17
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The figure below shows the total eddy currents in the two conductors of a transmission line (oppositely
directed currents as in Fig P.13) as seen on a certain slicing plane through the conductors. The arrow
patterns come from Fig P.11 making use of the B field strengths shown in Fig P.15 (that is, B fields are
stronger on each conductor side closest to the other conductor).

1 ] ] . . .
-— —— — -— -— -—
I ff— f— fp— f— ~f— —
f— — f— f— f— —
- e e - - s
i i =t f— iy
2 - -— -— -— - -—
[ — — — e — —
— —— — —_— —- —
—_— —_— —_— — — —_—
lf— A i — ff— Al

Fig P.18

When the eddy current patterns of Fig P.18 are added to the DC uniform current pattern of Fig P.7a, one
obtains the expected pattern of total current distribution in a transmission line :

Fig P.19

Both the skin effect and the proximity effect are visible in the current density arrow patterns. The 3D
graphs on the right are from Fig 6.12 showing a computed current distribution on each wire cross section.

The reader is reminded that all the arrow drawings in this Section are crude qualitative representations
and are not the result of any true calculation.
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P.9 Quantitative Evaluation of Eddy Currents and The Proximity Effect

Our round-wire discussion above has all been qualitative, and no method was given for computing the
actual size of the eddy currents and thus of the proximity effect for two parallel round wires. G. Smith
presents the following intriguing graph showing the strength of the proximity effect versus conductor
separation for currents in the same direction. In his case c¢/a = 1.0 the conductors are just touching.

1.5
g(8)

1.0

05

() 1 | 1 | ] i | i
0 4 w2 3T/a m 8

F1G. -3 THE NORMALIZED SURFACE CURRENT DISTRIBUTION ON
TWO WIRES VARIOUS WIRE SPACINGS c/o Fig P.20

Presumably o is high enough to put the conductors into the skin effect regime so all currents are surface
currents of thickness 6 << a.

We present in Section 6.5 a quantitative treatment of the skin and proximity effects for an infinite (or
properly terminated) transmission line consisting of parallel round wires, and the results are similar to
those of the above graph with 6 — n-0. Our treatment, however, is not based on "eddy current analysis",
but rather on the charge distribution on the conductor surfaces (think capacitance) and the radial charge
pumping boundary condition (D.2.25) which causes internal currents to be larger where the time-
changing surface charge is larger. In Section 6.5 (g) we comment on how our methods might be applied to
currents flowing in the same direction. As shown in Chapter 7, our general theory is not valid at very low
frequencies, and for such the reader is referred to the book of Rodrigues and Valli .
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P.10 Influence of Proximity and Skin Effects on Wire Resistance

Consider a small differential volume rd0drdz in a round wire (relative to a cylindrical coordinate system
for that wire). Its cross sectional area is dA = rd0dr . This volume has resistance

dR ="pL/A" =pdz/dA (P.10.1)
and the current through this resistor will be

dl =J,(r,0) dA . (P.10.2)
The Ohmic power generated in this tiny resistor is, from P = %R,

dP = (dD?(dR) = [Jx(r,0)dA]? p dz/ dA = p J,(1,0)* dA dz . (P.10.3)
For the coin-shaped resistor consisting of length dz of the entire round wire cross section we find then that

P= [dP =dz [ dA p 31,02 . (P.10.4)
The total current in the wire is

1= [dA 1,(,0) (P.10.5)

and then from P = I°R the effective wire resistance of a cross sectional slice of wire of length dz is,

JdA o) ) .
R =sz = pdz Jaar.1=[Tdarr [Tdo [.] (P.10.6)
[ JdA1.w0) 2 0 n

Adding some cancelling factors of A = na? we get,

[ an paeoyi?/a <I,%> E(J.?)
R=R/z =[p/A] = Rac .52 T Rac m’z (P.10.7)

[ [ dA 1,.0yA 12

where R4 is the DC resistance per unit length of the wire. Our notations <> and E() mean "expected
value". In elementary probability theory one writes

Ux = E(X) // mean
x> = vary = B(X?) - E(X)? =E(X?) - px // variance; ox = standard deviation
so that
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E(Xz) Gx2+ sz ze
= =1+ . .10.
[E(X)]z sz 1 u—z (P.10.8)

X

Thus, taking X = J, we find this result for the round wire AC resistance per unit length [ P =I°R ]

2 2
Cgz R Ogz P Jz
= + =1+——= — =[1+ 7 0.
R= Rac (14,227 ) ol Rl po =1+ 2] loss (P.10.9)

At DC, J, is constant across the wire cross section so its variance is 0 and the above says R = Rgc. For

any other function J,(r,0) # constant, one will have some variance GJZZ > 0 and then R > Rgc. This

discussion presented for a round wire of course applies to a wire of any constant cross sectional shape.
Thus, the proximity and skin effects increase the effective resistance of the wires in Fig P.12 or P.13,

causing an increase in the Ohmic loss. Notice that the percentage proximity/skin-effect loss is
independent of the current 1.
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Appendix Q: Properties of the functions k(®) and Z,(®); plots for Belden 8281 cable

The two functions of interest are,
physics model network model

k(o) = -\zy = -j V(R+joL)(G+aoC) (5.3.5) (K.7)

z R +joL
Zo) =\[y =" /GTjE . (4.12.18) (K.4)

These expressions for k(w) and Zo(w) were derived from both the "physics model" of Chapters 4 and 5

and the network model of Appendix K, with equations numbers shown above. The expressions are valid
for all ® in the network model, but in the physics model they were derived only in the skin effect regime,
though we might have some expectation that the expressions are approximately valid for low ©. We
ignore this issue and just treat k(w) and Zo(®) as abstract functions valid for 0 < @ < .

The four parameters R,L,G and C are by definition all real numbers. For example, in the physics model R
is defined to be the real part of z, and oL the imaginary part of z. In the k and Z¢ sections below, our first
task shall be to compute the real and imaginary parts of k and Zo. We shall then be interested in the large
and small o limits of these expressions. In order to compute these limits properly, we must remember that
the four real parameters R,L,G and C are in general functions of ® and cannot be treated as constants.
This requires that we construct a model for these parameters as functions of ®, and that is the task of the
first Section Q.1.

This Appendix shows all the Maple calculations required to obtain the large and small o limits for small
tang,, and is therefore rather long and opaque. Here is the simple outline to serve as a guide:

Q.1 A Simple Model for R, L, G and C.

Q.2 Real and Imaginary parts of K{®)....cc.uueeeiiiieiiiiiiiiiiiiiieeene
Q.3 Large o limit of K(0)....uvveeeiiiiiiiiiiiiiiiiiineiiie e
Q.4 Small & Emit 0f K(0)...uvvveeeeiiieriiiicesiiiiieersiie s cssssineersass e
Q.5 The general appearance of Re(k) and Im(k) for Belden 8281 cable.

Q.6 Real and Imaginary parts of Zo(0) ....ocovveereceiiiieeniineenierecieee e
Q.7 Large o limit of Zo(®)...

Q.8 Small @ limit of Zy(w)... -

Q.9 The general appearance of Re(Zg) and Im(Z.:.) for Belden 8281 cable
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Q.1 A Simple Model for R, L, G and C

The model considered here is just an ad hoc "reasonable" model which is accurate at high and low
frequencies and which bridges the gap in a crude manner just so we have something to work with. We
shall assume that C and L are the constants appearing in box (4.12.24), namely

C =4neg/K capacitance per meter

Hd .
Le= i external inductance per meter
Ggc = 4nog/K DC conductance per meter

where K is the constant defined also in (4.12.24). The conductance has a dc subscript because o4 is the
DC conductivity of the transmission line dielectric.

Model for C
We assume C to be the constant value shown above, so
C(w) = C =4neg/K = independent of (Q.1.1)
Model for G
Recall first from (3.3.2) and (3.3.4) that
Oeff = ( Og + ®€'q tany) where tan, = (e"q/€'q) and eq=¢€'q - je"q .

This cefr is the effective conductivity of a dielectric whose dielectric constant has an imaginary part. The
dielectric burns energy just as if the loss were all simple ohmic loss. From (4.12.24) we then have

G =(Cer£/ea)C = ( 04+ we'q tany)C/eq = (04/eq)C + (€'9/eq) tang, ®C
= Ggc * (€'9/eq) tang, ©C

where recall that tang, is the loss-tangent or dissipation factor of the dielectric. Clearly G has a strong
dependence on m, being a linear function of ®. Normally (€'¢/eq) = 1 since €"4 and tany, are typically very
small. Rather than set (g'a/eq) = 1, we just absorb this factor into the definition of tan;, and then write
G(w) in this simpler form,

G(w) = Gge + (Ctang) ® where Gac = (04/eq)C . (Q.1.2)
Since (0a/eq) has the dimensions sec™ it is convenient to rewrite the above G(®) as

G(w) =C (wg *+tany © ) ®a = (04/€q) Gge = 04C . (Q.1.3)
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This then is our working model for the frequency-dependent real parameter G(w). The interpretation of
g is straightforward. If one constructs a parallel plate capacitor with area A, separation s, dielectric
constant g4 and dielectric conductivity 64, one finds that R = s/(c4A) and C = Agg/s so that RC = g4/04
which is the discharge time constant 14 for such a capacitor. Then wgq = 1/14. In the transmission line
context, R is really 1/Ggc, the DC resistance per unit length between the conductors, while C is the
capacitance per unit length, and then tg = RC = C/Ggc [ dim = (far/m)/(mho/m) = far-ohm = sec].
Inversely, wg = Gac/C.

Examples:

1. A perfect vacuum dielectric has 64 = 0 so both wg = (04/eq) = 0 and tany, = 0, resulting in G(w) = 0.
This situation with g = 0 presents special problems noted below.

2. As excellent low-conductivity dielectrics, both polyethylene and air have g ~ 10”* mho/m. For such
dielectrics one finds that

wa=0g/ea ~1071%/8.85x 10712 =107/8.85=(10/8.85)x 107 =1.13x 10" * sec™*
Tq = 8850 sec = 2.5 hours

As will be seen below, our low-o limits are only valid for ® < mg and are thus in fact "very low ®" limits.
This is fine, since we are interested in what happens as ®— 0.

3. The loss tangent for the polyethylene used in Belden 8281 coaxial cable has tanz, = .0005 and this can
be regarded as a typical value for tany..

Model for L and R

Recall from Chapter 2 these expressions for the high-frequency resistance and internal inductance of a
round wire of radius a; ,

1

Ri = S0ra)s

8 =[2/opo (2.4.18)

1 1 1 i
06(2ma1)d  wo(2main2/opc  2ma 260

Lii = (1/0)) R; = (2419)

These are for conductor C; and similar expressions apply to conductor C, for a transmission line of the
type considered in Chapter 6. Note that ¢ and p are parameters of the conductor, not the dielectric. We
can rewrite the above equations in this manner

I SR TRy .
Li; = 2may 26 @ decreases with ®
1 . .
Ry = 2may \ [‘2% o2 =eLy; . increases with @ (Q.1.4)
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We now generalize these results for an arbitrary conductor C; as follows

1 - .
Ly = — L w /2 decreases with ®
p1 \/ 20

- 1l 12 . .
Ri=wLji;= p1 A\ [20 ® increases with (Q.1.5)

where p; is the "active perimeter" distance around the cross section of the conductor, as mentioned in
(4.12.10). Recall that surface impedance Zs1(0) = R1(0) + ®L11(0) but we average these quantities over 0
to get the above results, as discussed in Section 4.12 (b). For widely spaced thin wires (or a centered
coaxial cable), the active perimeter of a round wire is the full perimeter so p; = 2ma;, but the active
perimeter is much less than the total perimeter for a pair of closely spaced conductors such as shown in

Fig 4.13. We regard the generalization (Q.1.5) as being "reasonable" if not precise. Summing over the
two conductors of our transmission line, we then find for large ® that

1 1 12 -1/2 1 1 s
i = (—+— = =(—+—
Li = ( s D2 ) 26 @ K ® K s D2 ) 2
1, 1 B 4172 +1/2 : 1/2
= — 4+ = = *
R (pl P2 ) 25 © K® . dim(x) = ohm/m * sec (Q.1.6)

In order to crudely blend these expressions down into the low ® region, we write
R(®) = Rae O(0<og) +(x\o) O(@>0r) 0r = (Rac/K)?

Li(0) = Liac B(0<or) + (kA[o) 8(0>0r) o = (¢ Lige)? (Q.1.7)

where 6(bool) = 1 if bool = true, else 0. The values of wgr and oz, cause the two functions to match at the
boundaries ® = wr and ® = or. Here Rge = 1/(cA1) + 1/(cAyz) is the total DC resistance of the two
conductors of cross sectional area Aj, while Ligc is the total DC internal inductance. Examples of
computing the latter appear in Appendix C. For a round wire, L; = p/8n, so for a pair of same, Lige =
W4 henry/m.

Using parameters shown in Appendix R for Belden 8281 coaxial cable, we may plot R(w) and L;(w) for
our crude model. First, the two expressions are entered into Maple (using w for ®),

restart; with(plots): unprotect('Li');

R := Rdcoc*Heaviside(wR-w) + (kappa*sqrt{w))*Heaviside({w-wR)
R = Rde Heanside(wR — w) + K 4/ w Heawside(w — wk)
Li = Lide*Heaviside{wL-w) + (kappa/sqrt(w))*Heaviside(w-wL)

1 Heaviside{(w — wi)

Jw

Li = Lide Heawiside{wl —w) +

kappa := {1/pl + 1/p2)*sqrt{mud/(2*sigma)):
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followed by parameters for the Belden cable obtained in Appendix R,

pi = evalf(Pi}):

mu = 4d*pi*le-T7:

sigma := 5.81e7:

al := (1/2)*0.7874e-3:

a? := ((1/2)*5020.2 + 11.5) * le-6:
pl = 2%pi%*al: p2 := 2%*pi*al:

B2DC := 3.6091e-3:

R1DC := 32.4819%9e-3:

Bdc := R2DC + RI1DC:

Lide := .58e-7T:

evalfi{kappa)
0004260206321

The two blending frequencies are computed,

WER

(Rdc/kappa) ™2 ;
wi = 1551404 8070
WL

(kappa/Lidc) ™2 ;

wl =702216.9304
and are seen to be in the 1 MHz range. Finally, here are plots for R and L; versus o for a very wide range
ofm: w=1tow= 1010,

semilogplot (R, w=1..1led, numpoints=10000) ;

0.44

0.3 /
i
0.2
4‘3/

014 Vi

1. 1e2  1e3  1ed 165 1e+05 1e+0B 1e+d7 1e+08 .
w Fig Q.1.1

semilogplot (Li,w=1..1el0, numpoints=2000} ;

Se-087

4e-08

Je-087

2e-087

1e-05

U796 763 Ted lenlet0s  det07  Tes09 )
w Fig Q.1.2
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These plots duly show the resistance increasing as \/;) and internal inductance decreasing as 1/\/;) for
large ® . It would not be difficult to provide a smooth blending function to remove the sharp corners from

these plots, but since our main interest is in very large and very small ®, we leave things as is (but see
below).

The final step is to add in the external inductance Le so our model for R(w) and L(®) is then
R(®) = Rac O(0<er) +(x\o ) d(@z08) or = (Rac/0)?

L(®)= Le + Ligc 8(0<0r) + (KA[0) O(@>0r1) o= (/ Li,p0)? . (Q.1.8)
For the Belden cable example Le = 0.37 pH/m = 3.7 x 10~ H/m, giving this plot for L(w) versus :

semilogplot {[L,Le] ,w=1..1el0, numpoints=2000,view=[1..1e10,0..1.5%Le] ,color=[red,black]}
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FigQ.1.3

L(w) is shown in red, while L¢ is shown in black. This last plot shows that L is really the dominant term
in L(w) at all . More magnetic energy is stored in the dielectric than inside the conductors. So:

Simple Transmission Line Parameter Model (Q.1.9)
C(w) = C = independent of ® K= (i + piz )\/%
G(w) =C (wg *+tany © ) 04 = (04/€q) Gge =g C
R(®) = Rac 0(0<0r) + (ko) O(0>0g) or = (Rac/K)?
L(®)= Le + Ligc 0(0<0r) + (kAJo ) O(0=0r1) o1 = (/ Lido)?
LeC = paga = 1/vd? (4.12.24) Lac=Le + Ligc
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The last line shows that Le has a simple relation to C in terms of the dielectric speed of light v4. The two
pi are the active perimeters of the conductors, p and ¢ are for the conductors, and 64, €4 and pg are for the
dielectric. Rge and Ljg4e are the DC resistance and internal inductance total for the two conductors.

How Good is this Crude Model?

Recall that R and oL; are the real and imaginary parts of the total (mean) surface impedance Z; of the
two transmission line conductors. For the Belden coaxial cable example, the central conductor is in a
symmetric environment and for that situation we have an exact expression for Z; from (2.4.6),

-1 J
Zs(o) =—2’n93% % B2=jops . (2.4.6)

We do not have an exact expression for the surface impedance of the shield, but based on the high and
low @ numbers shown in Appendix R, we can roughly account for the shield by adding 15% to the above
central conductor function, resulting in a function for the total Z;(w) which is a smooth function of ®. We
can then plot this function and compare it with our simple Heaviside model presented above, again for the
Belden 8281 example. First, here is the "smooth 115% model" followed by the "crude Heaviside model",

restart; withi{plots): unprotect({'Li");
alias{I=I, j=sqrt(-1), J = Besseld); pi := evalf(Pi):

The smooth 115% model
Zsl := (—j*omega*muld/{(2*pi*al*beta))*J{0,beta*al)/J(1,beta*al);
Jo 00, Bal)
al pI(1, Bpal)

Zel =—158154%431

beta := sqrt{-j*omega*mul*sigma):

muld := 4*pi*le-T7: sigma := b.81le¥:

al := (1/2)*0.7874e-3: a? = ((1/2)*5020.2 + 11.5) * le-6:
R = 1.1h*Re(Zs1):

Li := 1.15*Im(Zs1) /omega:

The crude Heaviside model

R := Bdc*Heaviside(wB-omega) + (kappa*sqrt{omega))*Heaviside{omega-wR) ;
F_ = Fde Heawiside(wH — ) + 1 4/ @ Heawside! @ — wiR)
Li := Lidc*Heaviside(wL-omega) + (kappa/sqrt {omeqga) ) *Heaviside(omega-wL) ;

¥ Heavisidel{ @ — wi)

Jo

Li_ = Lide Heawiside{wl — ) +

kappa := {(1/pl + 1/p2)*sqrt{mul/(2*sigma)):
Pl = 2%*pi%*al: p2 = 2%pi*a2:

Rdo = .360910e-1: Lidc := .h8e-T:

wR := (Rdc/kappa)™2: wL := (kappa/Lidc)™2:

And here are "side by side" plots of R and L; for the two models for o = 10* to 108,
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wlo = led: whi := 1eB:

semilogplot([R ,R],omega = wlo..whi, view = [wlo..whi,
0..6e-1] ,numpoints=800,thickness=2, color [red,black]) ;

0.6
0.57
0.4
0.37

/

0.1

0 1es Te+05 1e+06 Te+07 Te+08 .
ormega FigQ.1.4

semilogplot ([Li ,Li],omega = wlo..whi, view = [wlo..whi,
0..6e-8],numpoints=800,thickness=2, color = [red,black]):

Be-08
se-na—f
4e-ua—f
3e-na—f
29-08-5

1e-081

07 1e5  1e+ds  detls  ledl7  le+ld
amega Fig Q.1.5

Below @ = 10* and above ® = 102 the two models are in very close agreement, and the smooth model
(black) then shows what the correct interpolation of the crude Heaviside model (red) might look like. The
Heaviside model we think gives the essence of the behavior of R and L; versus o.

Reader Exercise: Using the methods of Chapter 2, develop an expression for Z; ( like (2.4.6) quoted

just above) which applies to the sheath of a coaxial cable. Verify against data presented in Appendix R.
The DC limit should agree with (C.6.6) and the large-® limit with (Q.1.5). Perhaps assume t << a,.
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Q.2 Real and Imaginary parts of k(o)

Fact 1: The real and imaginary decomposition of k is given by (Q.2.1)
a“-c . a“+c . : -
k=A\|7 -i\/"3 k = -j3/(RHjoL)(G+HnC)
. a“tc . a-c . - -
k="\[3" +i\"3 ik =2y =\[(R+joL)(G+joC)
where
a = [(R*+0?L?)(G*+0?C?H)]4 = K| dim(@)=1/m a>0
¢=RG - 0?LC dim(c) = I/m? ¢ =real, c| < a?

Proof of Fact 1: Let
q = zy = (R+oL)(G+woC) = (RG-02LC) + jo(LG+RC) = ¢+ jo(LG+RC) = |q| I®
= [q* = | RHjoL)(GHoC) [ = | (RHjoL)|(GHoC) [* = (R*+0’L?) (G*+0°C?) =a'
gl =a®
cosh = Re(q) /|q| = c/a®

Now write

s= \Jzy = JRHoL)(GHoC) =1[q = s ¢** s|=+/lq| =a 0=06/2

+
Re(s) = |s| cosp =a cos(0/2) = a\/(l +cos0)/2 = (a/\/E )\/ 1+c/a® ="\ /a 5 =
Im(s) = [s| sing =asin(®2) =a/(1 <os0)2 = (a2 nT-c/a =\ |5
a“+c . a"-c
s=Nzy =\[T7~ *i\[ 2
. . a~-c | a“tc
k=-\zy =s = \[5 -i\[T2 QED
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Maple verification:

restart; alias{(I=I,j=sgrt{(-1)):
assume (B0 ,1>0,G-0,C-0, omega-0) ;

kE = (-J)*sgrt{(BE+j*omega*L)*(G+j*omega*C))
E=—i(RHj 0 L) (Gtjo )
asq_ := {{(R"2+omeqga”2*L"2)*(G"2+omeqga™2*C"2))"(1/2); # a2

asy :=\/(R2+®2L2) (Gz+c02 C2)

¢_ = R*G - omega”2*L*C;
C_FRG—®2LC
k := factor{evalci{k))
1 1
:=5«/2\/(R2+®2L2)(G2+®26’2)—2RG+2®2LC‘—?«/—2®2LC+2RG+2\/(R2+®2L2)(G2+®26’2)
k :=subs{asq = a"2,k);
1 1
:=5J2a2—2RG+2®2LC—EjJ—2®2LC+2RG+2a2
k := subs{(R*G = ¢ + omega”2¥*L*C k)
1 1
:=54/2a2—2c-—5ja/2c+2a2
factor{expand{asq "2 - ¢ "2)); # to show that a"2 > ||
ol (RO+ILn?
Q.3 Large o limit of k()
The model of box (Q.1.9) at large ® indicates, using Le = 1/(CVd2),
G(0)=C (0g ttany ©) ®a = (04/€q)
R(w) = K\/Z)
1 1 o
L(o)= 1/(Cvg®) + (kKA w®) . K= (—+— 3.1
(0) = 1(Cva®) + (ki) (or * 2\ 20 Q3.1)
Defining t = tany, these expressions are,
G =C(wgq +t o) R=1x\o L= 1/(Cvé®) +xAo . (Q.3.2)

We duly enter the expressions into Maple (using w for )

G = C*¥{wd + t¥*w);
F=C0wd +iw)
R := kappa*sqrti{w)
R:=k&J;:
L := 1/{vd"2%C) + kappa/sqrti{w);

1 K

L= +
o

followed by the intermediate variables a and ¢ from box (Q.2.1),
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a = ((R"Z+w"2*L"2) % (G 2+w"2%*C"2) )" (1/4) ;

2 2 1 K }2] 2 2 2 2]
a =[x wt+w +—F— (O (wd+iw) +w O
[[ [vdzC 'V{;

¢ 1= R*G - w"2*L*C;

c:=KAU'gC(wd+£w)—w2[

1 K } o
L
wale v
The real part of k() is then given from (Q.2.1) as follows:

> BRek := sqrt({a"2-c)/2):
Fek =

1 1 K2 1 K
5 2 [K2w+w2[ 5 +—} ](C2(wd+f.w)2+w2€2)—2lcq;w C(wd+r.w)+2w2[ > +—]C
S O vd“ o WV

The asymptotic expansion of Re(k) for large o is then found to be,

"> series(Bek,w=infinitvy,1): BRekl :=collect(%,w);

1 4}'6‘252+C‘ «.I'C’252+C K+en -2l
Rekf:g
va® C f\|'|0232+c \/7
vd o

which has the form Aw + B\/z) +C+ D/\/g + O(1/m), but we have not displayed the C and D terms
since they are quite complicated. Maple next processes the terms by first simplifying them, then
expanding them in small parameter t. That is, we now regard t = tang, << 1. The results are shown below.

Maple notes: (1) The nth term in the Rekl1 series can be accessed as op(n,Rek1); (2) Maple displays the
output of a command terminated by a semicolon, but suppresses the output if terminated by a colon; (3)
in the series command, the second argument gives the variable and point of expansion, the third the
number of terms; (4) symbol % always refers to the last thing computed.
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op{l,Rekl); simplify(%): series(%,t=0,3);

\/ fEie

vd - vd2

op(2,Rekl); simplify(*): series(%,t=0,2);

1 24 C232+C2K+2KC—2KC£

4
C’z+C 1 l_

vd® C vd2 v

1
EvdKCﬁ—;vdKC\f{;z—i—O(:z)

op({3,Rekl): simplify(%): series(X%,t=0,3): simplify(%)

1 d4C21{2+2 Wil 3
E+ 00T
8 vl
op(d,Bekl): simplify(*): series(%*,t=0,2): simplifvy(%)
4 2 2 4 2 2

1vdeCvd €k +2wd) 1 vdeCvd C°¢" - 2wd)

2
O
i Jw 16 S
Although we have suppressed the last two "op" expressions, we did verify that they were the correct terms
in the series. Maple sometimes orders series in strange ways but here the ordering was as expected.

Collecting the results and keeping only the leading terms in t = tang, the resulting large o limit for Re(k)
1s seen to be,

Re(k) = (0/va) + (1/2)vakCAlo + (1/8va)( va*C?k? + 204) tang, + O(1A[0 ) (Q.3.3)
where we have ignored the details of the O(l/\/c_o ) term.

Treating Im(k) in the same manner one finds,

Imk := - sqrt(f{a“2+c)/2);

1 1 [ 1 4
k=== [ 2 [K2w+w2[ ; +—J J(cz(wd+:w)2+w2c2)+2KﬁC(wd+fw)—2w2[T+—}c
v O '\f; vd Vg
> series(Imk,w=infinity,1): Imkl :=collect(9-s W) ;

AJC2.§2+C 1 C2.§2+C2K 2 C+2x i
Dkl =—
vd® ¢ f\.l't?232+c \/7
vd Z vd

Once again the series has the form Ao + B\/E +C+ D/\/g + O(1/w), but we have not displayed the C
and D terms since they are complicated. Expanding each series term for small t gives
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op(l,Imkl); simplify(%): series(%,t=0,4);

1 «/c:,+c 1

T2 2"
vd Z vd
1w 1 w 3
i +O(z )
2 vd 16 vd

op(2,Imkl); simplify(%): series(%,t=0 4),

C z +C -2+ 2k ls
/\/ 4!(32:2+C \/7
vd Z vd
—%va’}cC»\f’;—;vdKCﬁé—EvdKCﬁz2+O(53)

op(3,Imkl): simplify(%): series(%,t=0,6);

1 11
wdl — —vd4 o2 2 wd-—vd Tk - wd——vd EF
1 > 14"y

1 2 4
-= +| = -= O
2 vid 16 vid 2 vl
op(d,Imkl): simplify(%): series(%,t=0,7);
1 1 1 1
vdKC( W +— vd4C2K2] vdKC(—wd——vd4C2K2]
2 4 1 4 3 2]
- = - O

2

2 w w
Collecting the results and keeping only the leading terms in t = tang, the resulting large o limit for Im(k)

is seen to be,
Im(k) = - (0/v4) tany/2 - (vakC/2)\Jo - (1/2va)(0q - va*C32/2) + O(1A]0) (Q.3.4)

where we have again ignored the details of the 0(1/\/6 ) term. We now summarize these results :

Fact 2: The large ® asymptotic expansion for k(w), assuming tang, << 1, is given by (Q.3.5)

Re(k) = (0/va) + (vakC/2) o + (1/4va) (g +va*C??/2) tang, + O(1A[o )
Im(k) = - (/vg) tangy/2 - (vakC2)\Jo - (1/2ve)(oq - va*C3?2)  +O(1A[o)

S B ey IS -
where k= ( P1 + P2 ) 2 and wg = (04/€q)

Keeping only the leading terms for large ®,

Re(k) = (w/vq) va=1AJLeC = 1A/LC

Im(k) = - o tang, /(2vq)
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The leading term Re(k) = w/vq4 is the usual result obtained from taking the large o limit of the expression

k = —j\/ (R+joL)(G+joC) when the four parameters are treated as constants in o,

k = -\ (R+joL)(GHwC) = -j1/(joL)joC) = (-){oJLC =m\/LC = m/LeC = w/vq.

This fact is obvious from the large-» model stated in (Q.3.1) which we repeat here:

G(w)=C (0g ttany ®) 04 = (04/€q)
R(w) =« \/6
1 1
L(@)= U(Cve) +(xAfo) . = (5 +5-N\[26 Q3.)

Since tang, << 1 one has for large o,

G +joC =C(0q +tang 0) +joC =Cog +oC( tang, +j) = 0Cj = joC
R+joL=k\ 0 +jo[Le +(KA[®)]~jole ~joL
SO

k =-\[(RHjoL)(GHnC) =-j\/(oL)joC) =m/LC = o[LC =wlvg

The leading term Im(k) = - @ tang, /(2vg) indicates the presence of loss due to the aptly named loss tangent

tang,. The quantity Re(k) = o/vq4 is called Pao in (1.5.1b) [ since vq = 1/Afla€q ] and is the wavenumber
that an electromagnetic plane wave would have traveling through an infinite dieletric.

Q.4 Small o limit of k(®)

If the DC conductance G4 = g C is non-vanishing (because o4 > 0) we find one set of results, but if the
dielectric is a perfect vacuum with oq = 0, we get a different set of results. The two cases are treated
separately below with an explanation.

Small ® limit of k(w) for 04> 0

The model of box (Q.1.9) at small o reads,

G(w) =C (0g *+tany ®) ®4 = (04/€q)
R((D) = Rdc
L(w)= Le +Lige =Lac - (Q4.1)

With t = tang, these expressions are,
G=C(og +tm) R =Rgc L=Lgc . (Q4.2)

Enter the expressions into Maple (using w for ®)
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G = C*¥{wd + t*w)
F=C{wad+tw)
B := Rdc:
F = FRde
L := Ldc;
L o=1rde

followed by the intermediate variables a and ¢ from box (Q.2.1),
a 1= ((R"2+w" 2% "2) % (G 2+w"2%C"2) )" (1/4) ;

a = ((Rde® +w® Lde®) (C° (wd + £ w)° +w° OO
o 1= BR*G - wh2¥L*C;

c:=Rch(wd+iw}—w2deC

The real part of k() is given from (Q.2.1) as follows:

Bek := sqrti{{a"2-c)/2):

i
Rek:=5/\/2\/(Rdc2+w2de2)(C2 (wd+1w)° +we OO — 2 Rde C (wd+2w) + 2w Ide C

The expansion of Re(k) for small o is found to be,

> series(Bek,w=0,4): Bekl := simplifv{collect (%, w));
14O (Rde +Ldewd) 1 (Rde—Ldewd)idC 5

Fekl :=5 mm w—4 [3] wo+

el : +f Rde
3 2

14O R+ 3Ra7 P - Ras® ¢ Lde wd+ Rds Lde wd+ s wd® Rdo - Lde” wd®) 3

4
16 (EJ (E] wo o+ Olw )
2 2

Fde W

We show several terms to illustrate that the general form of this series is
Re(k) = \ ©Od Z:n=1oO An(Rge, Lae, ®4g) ((D/(Dd)n . (Q.4.3)

The coefficients A, do not vanish as wg — 0, so we infer that the power series converges only for ® < ®q,
which is a very low frequency as noted earlier (og = 107 for Belden 8281 cable). If one attempts to take
the limit wg — O of the above series, the function Re(k) has a branch point in the complex  plane at @ =
®q which impinges on the origin as wgq — 0, causing the series's radius of convergence to shrink down to
nothing, and the series then diverges and is meaningless. That is why mgq = 0 is treated separately below.

Keeping only the first term of the expansion above, we find
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series(Rek ,w=0,2): Rekl := simplify{collect(®,w));
14/ (Rde + Lde wd)

2
Fekcl =— — )]
5 o M w4+ 00w
so that
Re(k) = (0/2) (Rae + ©alac) \JC/(@aRae) + O(w?) (Q.4.4)

Treating Im(k) in the same manner one finds,

Imk := - sqgrt{{a™2+c)/2);

1
Imk:=—5/\/2\/(Rdc2+w2Ld62) (6"2 (wd+f,w)2+w2 6"2) +2Rch"(wd+fw)—2w2£ch’

series{(Imk,w=0,2): Imkl :=collect(%*,w)

1 of Rde O wd £
fmicd = — +f Rde T wd —5—dw+0(w2)

W

so that
Im(k) = - \[RacCawq [ 1+ (1/2) tang, (0/0g) ] + O(w?) (Q.4.5)

To summarize:

Fact 3: The small o limit for k(w), assuming wg > 0, is given by (Q.4.6)
Re(k) = (0/2) (Rae + 0aLlac) \/C/(@aRac) + O(w?) ® <w0g =(64/¢q)
Im(k) = - \/ RacCoq [ 1+ (tany/2) (0/mg)] + O(mz) Ggce = Cog

Notice that Im(k) — - \’Rchdc > (0 as o— 0, indicating the presence of loss at DC. This loss is just the
ohmic loss in the dielectric due to 64 > 0, and associated loss in the conductors due to Rygc > 0. This
limiting situation is shown in the network model of Fig K.4.
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Small ® limit of k(w) for 04 = 0

Here we rerun the Maple code shown above setting wg = 0 at the start. For Re(k) we find

Bek := sqrt{{(a™2-c)/2);

1
Rek :=5/\/2 \/(Rdc2+w2£.d52) (szz 2

W +W2C'2)—2Rdcc.iw+2w2£dcc

series(Rek ,w=0,2);

- 5
1 ] 1 LdeCw [ (5]]
e C'w
5/\/25?.@?.: CE£2+CE—2£CMC«.Iw+E + O
/\/2Rdca.'6"2£2+02—2£CRdc

Expanding each coefficient for small t gives

op(l,Rekl); series(%, t=0,2)

o d A o fe
%ﬁ«fﬁ‘a’c c ﬁ—iﬁ«;’m C £+ 0%

Op(Z(Rekl), Serles(‘%,t—o,2),
2

Lde Cw

»\/2.Rdc C £ +C2—2iCRdc

3 5
lﬁﬁdcn:'w lv’_m.:c*w o
4 af Bede 8 af Fde O

Keeping only the first term in the ® expansion, we have shown that

Re(k) =v/RacC/2 Ao (1 - tang/2) + O(03/?) . (Q.4.7)

Treating Im(k) in the same manner one finds:
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Imk := - sgrt{{a”2+c)/2);

1
Imk:=—5»\/2\/(Rdc2+w2de2)(C2£2w2+w2 C°) £ 2 Rds Ctw—2w® Lde

= 5
1 f 1 Lde Cow { @]
o O w
ﬁmkf;ﬁ—EA/25Hc C2ﬁ2+-C2-+2£CTRﬁ:ﬂM?+5 + Ohow
/\/2Rdc:4.lC'2£2+C'2+2£C'Rdc

op(l,Imkl); simplify({(%): series(% ,t=0,2);

_%szmfczz%c%zzcmcﬁ
1 1
-2 R A ol =22 o[ [T fo 14 06

op(2,Imkl); simplify({(%): series(% ,t=0,2);

3

Lde Cw

/\/239’64.1 C232+C2+25CR‘d¢

3 3
Fwl

1 1 y
y T - T £+ 00

series{Imk,w=0,2): Imkl :=collect(%, w);

L2 | —

from which we read off the leading term,
Im(k) = - \[RgcC/2 o (1 + tany/2) + O(w>/?) . (Q.4.8)

To summarize:

Fact 4: The small o limit for k(w), assuming wgq = 0, is given by (Q.4.9)

Re(k) = +1/RacC/2 Vo (1 - tany/2) +O(w>/?)
Im(k) = -4/RacC/2 \Jo (1 +tang/2) +O(w3/?)

In this case, Im(k) — 0 as ®—0 so there is no DC loss in the dielectric. This is as expected with og= 0
which implies Zg = o and I = 0 for an infinite transmission line. See Fig K.4 with no ladder rungs.
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Q.5 The general appearance of Re(k) and Im(k) for Belden 8281 cable

Here we are interested in viewing the real and imaginary parts of Re(k) over the full frequency range, not
just at the extremes of small @ and large . The expressions shown in (Q.2.1) are,

Rek ;

1
5/\/2\/(R2+m2.£2)(62+c026'2)—2RG+2::02LC‘

Imk ;

1
——J2J(R2+Q2L2)(Gz+®262)+2RG—2@2LC‘
2 (Q.5.1)

For frequencies below oy, and wg of the parameter model of Section Q.1, the above expressions become

Rek ;

1
54/2\/(1%%@2 (Le+ Lide 121 (O twd + tanL ) + 0% C2) — 2 Rde € (wd + tanl. ©) + 2 02 (L + Lide) C

Imk ;

1
—5/\/2 \/(Rdc:z-l-coz (Le+Lia’c)2) (Cz {wd + fanl co)z-l-coz Cz) + 2 Rde O {wd + fanl 0) - 2 C02 (Le+ Lide) T

(Q.5.2)

Each expression depends on o in five places, and is also a function of Rge, Le, Lige, C, ®g, and tany,. For
this reason, it is difficult to make generalizations about the ® dependence of Re(k) and Im(k) which
would apply to all possible transmission lines. We shall consider the Belden 8281 cable of Appendix R to
be a "typical" transmission line with regard to the relative sizes of the parameters just listed, and we shall
create plots of Rek and Imk for that specific system. For this cable, og = 550,000 and oz, = 700,000 so the
above expressions for Rek and Imk would apply for ® < 500,000 as used in the plots below.

First of all, recall from (Q.2.1) that

a“-c a“t+c
Rek =1\ [~ Imk ="\ | 7 - (Q.5.3)

We use the expressions for a and ¢ shown in (Q.2.1), along with the expressions for R,G,C,L given in the
model (Q.1.9), and data for C, o4, €4, Rac, Le and Lj 4c taken from the Belden Appendix R.

C =69 pF/m Le=361.4 uH/m

Rge =.0360910 ohms/m Lige =58 nH/m

€a=23¢g 64 = 10" mho/m = ©g=48x10"sec! > 0

a1 = (1/2)* 787.4 o pP1= 2ma;

az = ((1/2)*5020.2 + 11.5) n p2 =2maz (Q.5.4)
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Here is a plot of the ratio c/a®,

semilogplot{c/a"2,omeqa = lel..heb,thickness=2 numpoints = 2000) ;

ormega

g2 183 ed 1es le05
o
-0.29
0.4
-0.67
08] 5\

4 Fig Q.5.1

This shows that ¢ << a® on the left side of the graph, so for that range we would expect to find that Rek
and Imk are about the same. That fact is born out in this plot of Rek and -Imk for ® in (10,500,000):

loglogplot ( [Rek,-Imk] ,omega = lel. .5e5,numpoints=2000,thicknéss=2, color =
[red,black],scaling = constrained) ;

e-24
e-3
1e-05+
1e2  ed ed Tes 1e+15 )
omega Fig Q.5.2

The red curve is Rek, while the black curve is - Imk. This plot then gives a good view of Rek and Imk for
what one would normally call "the low frequency range" of this Belden cable, roughly below 1 MHz.

However, this is not the low frequency range for which (Q.4.6) applies. Recall that (Q.4.6) only applies
for ® < wg and wg = 04/eq = 5 X 1073 for the Belden 8281 cable, so ® < wq is what we might call the

"ultra low frequency range". We can redo the above plot in the ultra-low range ® = 1077 to 1072 sec™* :
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loglogplot{[Rek,-Imk] ,omega = le-T7..1le-2 numpoints=2000,thickness=2,

color = [red,black],scaling = constrained) ;

1e-07 3
1e-084
1e-094
1e-107
Te-114 T T T T 1

1e-07 1e0R 1e05 e-3 a2 e-1

omega Fig Q.5.3

This shows what happens as we go off the left edge of the previous graph. We find that -Imk goes to a
constant, while Rek has slope 1 so is proportional to . This is consistent with the low ® limit (Q.4.6),

Re(k) = (0/2) (Rgc + ®aLac) \/C/(@aRac) + O(w?) ® <0g = (04/€q) (Q.4.6)
Im(k) = - \/RgcCoq [ 1 + (tany/2) (w/og)] + O(coz)

Specifically, \/Rchcod = \/Rchdc = \/.036 *34x 1071 =1.1x 1078 as the plot shows.

Having dealt with low and ultra-low frequencies, we turn now to higher frequencies, and for this purpose
we reinstall the full Heaviside model into our Maple code and then continue to make plots. For ® in the
range 10> to 107 one finds,

loglogplot ( [Rek, -Imk] ,omega = le3..le? , numpoints=2000,thickness=2,

color = [red,black],scaling = constrained);
e-1
Ir’
a2
e-3
Jded  1e5  leds  letlB  le+l7
omega

FigQ.5.4

which shows what happens off the right end of Fig Q.5.2. For ® range 10° to 101° the plot is,
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loglogplot { [Rek,-Imk] ,omega le3..1leld  numpoints=2000,thickness=2,

color = [red,black],scaling constrained) ;
AN
£
@
- ()Q o~
) el L 4
/ - e -
il
”ép@
/

i Fig Q.5.5

where we have used a transparent overlay to show the slopes of Rek and Imk. Certainly » = 10*°
corresponding to f = 1.6 GHz is getting near the high end of the usefulness of Belden 8281 cable, but the

slope of Imk (on this log log plote) is still 1/2, indicating that Imk ~ \/6 . Thus we have not yet reached
the true high frequency limit for Im(k) which (Q.3.5) says is this,

Re(k) = (0/va) + (vakC/2)\Jo + (1/4va)(wa +va*C?c?/2) tang, + O(1AJw )
Im(k) = - (0/va) tany/2 - (vakC/2)\o - (1/2va)(0a - va*C332)  +O(1Afo). (Q.3.5)

It is the smallness of tany/(2vg) which causes - (vakC/2) \/c_o to still be the leading term. Finally, we take
® even higher to get this final plot for @ in 10® to 10** ( 1600 GHz ),

loglogplot ([Rek, -Imk] ,omega = le8..bel3d , numpoints=4000,thickness=2,
color = [red,black],scaling = constrained) ;

Fig Q.5.6
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and finally the slope of Imk is 1 showing that the first term in (Q.3.5) is now dominant. Of course at this

value of 1600 GHz (c0=1013) one sees that -Im(k) = .1e3 = 100 which means the cable is good for a length

of about 1 cm (e3%% ~ ™Iz,

Finally, we can combine all the above onto a single graph, where the horizontal axis shows logio(®) :

omega = 10"wl;

o =10""
logplot{[Rek, -Imk] ,wl = -8..14,thickness=2, color = [red,black]):

Te+Hl5
TeHl5
Aes
Aed
Aed

vertical: Red = Re[k(w)] horizontal: log10(®)
Black = - Im[k(w)] Fig Q.5.7

The origin represents (® = 10° =1 sec™?, value = 1 m™%). Note that all plotted values are positive, and that

the functions plotted are Re(k) and - Im(k). The plots are for the simple model presented in Section Q.1.
Function Re(k) (red) is the lower function on the left and the upper function on the right.
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We now clutter up the above figure by adding two more functions g = w/vg (green) and |k| (blue) :

betad := omeqga/vd:
absk := sqrt(Bek"2 + Imk"2):
logplot{ [Rek,-Imk,1/2%*betad, 2*absk] ,wl = -8..14,thickness=2,color =
[red,black,green,blue]) ;
1e+Hl5
TeHls
J1eb
ghe
e
£ i 4 g, .-1e2 1 4 g " 1D M.‘i
J
el
e-2
e-3
Te-5
e-l7
1e-03
1 e-H1
Te-10
Te-11
Te-12
1e-13
Te-14
1e-15
le-16
1e-17

Fig Q.5.8

The green function Pgq is a straight line and it just lies underneath the red line on the right.
The blue function |k| lies just above the uppermost of the red or black curve at any point.
Notice that |k| > B4 ( blue > green) for all ® and [k| = Bq at high frequencies.

The close lines really overlap, so we have artifically added a factor of 1/2 and 2 in the logplot call to pull
them apart just to make them visible.

Note on Log Plots: We are using ancient Maple V which has a bug in its distribution of sample points for
the semilogplot and loglogplot functions. For this reason, these plotting calls are inaccurate if the ®
domain is more than a few decades wide. This bug has no doubt been fixed in later Maple releases. As a
workaround, we use the method shown above to force an equal spacing of points per decade. Just for the
record, here is what Maple V shows for the plot of Fig Q.5.7 even with 10,000 plotting points

loglogplot { [BEek, -Imk] ,omega = le-8..1leld , numpoints=10000,thickness=2,
color = [red,black],scaling = constrained) ;

// Bad Plot !
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Q.6 Real and Imaginary parts of Zg()

Fact 5: The real and imaginary decomposition of Zg is given by (Q.6.1)

Zo= /E—Iig—é =\/§ = (bA2) [\[1Hd/a®) - jS\[1-(d/a%) ]

2, 2r2
R°+w“L 1/4

where b=(gzrgzc2) " =12 a=[(R*+02L?)(G*+02CH]** asin (Q.2.1)
S = sign(RC-LG) d=RG + 0?LC

Proof of Fact 5: The proof is similar to that of Fact 1, (Q.2.1). Let

R+joL
q=; —a'}g—c = |q| &3° -1t < 0 < ( but see few lines below) .
Then
R+joL R%+w?L2 R%+w?L2
2 _ 2 _ — 1.4 _ _ _ 1.2
9" = 1GHec!” = GFe?c® =P =l =N\ GFerc =N
Next,
_RtjoL  RtjoL G-joC  (R+oL)G-joC) RGHo(LG-RC) +w’LC
97 GHoC ~GHoC G-joC ~  G%*+e?C? - G*+o°C?
SO
RG + 0?LC
Re(q) = ol 0 = -m/2 <9 <m/2
LG-R
Im(q) = %2%2522 sign[Im(q)] = sign(LG-RC) = sign(0) =-S .
Then
- ~ RG+0’LC)  [G*He’C? RG + 0’LC
cosd =Re(q)/ la| = TGz 2 R*+o’L® \/(G2+c02C2)( R*+0°L?)
= d/a® where a = [(R®*+02L?)(G*+02CH)]** and d=RG +w%LC.
Now write

s= \/% =fq = |s| *® s|=~/]q] =b=1Z0| =07 A <o <m/4
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Re(s) = |s| cosep =b cos(0/2) = bA/(] +cosB)/2 = (b/\ﬁ h/1+d/a2
Im(s) = |s| sing =b sin(0/2) =-0c b+/(1 -cos0)/2 =-c (b/\/z M 1-d/a?

giving the result

s= (bA2) W1+d/a? - jSA[1-d/a? ]

R*+0?L? 1/4 2, 20 2\/2, 2~2\11/4
where b= (EW) =1|Zo| a=[(R"+0°L)(G"+n“C?)]
S = sign(RC-LG) d=RG + 0?LC.

Our Maple verification of this result is a bit ugly so we omit the code.
An alternate geometric derivation giving the same results begins as follows, where z = jo

_ . |RizL _ JL _ [z+®L) __ L [ztr _ _
Zo= . _\/g 21 (GIO) _\/g it g where r = (R/L) and g = (G/C) .

Fig Q.6.1

L [z+
The drawing shows the complex z plane for the function Zo(z) = \/g ; +; in the particular case

that r > g, where the z-plane has a branch cut from -r to -g. The z values of interest are only those on the
positive imaginary axis where z = jo.

Reader Exercise: Finish this derivation and obtain the results shown in (Q.6.1).

Hint: cos(B-a) = (rg+m2)/(AB) and sin(B-a) = o(r-g)/(AB) where A = \[(niﬂ2 and B =+4/0+g”.
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Q.7 Large o limit of Zy(®)
For large ®, our models for G,R,L. were found to be

G=C(wg +t o) R=1o L=1/(Cv4?) + kAo . (Q.3.2)

These expressions are entered into Maple as in Section Q.3 above. Next, enter the intermediate variables
a, b, and d from box (Q.6.1)

a 1= ((RO2+w"2%L 2)* (G 24w 2%C"2) )M (1/4) ;

a:=[[l€2w+w2[ ! +L}2](C’2(wd+iw)2+w202)]
vito Aw

b 1= ((RO2+w"2%L 2) /(G 24w 2%C"2) ) (1/4) ;

2 2[ 1 x ]2
K owt+w +—
wle A

2

b=
Cz(wd+zw)2+w2C
d = B*¥G + w"Z¥*L*C;

1
d:=nﬁc.ﬁwd+zw3+w2[ +L]c
va’z [ Vg
The real part of Zo(®) is then given from (Q.6.1) as follows:

> ReZ := (b/sqrt(2))*sqrt{l+{d/a"2));
Faf =

o e T
Kow+w [ C{wd+iw)+w
l [vd o Vf_ vd o \"!_
2
c? (wd+zw) +w? c? K ot w? }](Cz(wd+£w)2+w2c'2)
vd o Vf_

The asymptotic expansion of Re(Zg) for large o is then found to be,

‘> series(ReZ,w=infinity,3): BReZl :=collect(%,w)

[l]

1 1 : c

Rer;E[ T a3 2} Joa f1e—/—
vd O (CT T+ 0N NN
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This expansion has the form A + BAjo + C/o + O((o_3/ 2) but above we only display term A because the
other expressions are large and uninspiring. As before, we pick off each term, simplify it, then expand it

for small t:

op(l,ReZl); simplify(%): series(%,t=0,3);

| ‘
[de(Cz+C) J_X/ m

SRR oteh

vid O Bvwd O
op(2,ReZl): simplify(%): series(%,t=0,3);
lvde 1vdx 3 vd K o
- + - i— f.+ i
2w 4w 16(
op(3,ReZl): simplify(%): series(%,t=0,3):simplifv(%)

16wd+K2vd4C2 3

PO
8 w O vd (")

Collecting the results and keeping only the leading terms in t = tang,, the resulting large o limit for Re(k)

is seen to be,
Re(Zo) = 1/(vaC) + (var2) 1A + O(1/w) (Q.7.1)
where we have ignored the details of the O(1/®) term.

Treating Im(Zo) in the same manner one finds,

ImZ := - S*(b/sqrt(2))*sgrt(l- (d/a“2)),
1
K2w+w2[ K\f,_C(wd+ﬁw)+w [ }

1 vd C J__ vd [y 'J_

MZ:—ES
¢ (wa+ 2w 4w’ O K_ Wt ]J(C’2(wd+zw)2+w202)
vd [ "/_

series (ImZ ,w=infinity,3): ImZl := collect(%,w);

(IJ
Izl lS[ ! Jz
mll] =——
2 d4C2(C2£2+C) AJC i +C

Again this expansion has the form A + B/\/E + Clo + O((n'3/ 2) but we only display term A because
expressions are clumsy. As before, we pick off each term, simplify it, then expand it for small t:
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op(l, ImZ1); simplify(*): series(%,t=0,4);
(lJ
1 1
_53[ 2
de(Cz+C) ,x.sz+C

——g3+0(.c)
T2vac T i6vdc

op(Z2,ImZ1): simplify({%); series(*,t=0,4);

S4f2 vav (—e— 14408% 11y

1
4 o 2
a1 al-1+ z+1f

18vde 15vdx 3 Svde o

E@—;@ﬁmv/—£+0{ﬁ

op(3,ImZ1l): simplify(%): series(*,t=0,86);

1 1
S(—Kz vd o +—de
4 2 o
- + Q07
v O w
Collecting the results and keeping only the leading terms in t = tang,, the resulting large o limit for Im(k)

is seen to be,
Im(Zo) = -S tany, /(2v4C) + S (var/2) 1Afo +O(1/w) (Q.7.2)
where we have again ignored the details of the O(1/®) term.

Finally, S is the sign of expression RC-LG,

e = expand{(R*C-L*G , w) ;

wd  Ew Crwd
e:=KﬁC—vd2—vd2— \f’; —CK«ng

series(e,w=infinity,1): el := collect(%,u);
fw kT -wlt wd 1
gl =— 5 + - > - O xowd —
vl L vl w
W

so for large ® and small t = tang, we have

S =sign [ - (tany, /de) o+ KC\/E) - 0a/va? ] (Q.7.3)

which then gives S = -1 for very large . We now summarize these results :
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Fact 6: The large ® asymptotic expansion for Zo(®), assuming tang, << 1, is given by (Q.7.4)

Re(Zo) = [1/(v40)] + (vax2) Ao +0(1/o)
Im(Zo) = [ 1/(v4C)] tany/2 - (vax/2) Alo +O(1/w)

R S S
where K= ( +p2) 2

Keeping only the leading terms for large o,

Re(Zo) = 1/(v4C) =+[Le/C =A[L/IC va=1A[LC = 1ALC

Im(Zo) = + tany/(2v4C) = (1/2) tang, \/Le/C =-1

The leading term Re(Zg) = A/L/C is the usual result obtained from taking the large ® limit of the

. R +joL . . . .
expression Zg = G_+3]E when the four parameters are treated as constants in ®. This fact is obvious

from the large-® model stated in (Q.3.1) which we repeat here:

G(0)=C (0g ttany ©) ®a = (04/€q)
R(w) =« '\/ZJ
1 1
L(®)= /(Cvsd) +(xA[o) . k= (5 o, {g (Q.3.1)

Since tany, << 1 one has

G+joC =C(0g ttan, © ) +joC =C g + oC( tang, +j) = ©Cj = joC

R +joL =k/o +jo [1/(Cvs?) +kA[0) ]7joLle =joL
SO

Zo =v/joL/joC =+[L/C .
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Q.8 Small o limit of Zy(®)
The same partition into mgq > 0 and wg = 0 occurs here as in Section Q.4.

Small ® limit of Zo(w) for 0g4>0

For small o the parameter model is that stated in (Q.4.2.)
G=C(ng +tw) R=Rgc L=Lgc . (Q.4.2)

These expressions are entered into Maple as in Section Q.4 followed by expressions for the intermediate
parameters of (Q.6.1),

a = ((R"Z2+w"2*L2)*(G"2+w"2%C"2) ) (1/4) ;
o
4
a:=((Rdcz+w2Ld62)(C2 (wd+zw)2+w2 Cz))
b 1= ((R"2+w"2%L"2) /(G 2+w"2%C"2) )" (1/4);
H
4
E:n'—[ Rdcz—i-wzﬁdcz ]
C2 (wd+r.w)2+w2 C2
d := R*G + w"2%L*C;

d=Rde C (wd+ew) +w Lde C

The real part of Zo(®) is then given from (Q.6.1) as follows:

EeZ := (b/sqrt{2))*sqrt{l+{d/a"2));

[]J
4
2 2 2 2
1 Fde™ +w™ Lde Fade O (wd +iw)+w™ Lde O
Rel = 2 o4 |1+
Jezac?

2 2, 2.2
Co(wd+tw)” +w O +w? Lde?y (€2 (wd + 1 w)e +w” €2
The expansion of Re(Zg) for small o is found to be,

series (BeZ , w=0,2): ReZl := collect(®*,u)
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We thus find that, for small o,

Re(Zo) = \|Rac/(Coa) - \[Rac/(Cog) tany/2 (0/og) + O(w?) . (Q.8.1)
Treating Im(k) in the same manner one finds,

ImZ := - S*{b/sqrt(2))*sqrt(l-(d/a™2));

{l]
4
5 2 .2 0
1 Fde™ +w" Lde Fde Clwd +iw)+w™ Lde O
I == 5| — — J2 0 1-
C° (wd +ew)  +wS C \/(Rd-:2+w25d.:2)(C’z(wd+zw}2+w26’2)

The expansion of Im(Zg) for small o is then found to be,

series{ImZ,w=0,2): ImZl :=simplify{collect(®,w))

1 5 Rde — Lde wd ) { Rde — Lde wd
Imil = —— sigaum( Rde e vd) (Rde CW)V.?+C'(‘rw2)
S
2
) Fde Ewd
We thus find that, for small o,
Im(Zo) =-(1/2) S| Rac - ®alac| (0/®q) /\|RacC g + O(a)z) . (Q.8.2)

Finally, S is the sign of expression RC-LG,

e = gollect(R*C -L*G, w);
e =—Lde Ctw+ Fde O — Lde O wd

Then for small ® , RC-LG = C(Rgc-®glac), s0 S = sign(Rge-wal.gc). Thus

Im(Zo) =- (1/2) (Rac - ®aLac) (0/04) /\[RacC 0a + O(0?) .

To summarize:

Fact 7: The small o limit for Zo(®), assuming wq > 0, is given by (Q.8.3)

Re(Zo) =|Rac/(Cog) - \|Rac/(Coq) tany/2 (0/og) + O(w?)
Im(Zo) = - (1/2) (Rac - @aLac) (0/04) /\/RacC 0a +O(0?) ® < 0g =(c4/ed)

As ©®—0, we find that Zg — \/Rac/(C®a) = \/Rac/Gac, in agreement with result (2) of the Reader
Exercise below Fig K.4.
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Small ® limit of Zo(w) for 0g=0

We rerun the Maple code shown above setting mgq = 0 at the start. For Re(Zg) one finds,

ReZ := (bfsqrt(2))*sqrt(l+(d[a“2)),
2 2 2
1| Rde™ +w de e Ctw+w™ Lde O
ReZ == ( 1+
2 2.2 2 22 2
Coe"w™ +w (Rdc +w de YT w +w C)
series{ReZ ,w=0,2): BReZl := collect(% W)

" :
el o, Lo |
\etiec? ctre? ol +o[w[5n

ReZl =— 4
2 Jw 4 5
cfl i

ﬂfczzz+c

Expanding each coefficient for small t gives,

opf{l,ReZl): simplify(%): series(%,t=0 2);
wRdc«f «ﬁRdc(+o(£
2 el T4 Jo e

op(2,BeZl): simplify(%): series(%,t=0,2);

lﬁﬂdcﬁ_lﬁmcﬁz
4 fracfc 8 R c

Thus the small ® expansion for Re(Zo) is

Re(Zo) *\[Rac/(2C) 1AJo + (1/2) [LacA[2RacC 10 + O(03/?) (Q.8.4)

Treating Im(Zp) in the same manner one finds,

+O(32)
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ImZz := - S*(b/sqrt{(2))*sqrt(l- (d/a“Z))
1 Rdc +w de Rch"zw+w Lde O
mZ=-—§ \f_
2 2.2 2 20 2
C™e (Rdc-i—w.-ﬂdc)(C":w-i—wC’)
series(ImZ,w=0,2): ImZl := collect(% W)

o

d

2 2
Fde (4 R
S{ﬁ} Al S[ﬁ] e (2]
Izl 1 LT+l cCo 0t 1 Cot+ o
MLl == i + O
2 Jw 2
C £ +C
C"2£Z+C
Expanding each coefficient for small t gives,
op(l, ImZ1): simplify(%): series(%,t=0,2);
1 SofRde A2 154Rde 42 o)
-= +— t+ Ot
2 Jouhw 4 o
op(2,ImZ1): simplify(%): series(%,t=0,2);
13(5&( 13(5&( Lo
£

4 fre o 8 e fo

from which we can write the small ®, small t expansion of Im(Zy),

Im(Zo) = - SA\/Rac/2C) 1AJo +(1/2) S [LacA[2RacC ] Vo  +O(0*?) (Q.8.5)
Since S is the sign of (RC-LG) and since
e = R*C -L*G;
g =Rde C—ILde Ttw
we conclude that for small ®, S =+1. To summarize:
Fact 8: The small o limit for Zo(®), assuming wg = 0, is given by (Q.8.6)

Re(Zo) = [Rac/(2C) 1Afo +(1/2) [LacA2RacC ]\ o  + O(0>'?)
Im(Zo) = - \[Rac/2C) 1A[o +(1/2) [LacA[2RacC N0 +O0(0*/?)

We can quickly verify the leading terms:
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B R+ ‘!COL _ Rac +jCOde - Rac _ Rgc T & .
Zo = \/ G +joC (C tang) o + joC ~ joC — \} oC Vi = oC (A2
. Rdc 1 .
= \lzc _Ja (1-p .

As suggested by the network model for g =0 and ® =0,

R,
AAVA—— A A ——AAAA——AAAN
R =g~
R,
AN A A AAMA—AAAA
z=0  z—» Fig D.8

it is not surprising that Zo — o as ®—0. The phase is perhaps unexpected.
Q.9 The general appearance of Re(Zo) and Im(Zo) for Belden 8281 cable
This section is very similar to Section Q.5 above concerning the appearance of k(w). We are interested in

viewing the real and imaginary parts of Re(Zo) over the full frequency range, not just at the extremes of
small ® and large ®. The expressions shown in (Q.6.1) are,

ReZ0 := (bfsqrt(2))*sqrt(1+(dfa“2)),
2 2
1| B +w L R+ LT
ReZ0=~ 27 ( 1+
Gt \/(R2+®2L2)(Gz+®202)
ImZ0 := —S*(bfsqrt(2))*sqrt(1 (d/a"2));

1| #Pye?r? RG+0°LC
bnZ0 == 8 7 J_
40 0P J(R+®L)(G+®C)

When the full Heaviside model of Section Q.1 is inserted for the parameters R,L and G, one can see that
ReZg and ImZg are complicated functions of . Rather than attempt to deal with generic special cases
(such as small G), we shall again consider the Belden 8281 cable of Appendix R to be a "typical”
transmission line with regard to the relative sizes of the parameters Rge, Le, Lide, C, ®g, and tang, . In our
model the "low frequency" range will be taken to be ® = 1 to 500,000.

A new feature not present in the k(w) case is the sign S which from (Q.6.1) is S = sign(RC-LG). Here
are plots of RC-LG and S = sign(RC-LG) for the Belden cable, using the same wide-range o plotting trick
mentioned at the end of Section Q.5 ( horizontal axis labeled by logio(®) ):

(Q.9.1)
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omega := 10"wl:
plot ({R*C-L*G) wl = -8..11):
plot(s,wl = -8..14);
RC-LG S
26-10- H
0.5
0.6
16-10 ol
0.24
Z T " - : ’ ;s T Y 7 6@{8 T,
] 0.2
0.44
-1e-104
0.64
0.8
-2e-104 -1

Fig Q.9.1

Basically S =+1 up to about @ = 10** then it becomes -1.
Now recall from (Q.6.1) that

Rek = (bA[2 ) [\/THd/a?) ] Imk =S (bA2) [\[1-(d/a?)] . (Q.9.2)

We use the expressions for a,b,d,S shown in (Q.6.1), along with the expressions for R,G,C,L given in the
model (Q.1.9), and Belden cable data for C, 64, €4, Rac, Le and Ljgc as shown in (Q.5.4).

Here is a plot of the ratio d/a® (using our model and the Belden parameters) only up to @ = 500,000 :

semilogplot {(d/a"2,omega = 1lel..bebh,thickness=2, numpoints = 2000) ;

1-
/
0.8 /
0.5
0.47
0.2
u e2 e3 Ted des  Te+s
ormega Fig Q.9.2

This shows that d << a? on the left side of the graph, so for that range we would expect to find that ReZo
and -ImZg are about the same. That fact is born out in this plot of ReZg and - ImZg for o in (10,500,000):
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loglogplot { [ReZ0,-ImZ0] ,omega = lel..bebh , numpoints=2000,thickness=2, color =
[red,black],scaling = constrained]) ;

Aed

Ae3s

.182§

T R PR Y I T
ormega Flg Q93

The red curve is ReZg, while the black curve is - ImZg. This plot then gives a good view of ReZg and
ImZy for what one would normally call "the low frequency range" of this Belden cable, roughly below 1
MHz. However, this is not the low frequency range for which (Q.8.3) applies. Recall that (Q.8.3) only
applies for ® < wg (and wg = 64/eq = 5 X 1075 for the Belden 8281 cable), which we call "ultra low

frequencies". We can redo the above plot in the ultra-low range @ = 107 to 102 sec™ :

loglogplot ( [BeZ0,-ImZ0] ,omega = le-7..l1le-2 numpoints=2000,thickness=2, color

= [red,black],scaling = constrained);
1e+HlE
12405
ebd
Te-07 16 1e05  de3d  de2 e
omega Fig Q.9.4

This shows what happens going off the left edge of the previous graph. One sees that ReZo goes to a
constant, while -ImZg has slope 1 so is proportional to ®. This is consistent with the low ® limit (Q.8.3),

Re(Zo) =|Rac/(Coq) - \|Rac/(Coq) tany/2 (0/0g) + O(w?) (Q.8.3)
Im(Zo) = - (1/2) (Rac - ®alac ) (@/0g) /\[RacC ®a +O(w?) ® < 0a = (c4/eq)

Specifically, \/Rdc/(C(nd) = \/Rdc/Gdc = \/.036 /34 x 10714 =3.25 x 10° as the plot shows.

Having dealt with low and ultra-low frequencies, we turn now to higher frequencies. For ® in the range
10% to 10 one finds,
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logplot{ [BeZ0,-Be(ImzZ0)] ,wl = 3..10,thickness=2, color = [red,black],scaling =
constrained) ;

Te3

el

11 T T T : T T ]
E 4 i f wi 7 9 10
AE

Recall that ImZo experiences a sign change in the region of @ = 10! (sign S goes from +1 to -1) as

Fig Q.9.5

shown in this non-log plot of just -ImZg for 0=10° to 10*8:

plot(-ImZ0,wl = 9..18,thickness=2, color = [red,black]):

0124

0.14
0.084
0.064
0.044

0.024

A . . . .
10 12 wl 14 16 18
002 Fig Q.9.6

In fact, -ImZg approaches the constant value indicated in the large @ limit given in (Q.7.4),

Re(Zo) = [1/(vaC)] + (vax/2) Ao +O(l/m)

Im(Zo) = [ 1/(v4C)] tany/2 - (vax/2) Alo +O(1/w) (Q.7.4)
11
where K= (E+g) -2%

that value being about
ImZo — [ 1/(vaC)] tany/2 = [\[ea/eo /(cC)] tang/2 = [/2.3 /(3x10% x 69 x 10712)].0005/2

{(sqrt(2.3)/({3eB*609e-12))*. 0005/2
01831612427

in agreement with the above plot.
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Because -ImZg goes negative, we cannot do a full log plot of -ImZo without adding a small positive
offset. This problem did not arise when dealing with k(®) in Section Q.5 because Imk must always be
negative to insure a loss (and not a gain!) at any .

Adding an offset of .02, we then make our plot over a full range of ®:

logplot{ [EeZ0,-ImZ0 + .02],wl = -8..17,thickness=2 color =
[red,black] ,numpoints=200) ;

Red =Re(Zp) Black =-Im(Zg) +.02 Fig Q.9.7

We have just shown that, for large ®, ImZo approaches the constant - .18 Q shown in (Q.7.4). We now
see that ReZg also approaches a constant value [1/(vaC)] = [/ea/€0 /(cC)] which is

{sqrt(?.3)/(3e8*69e-12));
7326445705
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This value of 73.26Q2 is slightly less than the nominal cable impedance of 75Q. The following plot shows
ReZg (red) and -ImZg (black) for 10 KHz to 100 KHz on the left, and 100 KHz to 1 GHz on the right :

omega = 2%pi*f:
rlot([Rez0,75h,-ImZ0] ,f = 1led..leh, thickness =
2, color = [red,black,green]); omega := Z2*pi*f:
plot ([ReZ0,75,-ImZ0] ,f = lebh..1le%, thickness
K = 2, color = [red,black,green])

50+ 80+

504 50

40 404

204 201

20000 40000 fEDDDD F0000 100000 07T T e den f' Beiln | BB de+09
Fig Q.9.8

Above 100 KHz -ImZg can be neglected, but at 10KHz it jumps up to 45 Q.
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Appendix R: Belden 8281 Coaxial Cable, a Case Study

Here we gradually work our way through Belden's data sheet for its "8281" coaxial cable, correlating the
data presented there with the general theory of this document. The data sheet is available here,

www.belden.com/techdatas/metric/8281.pdf

but we will be quoting most of it below. We note that over the decades, the parameters on this data sheet
have changed slightly. At its market introduction more than 50 years ago, this RG-59 75Q) coaxial cable
was pretty much top of the line for general purpose RF use, and it is still available today. It is often used
to carry uncompressed analog video signals. Today Belden offers more advanced coaxial cables for use
with high bandwidth digital video signals. Such cables often have a foam dielectric to reduce attenuation,
while the 8281 cable has a solid polyethylene dielectric.

Below we use various equations from our main document to construct a "model" of the Belden cable,
but this model is limited to "high frequency" meaning here roughly f > 1 MHz. A more careful analysis
would also produce a "low frequency" model for frequencies from DC to 1 MHz, and would then blend
these two models at the boundary in some smooth manner.

Of the four transmission line parameters R,L,G,C, only C is treated below as a constant in frequency,
although L is roughly constant in our frequency range of interest. Often in textbook treatments, all four
parameters are considered constants when expressions like k(w) and Zo(®) are plotted (see below).

(a) Geometry of the cable

We start with this data from the Belden specification,

Physical Characteristics (Overall)

Conductor
AWG:

Total Number of Conductors:

Insulation
Insulation Material:

Quter Shield
Quter Shield Material:

.:_._...!:.; - Ouf r Shi I

1 Braid | TC - Tinned Copper |95.000
2 Braid |TC - Tinned Copper |95.000
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The center wire is solid copper with a specified diameter of 0.7874 mm, so a; = .7874/2 mm = 0.3937
mm = 393.7 u. The diameter of the PE core is specified as 5.0202 mm so the radius is 5.0202/2 =
2.5101mm = 2510.1p. This core is surrounded by a tinned double copper braid. One sometimes adds the
radius (80 ) of the fine braiding wire to the effective outer cable radius, but we shall add 11.5 p to the
radius since this makes C match the Belden data sheet value if g4/e9 = 2.3000. So ap = 2510.1+11.5 =
2521.6 n. We then have,

a1 =393.7n inner wire radius
ag =2521.6 n inside radius of the shield

Obviously the 2.3000 number is not exact. We are just building a reasonable model here to try and

replicate the Belden claimed cable parameters, and some parameters have to be tuned to get consistency.

The double braid is not exactly the same as a solid cylindrical shell of copper, so things are approximate.
As we go along here, the corresponding Maple code will be displayed. So far then,

al : (1/2)*0.7874e-3;

ad = 0003937000000
((1/2)*5020.2 + 11.5) * le-6;

a2 = 002521600000

a?

where all quantities are stated in the usual SI units (meters for a; and ay). From these radii one computes
K from (4.6.3),

K =2 In(az/a;), (4.6.3)
to get K=3.7141,

K := 2*%In{a2/al);
E=3714115404
(b) Capacitance C

Assuming gq/€9 = 2.3000, one uses (4.4.17)

C =4neq/K capacitance per unit length (4.4.17)
to get
el := 8.85418711e-12;
el = BRS41E7FY 10_11
aed = 2.3%=20;
ed = 2036463171 1070
C := d*pi*ed/K;

&= 6390170924 10717
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Appendix R : Belden 8281 Coaxial Cable

The Belden data sheet quotes C = 68.901 pF/m.

Nom. Capacitance Conductor to Shield:

Capacitance (pF/m)
638.901

in agreement with our calculation. We regard C as a constant independent of .
(¢) Conductance G
The DC conductance G of the dielectric is related to the capacitance according to
Ggc = (04c/€q) C (4.11.15)
where o4c is the DC dielectric conductivity. Recall now (3.3.4),
Ceff = ( Ogc + ®€'q tany) (3.3.4)

which gives the effective conductivity of the dielectric in terms of the DC conductivity 64 , the real part
of g4 called €'q and the loss tangent factor. For PE we know that c4c ~ 1071% so we neglect that term. We
shall be using tanL. = .0005 below, and since this is small, €'q = 4. Finally, to reduce symbol clutter we
rename Geff t0 be 64 so the above equation becomes

04 = €q tang ® => (o4/eq) = tang, ®
and then
G=tan, ® C = tang 2nfC. (R.1)

Although Fig 3.1 mentions tang, = .0002 for a high quality sample of polyethylene, our experience has
shown that for the bulk low-cost PE product used in coaxial cables, tang, = .0005. The larger loss is due to
many effects including milling, aging (oxidation), water absorption ("treeing") and additives intended to
reduce these loss effects. Very poor quality PE can have a loss tangent (tan;= tand = dissipation factor)

of .0075. For more accuracy, one can develop frequency dependent models for tany, .

The corresponding Maple expressions are duly entered,
tanL. := .0005;
tanl, = 0005
G = f - tanL*2%pi*f*C;
F=Ff=2tanlnfC

where the last notation indicates that G(f) is a function of frequency f.
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In either the Zo or attenuation calculations below, the quantity G + joC ( = y) always appears as a
grouping, and we have determined that

G +joC=tan, ® C+joC =(-jtan, + 1) joC =(1-0.0005])joC . (R.2)

Based on this grouping, one sees that our model is not very sensitive to the value of tang, as long as it is a
relatively small value.

(d) External inductance L.

Using the numbers developed so far, one computes Le from Le = % K in (4.12.24):

T
mud := 4d*pi*le-T;
WO = 1256637062 10_5
E := 2*In(a?/al);
K =3T14112404
Le := muO*E/(d%pi) ;

Le = 3714113405 10_6

which is Le = 371.41 nH/m.

(e) Total DC Inductance

From (C.3.10) we know that the center wire DC internal inductance is given by

Ls(center) = > =50nH/m . DC (C.3.10)

Assuming the shield has a thickness t, (C.6.8) indicates that

Li(shield) = % [(4/3)(t/laz)] . DC thin shell, valid fort<<a, . (C.6.8)

We can compute an effective shield thickness t by making use of its DC resistance Rapc:

Rope = p/A = 1/(cA) = 1/(c 2mast)

=> t=1/(c 2mazRapc) (R.3)
Then

Ls(shield) = g2 [ (4/3) — L. (R.4)

(¢ 27[3.2 R2DC

The value of Rope is specified as 3.6091 ohms/km,
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Nominal Outer Shield DC Resistance:

|3.GDQ1 |

Here then are some calculations leading to a total DC inductance for the cable,

mul := A4*pi¥*le-T;

WO = 1256637062 10_5
Le := muO*K/(4%pi) ;

Le = 37141159405 10_6
sigma := 5.81le7;

T =.581 108

R?2DC := 3.609%1e-3;

RIDC = 0036091
t = 1/ (sigma*2*pi*aZ*R2DC) ;

Li_shield_DC :

£:=.0003010016551

(mu0/(B*pi))*(4/3)*% 1/(sigma*2*pi*a2"2*R2DC) ;

Li_ghield DT = 7957954160 10_8
Li center DC := 50e-9;
Li_center D= 50 10_?
Li DC := Li shield DC + Li center DC;

Li DC = 5795735416 10_?

L DC:= Li_DC + Le;

L_ DT = 4293698547 10_6

The center wire contributes 50.00 nH/m to the DC internal inductance, while the shield contributes
another 7.96 nH/m giving a total of 57.96 nH/m for the total cable internal DC inductance. When this is
added to the external inductance Le of 371.41 nH/m, the total is seen to be 429.37 nH/m. The Belden data

sheet quotes 429.811 nH/m giving a small discrepancy of 1/10th of 1% compared to our calculation,

Nom. Inductance:

|0.42981 1 |

We see that Belden's "nominal inductance" is the total DC inductance of the cable Le +Lj .
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(f) High Frequency Inductance and Resistance

At high ® where the skin effect dominates, one thinks of the current being restricted to a sheath of
approximate thickness o (skin depth). In Chapter 2 we showed that, for the center conductor of radius a;,
the high frequency resistance and internal inductance (per unit length) are given by,

1

Ry = o(2ma1)d

(2.4.18)

1

1 1
_ _ A R (2.4.19)
0o(2na1)d  mo(2mag ) [ 2/0poc 2may 26m

L1z =(l/o) Ry =

It was noted that R; has the simple interpretation of being the resistance of a shell of radius a; and
thickness d.

Since this same kind of thin skin-effect sheath also exists on the inner surface of the outer conductor, we
shall assume that the corresponding parameters for the outer conductor are obtained by replacing a; by as
in the above, so

1
Rz = S0ran)s
1 1 1 / Ho
21 wo(2maz)d Q)G(znaz)«/z/wuoc 2maz 200 (R.5)

We have assumed that the shield and center conductor are made of the same metal (copper) with ¢ and 9.
For other cables, the shield might be aluminum foil, and one would then adjust the above equations.

Adding, we then arrive at these expressions for high frequency resistance and internal inductance:

1 1 1
R=Soms las T a3 !
R 1 1 1 1 1 1
L = o wo(2m)d [ ai * az 1 = fG(Zn)26 [ as + as I (R.6)

At 1 MHz (2.3.9) says 6 = 66y . Since the center conductor has a; = radius 394p and the shield has
thickness t = 301, we shall restrict our model to apply only to frequencies over 1 MHz (ballpark).

1 1
For the Belden 8281 cable, the first term in [ a1 + 2 ]is 6.4 times larger than the second term

(1/al1)/(1/a2);
6.404876810

so most of the R and L; at high frequency come from the inner conductor, not the shield.
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(g) The Tinning Correction

A model complication is that the 160u diameter copper braid wires (34 gauge) of the shield are coated
with tin of thickness 1.3 (50 micro-inches). This coating is added to prevent the copper shield from
oxidizing. At 1 GHz (2.3.9) gives dcopper = 2.09u. Since tin has about 6.3 times more resistance than
copper, and since 8 =+/2/wuc , one finds that 8¢5, = 5.24p at 1 GHz. As the frequency increases, one has
to somehow gradually replace the copper & with the tin ¢ in the second term of the R and L; expressions
above. An analytic solution to this problem can be found by applying the Helmholtz equation [V2+[32]E =

0 to a simple one-dimensional model of the tin/copper interface. We have done this and then obtained the
following "phenomenological" model to handle the tinning correction:

1 1 1
R=Goms lar T 2 ]
L——z—1 LJri”‘f L; = R/(2
1= fo0m% Lag Ty U] 1 = R/(2nf)
tf =1.765 + 0.8 tanh(r/f(GHz) - 1.9) " tinning factor" (R.7)

Here is a plot of this tinning factor for f ranging from 10 KHz to 1 GHz,

semilogplot(tf(f) f=led..leb numpoints = 500} ;

1187
1164
114
1127
1.13
1.087
1.06
1.04
1.02
¥

A5 1e+05  1e+0B , 1e+07  le+0B 18409 .
FigR.1
Tinning Factor versus Frequency

1 . . 1 o D
It was shown above that ag 18 6.4 times larger than P the tinning factor correction is fairly small at

frequencies below 1 GHz (our region of interest). Even at 1 GHz we have
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Lo Ly
Reorrected a1 az
= = 1.026
Runcorrected i + L
al az

((1/al)+(1/a2)* tf(le9))/((1/al)+(1/a2));

1025523686

so the tinning factor increases R and L; by about 2.6% at 1 GHz, and less below 1 GHz. Although small,
we shall include this tinning correction in our calculations below.

Here then are the Maple entries for high-frequency R and L;, where 6 = \/ 2/(opo) = \/ 1/(nfuo) :

delta := £ -rsqrt(l/(pi*f*mul*sigma)})
5 1
=7
T T o
R := f - 1/(2*pi*sigma*deltalf)) * ( {(1/al)+{1/a2)y*tf£{f) )
1 i)
—+
1 af al
R=f—=—-
2 mo sl
Li := £ -> R(E)/(2*pi*f);
E
Lr=f—%——gl
2 my
L = f - Li{f) + Le;

L=F—>Li(A+1Le

Since 0 ~ 1/\/_f and L; ~ 1/(df) ~ 1/\/_f , the internal inductance L; drops off rapidly at high frequencies
and is in general much smaller than Le. This is due to the fact shown in (C.6.8) that the internal
inductance of an annular shell goes to zero as that shell (thickness &) becomes thinner. Here is a plot of L;
(red), Le =371.4 nH (black), and L = L;+ Le (green) for fin the range 1 MHz to 1 GHz,
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semilogplot{[Li{f) Le, L{f)], f=leb..1e9, color = [red,black,greenl]):

Je-074
2e-07
Te-07 1
0% e+08 Te+d7  Te+B 12403 .
FigR.2
Thus, for our range of interest, L is dominated by Le.
The corresponding plot of resistance R is the following,
semilogplot (BR{f), f=leb..l1leD numpoints = 400} ;
4
3.5
3_
2.5
2_
1.5 f/
1 .
0.5
1a+06 Ta+07 Te+08 1a+09 .
f FigR.3

Notice that this plotteed R is in ohms/m, whereas the DC resistances of the center wire and shield are
stated in ohms/km,

Nom. Conductor DC Resistance:

324619

Nominal Outer Shield DC Resistance:

3.6091

Compared to these DC resistances, resistance R is quite large, and of course this is due to the skin effect.
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(h) Characteristic Impedance
Although the cable has a nominal Zg of 750,
Nom. Characteristic Impedance:

Impedance (Ohm)
75

the actual Zg is a slow function of frequency and can vary slightly (~1.5Q) from the advertised nominal
value. Recall from Chapter 4 that

. z R +joL
Zo =V(2)/i(z) =\/; = A /G_+i'm_c (4.12.18)

which is in general complex. We enter this into Maple,

20 := £ -> sqrt((R(E)+j*2*pi*f*L(£))/(G(f) + j*2*pi*f*C));
R(f1+2imfL
0= f s | LT L)
G +ojnfC

where the functions R(f), L(f) and G(f) have been stated above. We then plot Re{Z¢} for f ranging from
IMHz to 10 GHz,

semilogplot { [Re{Z0{£f}),75], £ = leb..1lell, color=[red,black],numpoints = 1000}

75.249

75
/4.8
74,64
4.4
4.2

74
73.8
73.67

1e+15 16407 19;'438 1609 1g+10

FigR.4

Recall that our cable model using high frequency expressions for L; and R is only valid above 1 MHz
more or less. The plot shows that the cable has Zo = 75Q near f =2 MHz, but drops to 73.48 Q at 1 GHz,

and is a little larger than 75Q below 2 MHz.
The imaginary part of Zo over this same frequency range is on the order of - 1 Q :
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semilogplot (Im{(Z0(f)), £ = 1leb..l1lell,numpoints = 1000} ;

i
letdB, el TetD8 Tetd3  lefil

0.24
0.44
-0.64
-0.84

-1.24
-1.44
-1.689
-1.84

FigR.5

A proper no-reflections termination of the cable thus requires both a resistance on the order of 752 and a
small reactive component.

Since the imaginary part is so small, there is little distinction between Re(Zo) and |Zg|. This is
illustrated in the following plot,

magZ0 := £ -> sqrt{Re{Z0{f))"2 + Im{ZO{£))"2);

magll =§F— \/EF{(ZOU'))z + S(Zﬂ(fj)z
semilogplot ([Re(Z0{f) ) , magZ0{f) ,75],f = leb..1leld , numpoints = 1000, color =
[red, green, black]):

5.2

75
74,57
74,67
EXS
7.2

74
73.81
73.67

1e+0B  1eHl7 19}5-08 1e+09 Te+10

FigR.6
where the red ( Re(Zo) ) and green ( |Zo| ) curves lie right on top of each other.
At large o, we expect Zg to approach a limiting value of 73.42Q) ,

ZOI L/C —>\}Le/C
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Z0 limit := sqrt{Le/C);
Z0 fipeie = T3 41970742
(1/(4%pi) ) *K*sqrt (muld/ed) ; #f see (4.4.14)
20 lipaie = T3 41970738

Z0 limit :

in agreement with Fig R.4 above.

At very low ®, we have instead that Zo = /R/G . One can use R = .036 ©/m by adding the DC

resistances of the shield and center conductor. However, G is miniscule at DC since polyethylene is such
a good insulator, so Zj is in the 3 MQ range,

R2DC := 3.6091e-3;

F20C = 0036091
RI1DC := 32.481%9=-3;

FIDC = 0324819
BDC := R2DC + R1DC;

RO = 03605910
sigmad := le-15; #iDC conductivity of PE

sigrmad = 1 10_14
GDC := (sigmad/ed) * C; # see in box (4.11.34)

GFOC = 3383405123 10_14

ZODC := sgrt(RDC/GDC)

Z0DC = 3266047158 10?

Here we have assumed 64 ~ 10715 mho/m, though this could be much larger for the kind of PE that is
used in Belden cables, resulting in a somewhat smaller Zgpc.

Our model does not account for micro detail involving the mesh shield and manufacturing variations,
and one finds with a network analyzer (and an actual piece of Belden 8281 cable) that there is "noise"
superimposed on our idealized plot of Zg versus f which has an RMS value on the order of 1 ohm, see the
work of Van Der Burgt. He argues that due to this "noise", it makes little sense to try to pin down a Zg
tolerance beyond current values, although cable makers still try to do it as part of their marketing
specmanship wars.

(i) Phase Velocity and Attenuation

Recall (5.3.6) which we apply to the voltage on a transmission line whose left end is at z = 0:

V(z) = V(0) e 3%% =V(0)e 2% ¢ b2 ik=a+jb=1/zy = \|(R+joL)(G+juC)
as Re(\lgf ) = Re[\/ (R+joL)(GHjwC) ] = - Im(k) // attenuation per distance of F(z)
b=1ImA/zy) = Im[\/(R+joL)(GHoC)] = Re(k). // phase of F(z) (5.3.6)

Conventional symbols for the attenuation and phase constants are o and f3, but here we call them a and b.
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Phase Velocity

One can see that, for large o,

b = Im[\[(R+joL)(G+joC) ] = Im[\/(joL)(joC) ] = o Im[/-LC ] =o+/LC

and therefore the cable phase velocity is given by
Vphase = ®/Re(k) = w/b = 1/\/ LC . // large ®

Since L = L, in our frequency range of interest, and since the speed of light in the dielectric is determined
by va = 1ALeC = lAfugea [see (4.12.19) ], we conclude that

Vphase = Vd = 1/\/ LeC = 1A/1gga // large ®
and we can compute this two different ways, knowing that the result must be the same,

vphase over ¢ := (1/sqrt(Le*C))/c;

vphase = 62892435140
vd over ¢ := (1/sqrt({mul%*ed))/c;

vl _over_c = 6585243140

This is in agreement with the Belden claim,

Nominal Velocity of Propagation:

VP (%)
€6

The time for a phase front to move 1 meter is given by 1/v4,

delay := 1/{c * vd over c);

delagy = 5058745535 10_8

which is 5.059 nsec. Belden gives

Mominal Delay:

Delay (ns/m)
5.05274

which is within 1/10th a 1% of our computed value.

Reader Exercise: Derive an expression for group velocity vg in the presence of attenuation (k is
complex). How does your result compare with the classical expression 1/vg = dk/Ow or vg = dw/ck ?
Using expressions of the model above, compute vq4 as a function of frequency. Since vg varies with f, the
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cable exhibits dispersion -- pulses spread out as they are attenuated. Determine the group delay for a
narrow pulse to travel 1 m down the Belden cable. How does this delay compare with the phase delay
noted above? What is the effect of the tinning correction on group delay?
Attenuation
It is traditional to express attenuation in "voltage decibels" defined in this manner,

dB(z) =- 20 logio(voltage attenuation over distance z) " decibels"

=-20logio(e™®*) = 20 azlogio(e) =[20logio(e)] az = 8.686 az (R.8)

evalf{(20*logl0{exp{1)));
2 HESEER63E

Belden provides attenuation data for z =100 m of cable, so we just write ( see above, a = - Im(k) )
dB=868.6a = 868.6[-Imk)] > 0 . (R.9)

Here then is a plot of attenuation for frequency f in the range 1 MHz to 1 GHz :

kK := £ -> —j*sqrt ((R(E)+]*2*pi*EXL(£) ) *(C(E£)+]*2*pi*E*C)) ;
E::=f—>—j»\/‘(R(f)+2jnfL(f))(G(f)+2j:ltf€)
a = f - -Imi{k{£));
a =F = —S(()
dB := £ -> B868.5%a(f);

dB =F— 8685 a(f)
semilogplot{dB(f) ,f = 1leb6..le? numpoints=200) ;

304
251
267
24
22
207
181
167
144
124
104

B_

[=E

44

23

1e+lE 1eHl7 i 1e+l3 1e+19 Fig R.7
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In order to compare this theoretical attenuation prediction with Belden's provided data, we first evaluate
our attenuation at the frequencies listed on the Belden data sheet,

for £ in [1,3.6,10,71.5,135,270,360,540,720,750,1000,2000]*1le6 do
%4.2f \nv, £/1e6,dB(f));

printf(m f =
od ;
£ = .0 MH=
£ = .6 MH=
£ = 10.0 HMH=
£ = 71.5 HMH=
£ = 135.0 MH=z
£ = £70.0 MH=z
£ = 360.0 MH=
£ = 340.0 MH=
£ = TZ0.0 MH=z
£ = 750.0 MH=
£ = 1000.0 MH=
£ = Z000.0 MH=

%8.1f MH=

dE (£)
dE (£}
dE (£)
dE (£)
dE (£)
dE (£)
dE (£)
dE (£)
dE (£)
dE (£)
dE (£)
dE (£}

dB(f) =

.71
1.37%7
2.33
.59
9.33
13.73
16.28
Z0.70
Z4.65
Z25.28
i0.zZ2a
47,77

Model Calculation of Attenuation

[36 1.6405
:1 0.0 26248
(715 6.8901
135 9.843
270 14.1083
(360 16.7331
540 1206703
720 |24.2794
(750 24.9356
1000 30.1852

Belden's Datasheet Attenuation

The following spreadsheet then compares Belden's decibel attenuation data with our model prediction,

MHz
1
36
10
71.5
135
270
360
540
720
750
1000
2000

Belden
0.9543
1.6405
2.B248
6.8901
9,843
14 1083
16.7331
206703
24,2795
24 9365
30.1852

Model

0.71
1.37
233
B.49
833
13.78
16.28
207
2465
25.24
30.26
4777

Model no Tin Error
0.71 28%
1.37 16%
2.33 11%
6.57 4%
929 %
13.69 2%
16.14 3%
20.46 0%
24.29 -2%
249 -1%
2967 0%
45.02

(Belden-Model)/Belden

As shown, the error goes down as one moves away from the lower part of the frequency range where the
model is least applicable.
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Here is a plot of the results :

60 -
50
E /
8
- 40
o
o
|
-% 30 —+ Belden s
E e Model b
: |/
ot Model no Tin ]
€ 20 v
m A
T A_{,{f’
1[:] fﬁf-ﬁ' £
_'_'__‘___,_'\.-"f
FF_,_,FFP
0 '.“_"F’““_F{!ﬁ |
1 10 100 1000 10000

f (MHz)
FigR.8

We have included in the spreadsheet a model column which ignores the tinning correction (yellow
triangles). This column was obtained by setting tf(f) = 1 in the Maple code. We added a point at 2 GHz
for which Belden gives no data, and at that point one sees that the tinning correction starts to become a
little more visible. Tinning increases attenuation at high frequencies.

At one time we measured the attenuation of 100 m of Belden 8281 cable using a network analyzer
and found that the above model (with tinning correction) reasonably represents the cable up to 100 GHz.
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Appendix S: Details of the Chapter 4 Averaging Procedure

Here we review the averaging process outlined in Section 4.12 (b) in more detail, and we maintain the
transverse derivatives of the vector potential which were neglected in that Section. Since the process is
explained there, here we just show what happens to the various equations. Corresponding equation
numbers from Chapter 4 are shown in italics. The function arguments suppressed in Chapter 4 for points
x; and Xz are shown in red as (x1,X2). New terms arising from the previously neglected transverse vector

potential derivatives are shown in blue.

The potential difference between two conductors in the transmission line limit is given by
V(x1,X2) = @12(X1) - 012(X2)

' i ' ' L
s dxz' dy2' 02(x2',y2") Riz }

1 @© 1 ' 1 1 ' L
=g, 19 f_oo dz' { fcl dxa'dya" oa(x1'y2) g T - J

1 © 1 1 1 1 1 L 1 1 1 1 L
- T 42 f_oo dz' { fcl dx'dya' aa(xa'y1) 7 — | o, &2 dv2' a2(2y2) 77 1 (44)
(S.1)

and later

1
V(x1.X2) = q(2) Anq { fcl dx1' dy1' az(x1'y1") In(s21%/s11%) - fcz dx2' dy2' a2(x2',y2") In(s22%/s12%) }

5217 = (X2-X1")? + (y2-y1)? 5227 = (X2-X2)% + (y2-y2')? (4.4.6)
s11°= (x1-x1")% + (y1-y1")? s122 = (x1-x2')% + (y1-y2)? . (5.2)
Then
1 ~ V(x1,x2)

C'(x1,x2)  q(2) (8.3)

1
= g fcl dxa' dy1' a1(x1'y1) In(s21%/s11%) - '[Cz dxz' dyz' 0z(x2'y2") In(s22%/s12%) }
1 1
= dmgg KGaxz)and - V(x1.x2) = q(2) 27+ K(x1.x2) (4.4.7)
where

1
K(Xl,Xz) = { J‘ Xm' dy]_' (X]_(X]_',yl') ln(8212/5112) - _[ dXz' d}/2' (Xz(Xz',yzv) ln(Szzz/Slzz) } .
4n§d Ci1 C2

(448) (S4)

Continuing along,
Le(x1,X2) = (na/4m)K(x1,X2) (4.4.11) (S.5)
Zo(x1,x2) = (1/4m) K(x1,X2) \(Ha/€a - (4.4.14) (S.6)
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We then move from the V section to the W section which is Section 4.10 :

. U4
W(x1.x2) = i(2) 4 {fcl dxy' dy1' by(x1'y1) In(s21%/s112) - [ c, 82 vz ba(xzly2) In(s222/s12%) }

(4.10.4) (S.7)

W(x1,x2) = Le(x1,X2) i(2) . (4.10.7) (S.8)
W 9

Le(x1.x2) =% = Z—: Ky(x1.x2) (4.10.8) (S.9)

where Ky, is a dimensionless function we can compare to K,

KL(Xl,Xz) = J‘C Xm' dy]_' b1(X1',y1') ln(5212/5112) - '[C dX2' d}/2' bz(Xz',yz') ln(Szzz/Slzz) . (4109)
1 2
(S.10)
K(x1,x2) = ,[C dx1' dy1' ax(x1'y1") In(s21%/s11%) - fc dxz2' dy2' a2(x2'y2") In(s22%/s12%) . (4.4.8)
1 2
Moving along to Section 4.12 (a) we find (evaluated at some point x )

E =-grad ¢ - 0:tA (1.3.1)
div A = - ngeq 0+@ - HoQ . // the King gauge (1.3.18) (S.11)

Both the above equations are exact and can be rewritten as:

Ez(X) = - 0z0(X) - joAz(X)
02A2(X) + (0xAx + OyAy) = - ] (ﬁdz/(n) o(x) . (4.12.3) (S.12)

where the blue term (0xAx + OyAy) was assumed to vanish in Chapter 4, but now we maintain it in what
follows, continuing through the development of Section 4.12. Taking into account both conductors gives

Ez(X) = - 02012(X) - joAz12(X) (4.12.4a)
azA212(X) + (axAxIZ(x) + ayAyIZ(X)) = 'j (de/m)(Plz(X) . (4124b) (S.13)

Then evaluate at x; and x, and subtract to get
Ez(x1) - E2(X2) = -0z[@12(X1) - 912(X2)] - jo[Az12(X1) - Az12(X2)] (4.12.52)

Oz[Az12(X1) - Az12(X2)] + (OxAx12(X1) - OxAx12(X2)) + (OyAy12(X1) - OyAy12(X2))
=-j (B?/0)[@12(x1) - 12(x2)] . (4.12.5h) (S.14)
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We then define
V(x1,x2) = @12(X1) - 012(X2) (4.4.1)
W(x1,x2) = Az12(X1) - Az12(X2) (4.10.1) (S.15)

and rewrite the previous equation pair as

Ez(Xl) - Ez(Xz) =- an(Xl,Xz) -jO)W(X]_,Xz) (41268.) (816)
D2 W(x1,X2) = (OxAx12(X1) - OxAx12(x2)) + (OyAg12(X1) - OyAy12(X2)) - j (Ba®/®) V(x1,x2). (4.12.6b)

Then define function T to represent the Transverse derivatives.
T(Xl,X2) = (6xAx12(X1) - axAxlz(Xz)) + (ayAylz(Xl) - 8yAy12(xz)) A dlm(T) = tesla (817)

We can then "double average" V,W and T as demonstrated in (4.12.13) to obtain from (S.16) 2nd line,

0:W(2) = T(2) -j (Ba’/0) V(2) (S.18)
where

W(z) =<W(x1,x2)>c1,c2 (4.12.7)

V(z) = <V(x1,X2)>c1,c2 (4.12.7)

T(z) = <T(x1,x2)>c1,c2 - (S.19)

The first line in (S.16) is then double-averaged to give
[Ez1(z) - Ez2(2)] = - 02V(2) -jo W(z) (4.12.6a) (S.20)

where for example,

E1(2) = <Epi(x1)>c1 c2 = (1/P1) Jerdsy (1/P2) f c2dsz Ega(x1) = (1/P1) J 1 dsy Ega(x1)
=<Ez1(X1)>c1 - (821)

Then E,1(x1) = Zs1(x1) 11(z) gets double-averaged in the same way to define Zg;. At this point we have

[Zsl + Zs2] 1(Z) = - 8z V(Z) 'j(’) W(Z)
0zW(2) = - j (Ba®/®) V(z) + T(2) (4.12.11) (S.22)

where T(z) was not present in (4.12.11). From (S.9) we write the Le equation then double-average it,

Wi(x1,
Lo(x1.x2) =% o L= %? . (4.10.8) (S.23)

Since then W(z) = L i(z), the equation pair (S.22) maybe be rewritten,
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[Zsl + ZsZ] I(Z) = - az V(Z) 'j(’) W(Z)

Led2i(z) = - j (Ba®/w) V(2) + T(2) (5.24)
or

0zV(z) = - [ Zs1t Zs2t+ joLe] i(2)

0z i(z) = - [ iBa®/(®Le)] V(2) + T(z)/Le (4.12.14) (S.25)

These are the classical transmission line equations, usually written as

dv di
szﬁ - 2i(2) %29 = .y V() +T(2)/Le (4.12.15) (S.26)
where
Z = Zs1tZs2 +jole =R +joL // z and R are ohms/m (8.27)
y = jPa®/(wLe) =G HoC = joC'. //'y and G are mhos/m (4.12.16) (S.28)

but now we have an extra term T(z)/Le in the 0,1 equation. Applying 0, to the transmission line equations
(S.26) then re-using them results in the following second order transmission line equations:

d?V(z) d%i(z) ,
7 V@ =(PL)T(2) gz -zyi(2)=(1/Le) 3:T(2) . (4.12.17) (S.29)

which are now inhomogeneous differential equations due to T(z) # 0.
In the z equation (S.27) both R and L can be represented as double averages,

R =<Re(z)>c1,c2 = <Re[Zs1(x1) + Zs2(x2) + joLe(X1,X2)] >c1,c2
joL =<Im(z)>c1,c2 = <Im[Zgs1(x1) + Zs2(x2) + joLe(X1,X2)] >c1,c2 - (8.30)

However, in the y equation (S.28) this cannot be done because the number Le = <Le(X1,X2)>c1,c2 18 in
the denominator instead of the numerator. Thus we must regard the numbers G,C and C' in (S.28) as
being defined by the quantity jBa®/(0Le). However, we can invert both sides of the y equation to get

1ly = oLe/(iB?) = (1/C") /(jw) (S.31)

which can be interpreted as

o/(iBa?) * <Le(x1,x2) >c1,c2 = (1/jo) * <m >c1,c2 (S.32)
or

oLe/(jBa%) = < CL > [(jo) (S.33)
or

Le<%>'1 = (Ba®/0?) =paa . //using (1.5.1a) (4.12.19) (S.34)
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Comparing (S.33) with (S.31) shows that the number C' appearing in (S.31) and (S.28) can be interpreted

in this manner,

[ i -1
C—<C,> .

Going back a bit, we had

1 1

C'(Xl,X2) = V(X1,X2)/Q(Z) :E K(Xl,Xz) (447)
W b

Le(X1.X2) =" (E)Xz) _ % K(x1.%2) (4.10.8)

which can be double averaged to get

1 1
<¢” - V(z)/q(z) = F&d K

W@ _ Ha
Le=%0) = 4n Ko

Inserting these last expressions into (S.34) gives,
L
Le<G>7 ~HaSa

Substituting from (S.37) and (S.36) one then finds,

(e Ku] [4nE/K] = pata

or
Ke=K . (4.12.20)

This equality has thus survived the double averaging procedure.

(S.35)

(S.3)

(S.9)

(S.36)

(S.37)

(S.38)
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